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Abstract

Introduction

Chronic diseases are increasing across the world. Examination of
local geographic variation in chronic disease patterns can enable
policy makers to identify inequalities in health outcomes and tail-
or effective interventions to communities at higher risk. Our study
aimed to determine the geographic variation of obesity, cardiovas-
cular disease (CVD), and type 2 diabetes, using general practice
clinical data. Further objectives included identifying regions of
significantly high and low clusters of these conditions and assess-
ing their association with sociodemographic characteristics.

Methods

A cross-sectional approach was used to determine the prevalence
of obesity, CVD, and type 2 diabetes in western Adelaide, Aus-
tralia. The Getis-Ord Gi* method was used to identify significant
hot spots of the conditions. Additionally, we used the Pearson cor-
relation test to determine the association between disease clusters
and risk factors, including socioeconomic status (SES), smoking
history, and alcohol consumption.

Results

The spatial distribution of obesity, CVD, and type 2 diabetes var-
ied across communities. Hot spots of these conditions converged
in 3 locations across western Adelaide. An inverse relationship
was observed between area-level prevalence of CVD, obesity, and
type 2 diabetes with SES.

Conclusion

Identification of significant disease clusters can help policy
makers to target prevention strategies at the right people, in the
right location. The approach taken in our study can be applied to
identify clusters of other chronic diseases across the world,
wherever researchers have access to clinical data.

Introduction

The global prevalence of obesity is a major threat to public health
because of its steep increase in recent years (1,2). This trend is of
international concern, with over 13% of men and 21% of women
in the world classified as obese according to their body mass in-
dex (BMI) (1). Although the financial burden of high BMI raises
concerns about the effectiveness of intervention strategies (3-5),
increasingly more attention is placed on the role of obesity in the
development of other chronic diseases (1). The relationship
between obesity, cardiovascular disease (CVD), and type 2 dia-
betes mellitus is well documented, with high BMI associated with
the development of atherosclerosis, hypertension, and insulin res-
istance (6—9). Because obesity is a clear risk factor of chronic dis-
ease, questions are raised about whether obese populations have
higher rates of CVD and type 2 diabetes.

The reported interplay of sociodemographic characteristics and
lifestyle factors in the development of adulthood obesity supports
the notion that high BMI is not randomly distributed within a pop-
ulation (3,10). Therefore, the implementation of intervention pro-
grams that target all individuals within a population are limited in
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their capacity to create change. Intervention strategies need to be
tailored to communities where clusters of obesity, CVD, and type
2 diabetes exist. Examination of local geographic variation and the
identification of the hot spots is a novel approach to inform policy
and practice about inequalities in health outcomes.

The primary objective of our study was to determine the geo-
graphic variation of obesity, CVD, and type 2 diabetes in an Aus-
tralian community, using general practice clinical data. Secondary
objectives included the identification of regions of significantly
high and low clusters of these conditions and the determination of
their relationship with sociodemographic characteristics.

Methods

A clinical data set of de-identified patient records (n = 84,387)
from 2010 through 2014 was acquired from 16 general practices
across western Adelaide, South Australia. Obesity was defined as
a BMI of 30.0 or higher, as calculated by clinical measurements of
an individual’s weight and height (kg/m?). CVD was defined as
having at least 1 of the following 5 CVD events: carotid stenosis,
chronic heart disease, heart failure (chronic and acute), myocardi-
al infarction, or peripheral vascular disease. Active type 2 dia-
betes was defined by prior diagnosis from a medical practitioner.
The study obtained ethics approval from the Australian National
University Human Ethics Committee (protocol 2014/174).

Data analysis was restricted to individuals aged 35 to 74 years.
Active patients (individuals who had visited their general practi-
tioner at least 3 times between 2012 and 2014) with complete data
on sociodemographic characteristics and geographic information
were included in the individual-level analysis (n = 20,594). After
exclusion of individuals residing outside of western Adelaide, pa-
tients’ medical records were geo-linked to Australian Bureau of
Statistics (ABS) Statistical Area Level 1 (SA1) regions (mean, 400
individuals per SA1) (11). Active patients across 490 SA1 regions
(n=17,716; mean, 36 patients per SA1) were included in the pop-
ulation-level analysis. Only SA1 regions with 5 or more patients
were included to preserve patient privacy.

