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Abstract

Aims

Enhanced Biological Phosphorus Removal (EBPR) is a technology widely used in wastewa-

ter treatment to remove phosphorus (P) and prevent eutrophication. Establishing its operat-

ing efficiency and stability is an active research field that has generated almost 3000

publications in the last 40 years. Due to its size, including over 119 review articles, it is an

example of a field where it becomes increasingly difficult to manually recognize its key

research contributions, especially for non-experts or newcomers. Therefore, this work

included two distinct but complementary objectives. First, to assemble for the first time a col-

lection of bibliometric techniques into a framework for automating the article selection pro-

cess when preparing a literature review (section 2). Second, to demonstrate it by applying it

to the field of EBPR, producing a bibliometric analysis and a review of the key findings of

EBPR research over time (section 3).

Findings

The joint analysis of citation networks, keywords, citation profiles, as well as of specific

benchmarks for the identification of highly-cited publications revealed 12 research topics.

Their content and evolution could be manually reviewed using a selection of articles consist-

ing of approximately only 5% of the original set of publications. The largest topics addressed

the identification of relevant microorganisms, the characterization of their metabolism,

including denitrification and the competition between them (Clusters A-D). Emerging and

influential topics, as determined by different citation indicators and temporal analysis, were

related to volatile fatty acid production, P-recovery from waste activated sludge and aerobic

granules for better process efficiency and stability (Clusters F-H).

Conclusions

The framework enabled key contributions in each of the constituent topics to be highlighted

in a way that may have otherwise been biased by conventional citation-based ranking.
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Further, it reduced the need for manual input and a priori expertise compared to a traditional

literature review. Hence, in an era of accelerated production of information and publications,

this work contributed to the way that we are able to use computer-aided approaches to

curate information and manage knowledge.

1 Introduction

Eutrophication—the over-abundance of certain nutrients in water bodies, unbalancing local

ecosystems—is a major environmental concern. To prevent this, numerous technologies have

been developed to remove phosphorus from wastewater [1]. Of these technologies, Enhanced

Biological Phosphorus Removal (EBPR) is perhaps one of the most popular choices in waste-

water treatment plants (WWTP), especially for those with larger capacities. It is essentially a

variation of conventional Activated Sludge (AS). By engineering alternating anaerobic, aerobic

and often anoxic conditions, the resulting community of microorganisms removes phospho-

rus (P) by intra-cellular accumulation. Primarily, EBPR offers an alternative to chemical pre-

cipitation for P-removal. However, it also became an extremely interesting model of microbial

ecology applied to complex engineered environmental systems.

Since its inception in 1975 [2], close to 3000 articles have been published on EBPR and the

field continues to grow with many emerging questions (e.g., the most recent paper by Barnard

and colleagues in 2017 [3]). Almost 40 years later and with such a rich and multidisciplinary

body of work [4], it is an example of a field where it becomes increasingly time-consuming for

a non-expert or a newcomer (e.g., a new PhD student or postdoctoral researcher) to manually

review all the existing literature and identify key research highlights, as well as new opportuni-

ties for further research. With advances in bibliometric techniques, i.e., the statistical analysis

of literature, in particular via citation analysis, it is now timely and possible to develop for the

first time a suitable bibliometric framework that can systematically identify EBPR’s key areas

of research and/or publications. The aim of this framework is to reduce the manual interven-

tion needed to review a specific research area, in this case applied to EBPR.

Such a framework can be interesting to EBPR scientists but also to anyone exploring other

research fields and searching for ways to reduce manual input when conducting a literature

review. In addition, the resulting bibliometric analysis and review of EBPR’s key areas of

research, exemplifies what sort of information can be obtained. While primarily intended for

researchers new to the field, the framework may also prove useful to specialists already knowl-

edgeable of the available literature. Structuring the information in a manner that is unbiased

(or at least less so) by the authors themselves or sources they typically consult provides a per-

spective on the whole research area. They may also use it to find overlooked connections, to

validate the importance of their work and their peers’ or to assess, from a citation-based met-

ric, declining or emerging research topics.