Descriptive analysis

Mean BMI and frequency of CVD and type 2 diabetes diagnosis
were determined for sex, age category, and SES through use of the
Stata software (version 14; StataCorp LP). SES was classified in-
to tertiles based on ABS Socioeconomic Indexes for Areas
(SEIFA) data, including low socioeconomic, moderate socioeco-
nomic, and high socioeconomic regions (12). Mean BMI and dis-
ease frequency was further calculated for each discrete BMI cat-
egory, including the underweight class (<18.5), normal class
(18.5-24.9), overweight class (25.0-29.9) and obese class (>30.0).

Additionally, mean BMI and disease frequency was determined
for tobacco smoking status, frequency of alcohol consumption,
and total cholesterol level. Using definitions from the Metadata
Online Registry (13), individuals were classified as having
smoked tobacco throughout their life or as not having smoked. In-
dividuals who consumed alcohol at least once in the past year
were identified as alcohol consumers and those who had not con-
sumed alcohol in the past year were identified as not alcohol con-
sumers (13). Cholesterol levels were classified as either normal or
high: normal cholesterol was defined as less than 5.5 mol/L and
high cholesterol was defined 5.5 mol/L or higher (14). For all risk
factors, individuals with incomplete records were excluded from
the descriptive analysis. The percentage of individuals with CVD
and type 2 diabetes in each subpopulation was calculated by dir-
ect standardization to allow for within-group and between-group
comparisons. The statistical significance of the difference in BMI
and disease prevalence between each subpopulation was further
calculated using the non-parametric Kruskal-Wallis test.

Spatial analysis

Mean BMI and percentage of individuals diagnosed with CVD
and type 2 diabetes were aggregated at the SA1 level for western
Adelaide. The regional variation was mapped across western Ad-
elaide communities for continuous values of BMI, CVD, and type
2 diabetes diagnosis. Values were categorized into 4 groups using
the Jenks natural breaks classification method (separation of data
based on naturally occurring groups, determined to be the best ar-
rangement of data) (15). A similar technique was used to map the
geospatial variation of SES in western Adelaide, although SA1 re-
gions were instead categorized into 3 groups based on the ABS
SEIFA tertiles.

Local spatial clusters at the SA1 level with obesity, CVD, and type
2 diabetes were examined using the Getis-Ord Gi* technique
(16,17). This tool compares the local sum of, for example, obesity
values (the sum of obesity values of the targeted SA1 area and its
neighboring SA1s) to the sum of obesity values of all SAls with-
in the study area. A significant, positive z score indicates a local
high-rate cluster (hot spot). Hot spots are detected when an SAI
with high rates of disease is surrounded by SAls that also have
high rates of disease; the observed local sum of disease is higher
than the expected local sum, and the difference is too large to be
the result of chance alone. Similarly, a significant, negative z score
indicates a local low-rate cluster (cold spot), where an SA1 with
low rates is surrounded by SA1s with low rates (16,17). Signific-
ant hot spot and cold spot clusters were visualized in the western
Adelaide area to highlight communities with high rates and low
rates of obesity, CVD, and type 2 diabetes.
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Resulting visual representations of the spatial distribution of
obesity, CVD, and type 2 diabetes promoted comparison of dis-
ease hot spots and cold spots, allowing conclusions to be made
about the convergence of the 3 conditions. Pearson correlation
statistics were used to determine the global relationship between
SES and the 3 conditions, with further comparisons made between
the prevalence of CVD and type 2 diabetes. For the spatial analys-
is, we used ArcGIS software (version 10.4, Esri).

Results

Descriptive statistics

The prevalence of obesity in the sample population was 43.2%
(Table 1). Mean BMI across sex, age category, and SES was con-
stant, with total variation at most 1.4 kg/m* between high SES and
low SES. Men had a significantly higher BMI than women (P <
.001) and increasing age had a significant, positive relationship
with increasing BMI (P < .001). This trend was further seen for
CVD and type 2 diabetes diagnosis, with men reporting a signific-
antly higher diagnosis rate than women (P <.001 for each). CVD
prevalence was 3 times higher in men than in women, where 9.1%
of men reported at least 1 cardiovascular event throughout their
life. Type 2 diabetes diagnosis rates were 3 percentage points
higher in men than in women.

The prevalence of CVD events and type 2 diabetes also had a sig-
nificant, positive association with increasing age (P < .001 for
each), with adults aged 65 to 74 years reporting the highest rate of
diagnosis. In comparisons between the age groups of 35 to 44 and
65 to 74 years, the prevalence of CVD events among older adults
was 40 times higher than that in younger adults, and the occur-
rence of type 2 diabetes diagnosis was 5 times higher in adults
aged 65 to 74 years (Table 1).

Differences in disease prevalence related to SES were smaller than
those associated with sex and age (Table 1). Individuals with high
SES had lower diagnosis rates of CVD or type 2 diabetes than did
individuals with a low or moderate SES. This inverse relationship
indicates that even individuals with a moderate SES have a lower
prevalence of all conditions than those in the lowest tertile.
However, differences were only at most 1.4% lower across the
sample population for CVD events.

The percentage of individuals diagnosed with type 2 diabetes and
CVD had a significant, positive association with increasing BMI
(P <.001 for each). Obese individuals had a higher rate of type 2
diabetes (4.4 times higher) and CVD events (2.1 times higher)
than those in the normal BMI range (Table 2).

Individuals with high total cholesterol levels did not have a higher
prevalence of type 2 diabetes or CVD events than individuals with
normal cholesterol levels (Table 2). We found an inverse relation-
ship between cholesterol level and obesity, CVD, and type 2 dia-
betes. The highest percentage-point difference was for type 2 dia-
betes diagnosis, where individuals with normal cholesterol levels
had a 10 percentage-point higher prevalence of type 2 diabetes
than those with high cholesterol levels. However, data on choles-
terol level were missing for 1,193 individuals, which may have
changed the associations between cholesterol level and disease
prevalence.

Individuals who reported a history of smoking had a higher pre-
valence of type 2 diabetes or CVD (P < .001 for each). In contrast
to the results on smoking, we found an overall inverse relation-
ship between alcohol consumption and disease occurrence.
However, this relationship was not significant for CVD (P = .50)
or type 2 diabetes diagnosis (P = .62). Although the association
was not significant, 67.5% of the total sample population did not
have complete reports of their alcohol consumption. This could
have changed the relationship between alcohol use and type 2 dia-
betes and CVD prevalence.

Spatial analysis

The regional distribution of BMI, CVD diagnosis (%), and type 2
diabetes (%) across western Adelaide indicated that the preval-
ence of the conditions varied across SA1 regions (Figure 1).
Thematic maps (choropleth maps) show that the mean BMI of
SA1 regions in western Adelaide was largely skewed toward the
obese BMI class. Across the 490 SA1 regions, the lowest and
highest reported mean BMIs were 24.0 and 36.0, respectively. The
population-level rate of CVD was higher than that of type 2 dia-
betes.
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Figure 1. Regional variation of mean body mass index (BMI) (as calculated by
clinical measurements of an individual’'s weight and height [kg/m~]),
cardiovascular disease event (CVD) diagnosis (%), type 2 diabetes diagnosis
(%), and socioeconomic status, by Australian Bureau of Statistics Statistical
Area Level 1 region, in western Adelaide, South Australia.
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Figure 2. Hot spots and cold spots of mean body mass index (BMI) (as
calculated by clinical measurements of an individual’s weight and height
[kg/mQ]), cardiovascular disease (CVD) event diagnosis (%), and type 2
diabetes diagnosis (%), by Australian Bureau of Statistics Statistical Area Level
1 regions, western Adelaide, South Australia.

The western coastline of western Adelaide has the lowest levels of
obesity. This area is similar to the high-SES SA1 regions. We
found a significant, inverse correlation between SES and mean
BMI (—0.278) through Pearson correlation statistics. A similar re-
lationship was shown for SES and CVD (—0.126), and SES and
type 2 diabetes (—0.187). Disease patterns of CVD and type 2 dia-
betes had a significant, positive relationship (0.224).

Getis-Ord Gi* calculations determined regions across western Ad-
elaide where the prevalence of mean BMI, CVD, and type 2 dia-
betes was significantly higher than other regions (Figure 2). We
found 48 hot spots for BMI; they were primarily in the northern
and eastern regions of western Adelaide. High-BMI cold spots
were on the western coastline (Figure 2) and were associated with
higher SES SAI regions (Figure 1).