The conventional approach of reviewing literature, that for the purpose of this work is

referred to as a ‘traditional literature review’, often relies on the expertise of scientists in the

field to identify and select the key achievements to be summarized and reported (e.g. the EBPR

book chapter by Wentzel and colleagues [5]). As an alternative or in addition, one can rely on

searching a scientific publication repository, e.g. Clarivate Analytics’ Web of Science (WoS) or

Elsevier’s Scopus, recognized as the two main databases [6], for publications with specific key-

words. Then, the search might focus on existing and relevant review papers for a summary of a

selection of findings, or be carried out manually facilitated by different sorting mechanisms
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such as date, authors, journals or further keywords. The final assessment and analysis of the

content of the publications is then done manually.

In addition, for a non-expert or newcomer, and particularly when a research area is large,

total citation-count-based ranking and filtering can be used based on indices such as the Sci-

ence Citation Index [7]. This approach can already reduce some of the time spent on manual

selection of key publications, by using total citation count as an indication of the impact and/

or popularity of a certain work, it can also bias the end selection in two main ways. First, it can

skew the results towards older ‘highly-cited’ publications which by definition have had more

time to accumulate citations [8], to the detriment of relatively more recent ones whose contri-

bution may be more significant in the current research context. Second, it may favour the

selection of publications concerned with one specific topic, where the average citation count

might be higher, obfuscating the importance of less ‘citation-popular’ ones in the same

research field. The latter may occur particularly if the topics are smaller and/or newer, as could

be the case with emerging fields.

To account for this, the companies behind the scientific repositories are increasingly devel-

oping new metrics and tools. For example, WoS identifies a custom group of Highly Cited
Papers, defined as the top 1% of publications from each of the 22 Essential Science Indicators
(ESI) research areas based on citation data from the last 10 years. While this selection is spe-

cific to both the research area and the year of publication, the resolution cannot be increased

to more precisely-defined research fields or topics. For example, in the case of EBPR publica-

tions, they would be categorized as ‘Engineering’, ‘Environment/Ecology’ or ‘Microbiology’

[9] and their citation record will be compared to publications in very different fields with

potentially different citation trends such as civil engineering, climate change or medical impli-

cations of bacteria, to name just a few [10]. Therefore, whilst being a useful research bench-

marking tool, they may not be useful in facilitating the approach of a ‘traditional literature

review’.

Another approach to review a research field would be to use citation networks. These are

graph representations of scientific domains where nodes represent individual publications and

the edges drawn between them represent a measure of their relatedness [11]. Closely related

publications form clusters from which key topics can be identified. Such networks have

recently been used to study the flow of information within and between disciplines [12], to dis-

cover the core items in a given research area, as well as to group similar ideas, findings and/or

methodologies [13]. Maps have been produced at the level of institutions, journals and

authors, as well as publications and their keywords in order to examine specific research

themes, their geographical distribution, citation or communication patterns among research-

ers [14, 15]. Different similarity measures have been developed based on bibliographic cou-

pling (BC), co-citation (CC), direct citation and other hybrid citation approaches [13]. The

ability of these approaches to accurately identify coherent and independent topical clusters has

been validated by survey-based verification of the resultant clusters [16, 17]. However, whilst

extremely useful to distinguish between topics within a research area and view their size and

their linkages, citation networks alone might not deliver all the desired information in a litera-

ture review. Additional temporal information provided by specific benchmarks to select key

publications and tools to analyze citation trends over time [18] would be needed to determine

areas of particular interest and their emergence or decline in popularity. Another important

aspect concerning the use of citation networks to facilitate literature reviews is that the choice

of which methodology to use to produce a citation network (e.g., BC vs. CC) might not be eas-

ily accessible to scientists unfamiliar with them. Therefore, the potential benefit of using such