The spatial distribution of CVD events and type 2 diabetes also re-
lated to northern and central-eastern SA1 regions in western Ad-
elaide. For CVD, 2 hot spots were found in the northern region
and 26 hot spots toward the eastern region (Figure 2). For type 2
diabetes, we found a clustering of 32 hot spots in the central-east-
ern part of the study area. Furthermore, we observed geographical
convergence for cold spots of high BMI, CVD, and type 2 dia-
betes in the southwestern region of western Adelaide (Figure 2),
where SES is high (Figure 1).

Discussion

Through combining geospatial analysis and general practice clin-
ical data, our study aimed to determine the spatial variation of
obesity, CVD, and type 2 diabetes in western Adelaide communit-
ies. Descriptive analysis of the study population revealed a posit-
ive association between high BMI and diagnosed CVD and type 2
diabetes. Identification of disease hot spots further showed geo-
graphic convergence of the 3 chronic diseases.
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As supported by data from the Australian Institute of Health and
Welfare (18,19), increasing age was positively associated with the
increasing proportion of CVD and type 2 diabetes diagnoses.
Mapping of mean BMI across demographic characteristics also
aligned with trends found in literature (14,20), indicating that the
sample used for the analysis was representative of other Australi-
an communities. This is further established in the relationship
between physiologic and lifestyle risk factors determined
throughout the individual-level study, where increased BMI was
associated with higher disease prevalence.

To date, population health researchers in Australia have not invest-
igated the geographic variation of obesity, CVD, and type 2 dia-
betes at the neighborhood level. However, a study by Paquet et al
(21) determined the clustering of biological risk factors related to
the development of cardiometabolic diseases. The research em-
phasized the importance of using medical data collected by trained
clinicians in determining the geographic spread of cardiometabol-
ic outcomes and further outlined how clustering differs in relation
to the geographic level analyzed (21). The level of spatial analysis
completed by Paquet et al (21) was limited relative to our study.
The intra-class correlation analysis was insufficient to determine
the geographic hot spots and cold spots of cardiometabolic out-
comes, investigating only the difference in the level of clustering
of the risk factors (21). Thus, our study responds to a gap in the re-
search of the spatial distribution of obesity, CVD, and type 2 dia-
betes across communities in Australia.

The overall aims of our study related to the population level and
centered on using methods that would result in information that
could be used to guide health policy and program implementation
in the community. We found obesity, CVD, and type 2 diabetes
hot spots in the northern and central-eastern SA1 regions. These
hot spots could be a priority for policy interventions. Because
these hot spots were further associated with populations of a low
SES, there are further implications for the equality of health care
access in the western Adelaide community. The problem of health
care disparities may need to be more effectively monitored
through longitudinal surveillance and related health care policies.

Our study has limitations. Use of clinical data is favored by Aus-
tralian guidelines in assessing the prevalence of diseases in com-
munities (20). Despite this, selection of study participants from
local general practice records creates questions of bias. Although
Australian data indicate that 85% of individuals visit their local
general practitioner annually (22), the generalizability of our study
is limited because individuals who visit their doctor are those who
are sick and require medical attention. This selection bias may ac-
count for the larger prevalence of obesity, CVD, and type 2 dia-
betes shown in our study, in comparison to findings reported by
the ABS (14). A further limitation in the generalizability of our

study is its cross-sectional design. Because the analysis did not
longitudinally follow participants, if individuals move to a differ-
ent location, the identified disease hot spots and cold spots may
not continue to represent the frequency of obesity, CVD, and type
2 diabetes in the SA1 regions.

In line with emerging recommendations from the World Health
Organization, waist circumference, in addition to BMI, should be
used to diagnose obesity in individuals (23). Therefore, we could
improve our study approach by changing how we measure obesity.
Because waist circumference measurements were not accurately
reported in the general practice data used for our study, we could
not use these data. Areas of future research could also include a
qualitative study to determine the sociodemographic characterist-
ics and lifestyle risk factors related to obesity, CVD, and type 2
diabetes. Through use of the South Australian Monitoring and
Surveillance System (24), our approach could be extended to ana-
lyze the differences between identified hot spots and cold spots
within the community, providing further evidence for changes to
government policies and programs. In addition, a quantitative in-
vestigation into the access and use of primary care in western Ad-
elaide could be developed to determine the effect of health care
disparities on the spatial distribution of obesity, CVD, and type 2
diabetes. Further analysis of community disease profiles at the
small-area level would allow more conclusions to be made about
the most effective aspects of prevention and intervention pro-
grams and could be seen as an improvement to the new approach
presented here.