techniques in reducing manual labour might be offset by the time needed to surpass the biblio-

metric learning curve.
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Therefore, with the overall aim of facilitating and automating the analysis of a research area

to produce a literature review, especially for non-bibliometric specialists, this investigation

presented two distinct but complementary objectives. First, in section 2, using the EBPR

research area as an example, we combine, develop and apply different bibliometric techniques

to suggest a framework that automates the article selection in literature reviews, while provid-

ing additional information regarding the key areas in a certain research field and their trends

over time. Second, in section 3, we demonstrate the framework’s utility by applying it to the

research domain of EBPR, as available via WoS, to produce a bibliometric analysis and a review

of its key developments in the past 40 years (1975 to 2017). With the increase in publication

rates in all fields [19], the results from this work provide a combination of tools that can facili-

tate the process of a “traditional literature review” and make a contribution to the way that

increasingly larger pools of information can be processed and curated.

2 Bibliometric framework for automated article selection in a

literature review

2.1 Dataset of the EBPR research domain

All data was retrieved from Clarivate Analytics’ Web of Science (WoS). Only documents classi-

fied as published articles, proceedings papers and review papers were taken into consideration

to reflect sources for which citation indices are available and well-established. The range of

published material was limited to the years between and including 1975 and 2017. Selection of

the lower bound was based on a priori knowledge of the date of inception of EBPR as a distinct

phenomenon [2]. The search gathered the union of all articles found via the terms “enhanced

biological phosph� removal”, “biological phosph� removal”, “biological nutrient removal”,

“EBPR” and “BNR”. To minimize the presence of unrelated articles, this list was filtered by the

intersection with those found by the term “phosph�”. The full search query specific to WoS
was: TS = ((“enhanced biological phosph� removal” OR “biological phosph� removal” OR “bio-
logical nutrient removal” OR “EBPR” OR “BNR”) AND “phosph�”) AND PY = 1975-2017. The

‘full record and cited references’ was assembled and downloaded on the 1st of September

2017. Analysis of the resultant corpus was conducted using Python and the Circos visualization

tool [20]. The final dataset consisted of 2671 articles, reviews and conference proceedings.

2.2 Citation approaches

As there are different ways to construct bibliographic citation networks, two methods of asso-

ciation were compared based on their ability to isolate meaningful and cohesive clusters using

the record of cited references within the EBPR corpus: bibliographic coupling (BC) and co-cita-
tion (CC) [21]. Both methods consider that one node is equivalent to one publication, nodes

are connected to each other by edges, the degree of a node is the number of edges connecting it

to all other nodes in the network and the strength of each edge is determined by the number of

edges between two nodes. As illustrated by P1 and P2 in Fig 1, two nodes are connected by a

BC edge if they share a common reference within their respective reference lists. On the other

hand, two nodes are connected by a CC edge if they are both located on a common reference

list of a third publication, as illustrated by P4 and P5. In each case, it was assumed that nodes

possessing a high degree represent key ideas, methodologies and/or scientific findings in a par-

ticular research domain and that strong connections to these nodes form one particular

research topic. The analysis of this distribution can hence be used to partition items within the

EBPR corpus into distinct topics. The clustering itself was performed using VOSviewer ver.
1.6.6 [22].
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2.3 Criteria for the comparison of citation approaches

The main properties of interest were (a) the number and respective size of the resultant clus-

ters, (b) the size of the largest connected component, (c) the internal coherence of nodes in

each cluster and (d) the external isolation of nodes within a given cluster from all others. To

determine these, the cluster size was normalized by dividing by the number of different clus-

ters in the corresponding citation network. The edge strength between nodes was normalized

to correct the data for differences in the number of nodes in the resultant citation networks, as

shown in Eq 1 [22]:

Lnormði; jÞ ¼
2 ctotal
ci cj

cij ð1Þ

where ci,j is the number of edges between nodes i and j, ci (cj) is the number of edges connect-

ing to node i (j), and ctotal is the total number of edges in the network. Specifically:

ci ¼
X

j6¼i

cij and ctotal ¼
1

2

X

i
ci ð2Þ

Degree of internal coherence. This criterion depends on two factors: i) the intra-cluster

edge strength and ii) the intra-cluster density. The intra-cluster edge strength was calculated

for pair-wise nodes within cluster C according to Eq 3 [23]:

SintraðCÞ ¼
P

i

P
jLnormði; jÞ
ð
n
2
Þ

ð3Þ

where n is the number of nodes in cluster C and Lnorm(i, j) is the normalized strength of the

edge between nodes i and j, provided that {i, j} 2 C.

The intra-cluster density was calculated as the ratio of all existing edges between nodes

belonging to the same cluster, Eintra(C), to the maximum possible number of edges, as given in

Fig 1. Difference between bibliographic coupling and co-citation. Bibliographic coupling links papers P1 and P2 that

cite a common reference P3. Co-citation links papers P4 and P5 that both appear in the reference list of P3.

https://doi.org/10.1371/journal.pone.0216126.g001
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Eq 4:

DintraðCÞ ¼
2EintraðCÞ
ð
n
2
Þ

ð4Þ

Degree of external isolation. This criterion depends on two factors: i) inter-cluster edge

strength and ii) the inter-cluster density. The inter-cluster edge strength was calculated accord-

ing to Eq 5 [23]:

SinterðCi;CjÞ ¼

Pn
i

Pm
j Lnormði; jÞ
nm

ð5Þ

where Lnorm(i, j) is the normalized link strength between nodes i, member of Ci, and j, member

of Cj, where clusters Ci and Cj are comprised of n and m nodes respectively.

The inter-cluster density is given in Eq 6 [24]:

Dinter ¼
EintraðCÞ
EinterðCÞ

ð6Þ

where Eintra(C) is the number of edges shared between any two members of cluster C, and Ein-

ter(C) is the number of edges connecting nodes within cluster C to all other nodes. Effectively,

it is the inter-connectivity within a given cluster normalized by the degree of inter-connectivity

between it and other clusters in the network.

2.4 Labeling topics in the EBPR research domain

The topic of each cluster was defined by performing a keyword analysis. For each cluster, all

terms from the title, abstract and keyword fields were collected. Collections of terms used to

label the resultant clusters needed to be both relevant and specific to the underlying concepts,

methods and/or findings which tied its publications together. Terms were ranked according to

their term frequency—inverse document frequency (TF-IDF) score [25], as given in Eq 7. The

formula was adjusted to take into account not only the distribution of a term among different

publications in the corpus, but among different clusters as well. For a given term ‘i0:

TF � IDFðiÞ ¼
f ði; jÞ
nðjÞ

log
N

ncðiÞ
ð7Þ

f(i, j) is the frequency of its appearance in cluster ‘j’, n(j) is the number of terms which appear

in cluster ‘j’, N is the number of distinct clusters in the network and nc(i) is the number of clus-

ters in which term ‘i’ can be found.

2.5 Categorization of citation profiles

The importance of a specific publication is often measured by the total citation count. How-

ever, its citation profile, i.e., the historical trend of its accumulated citations, can provide an

additional indication of the relevance of the paper and its interest over time [18]. This investi-

gation considered only those papers for which a minimum of 7 years of citation history was

available, having received on average at least 1 citation per year. The starting point for the

characterization and classification of citation profiles was based on earlier contributions [18,

26]. First, the historical citation data was smoothed using trailing averages with moving win-

dows of 3 years. Next, the values were normalized between 0 and 1 by dividing them by the

global maximum of the time-series. Lastly, the resultant citation profile was analyzed using a
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local peak detection algorithm [27] in Python version 3.5. Two rules were defined for the iden-

tification of local maxima: (1) they must account for at least 70% of the profile’s global maxi-

mum; (2) they must be separated by more than two years. Based on these rules, publications

were classified into six categories depending on the number and temporal position of peaks in

their respective citation profiles. The classification procedure and definitions of the different

categories of citation profiles are portrayed in Fig 2. The criteria for defining the ‘conventional’

profile were based on a prior analysis of the time-distribution of peaks in all citation profiles to

Fig 2. Logic tree for the citation-profile-based classification of scientific publications.

https://doi.org/10.1371/journal.pone.0216126.g002
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determine the most common trend in EBPR publications (data shown in S1 Fig in the supple-

mentary materials).