Combining geospatial analysis and general practice data allows re-
searchers and policy makers to identify chronic disease profiles at
both the individual and community levels. This method of analys-
is further applies to the general practice level, where health care
professionals in disease hot spots can increase the use of screen-
ing measures and related health education. Recognition of indi-
viduals and communities that require this increased surveillance
would encourage the implementation of primary and secondary
prevention techniques in general practices and related health ser-
vices.

Notes
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Tables

Table 1. Distribution of Mean Body Mass Index (BMI)?, Type 2 Diabetes Diagnosis, and Cardiovascular Disease (CVD) Event Diagnosisb in Individuals Across Demo-

graphic Characteristics in General Practice Clinical Data (N = 20,594), Western Adelaide, South Australia

Demographic Characteristic No. (%) Mean BMI Type 2 Diabetes Diagnosis, No. (%) CVD Event, No. (%)

Sex

Male 9,190 (44.6) 30.0 1,154 (12.6) 839 (9.1)
Female 11,404 (55.4) 29.9 1,054 (9.2) 366 (3.2)
Age,y

35-44 3,884 (18.9) 29.5 105 (2.7) 21 (0.5)
45-54 6,183 (30.0) 29.9 359 (5.8) 133 (2.2)
55-64 5,531 (26.9) 30.2 732 (13.2) 474 (8.6)
65-74 4,996 (24.3) 30.1 696 (13.9) 1,013 (20.3)
Socioeconomic status®

Low 7,065 (34.3) 30.6 843 (11.9) 495 (7.0)
Moderate 6,710 (32.6) 30.1 750 (11.2) 373 (5.6)
High 6,819 (33.1) 29.2 616 (9.0) 377 (5.5)

@ Calculated by clinical measurements of an individual’s weight in kilograms and height in meters squared.

P At least 1 of 5 CVD events: carotid stenosis, chronic heart disease, heart failure (chronic and acute), myocardial infarction, and peripheral vascular disease.

¢ Classified into tertiles based on Australian Bureau of Statistics Socioeconomic Indexes for Areas data (12).
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Table 2. Distribution of Mean Body Mass Index (BMI)?, Type 2 Diabetes Diagnosis, and Cardiovascular Disease (CVD) Event Diagnosisb in Individuals Across Re-
lated Risk Factors in General Practice Clinical Data (N = 20,594), Western Adelaide, South Australia

Risk Factor No.° (%) Mean BMI Type 2 Diabetes Diagnosis, No. (%) CVD Event, No. (%)

BMI category

Underweight (<18.5) 226 (1.1) 17.4 5(2.2) 6 (2.7)
Normal (18.5-24.9) 4,275 (20.8) 22.6 155 (3.6) 148 (3.5)
Overweight (25.0-29.9) 7,198 (34.4) 27.5 639 (8.9) 419 (5.8)
Obese (=30.0) 8,895 (43.2) 35.8 1,410 (15.9) 633 (7.1)
Cholesterol level

Normal (<5.5 mol/L) 12,639 (61.4) 30.2 1,882 (14.9) 1,063 (8.4)
High (=5.5 mol/L) 6,762 (32.8) 29.5 312 (4.6) 127 (1.9)
Smoking status

Has smoked throughout life 9,001 (43.7) 30.1 1,028 (11.4) 753 (8.4)
Never smoked 9,913 (48.1) 29.9 1,061 (10.7) 399 (4.0)
Alcohol consumption

Consumes alcohol® 5,180 (25.2) 29.6 571 (11.0) 170 (3.3)
Never consumes alcohol 1,514 (7.4) 30.8 274 (18.1) 126 (8.3)

@ Calculated by clinical measurements of an individual’s weight in kilograms and height in meters squared.
b At least 1 of 5 CVD events: carotid stenosis, chronic heart disease, heart failure (chronic and acute), myocardial infarction, and peripheral vascular disease.
¢ Numbers may not add to total N because of missing data.

9 Consumed alcohol at least once in the past year.
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