1. Conventional: Initial exponential rise in the number of citations, peaking within the first

five years, followed by a decline.

2. Multi-peak: Several local maxima.

3. Early multi-peak: Initial peak within the first year of publication, followed by at least one

additional peak.

4. Delayed peak: A single global peak only after the first five, but not in the most recent year

of publication.

5. Monotonic rise: Increasing number of citations with a maximum occurring in the last year.

6. Monotonic fall: Global maximum within the first year, followed by a decline.

2.6 Comparing citation networks

The purpose of using citation networks in this framework is to cluster all publications into sep-

arate, well-defined and coherent sub-topics of research in a particular field. In this work, we

compared two citation approaches, BC and CC as applied to EBPR. The comparison was

based on their ability to deliver clusters of publication that are containing closely related (as

determined by a high degree of internal coherence) and well-defined and independent from

each other (as determined by a low degree of external isolation) [23, 28].

The descriptive statistics of the networks obtained with each of the citation approaches, BC

and CC, are compared in Table 1. Both methods deliver the same number of clusters. How-

ever, there is a difference in the largest connected components (LCC), at nearly 25%, and in

the number of edges shared between their constituent nodes, where those in the BC network

shared almost four times the number of edges than their counterparts in the case of CC. In

accordance with Fig 1, this suggests that publications in the EBPR research domain were more

likely to be cited by common items rather than for them to cite such items themselves. As

such, the BC network was expected to exhibit a significantly higher intra-cluster density. Dif-

ferences in the LCC as well as median dates of publication indicate that the intersection

between the entire corpus and nodes included in the LCC varied depending on the edge defini-

tion between nodes. Further inspection revealed that variation in cluster size was significant in

both cases. As such, edge density was expected to vary from one cluster to another.

Degree of internal coherence. Given that citation links are likely to happen when publica-

tions address a similar topic, this can serve as a proxy for how topically cohesive that cluster is

[13]. Ideally, in a cohesive cluster, all publications (nodes) would be interconnected (high edge

density) and there would be more than one connection between the same publications (high

strength). As defined in 2.3, the intra-cluster edge strength and the intra-cluster density serve to

Table 1. Descriptive statistics of the BC and CC citation networks.

Bibliographic Coupling (BC) Co-citation (CC) Difference (%)

Largest Connected Component 2262 1763 24.8

Number of edges 485778 123264 119.0

Number of clusters 12 12 0

Mean norm. cluster size 15.7 12.2 25

Median year of publication 2007 2005 0.1

https://doi.org/10.1371/journal.pone.0216126.t001
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quantify different aspects of the extent of internal coherence, where a coherent cluster would

have the highest strength and density possible [23]. A cluster can exhibit a high intra-cluster

edge strength, yet at the same time a low intra-cluster density, or vice-versa. For instance, in a

situation where the majority of significant connections are concentrated among a limited

number of publications, only a few nodes of a cluster would share strong links while the

remainder of all possible node pairs would share no edges. Conversely, a large proportion of

all possible node pairs may be densely interlinked with edges yet the strength of these edges

could be relatively low. In this way, they are complementary and cannot be substituted for one

another.

As shown in Table 2, clusters in the BC network exhibited a greater extent of mutual reci-

procity among their constituent nodes, where the intra-cluster density exceeded that of CC by

49%. While the standard deviation of the intra-cluster density of BC network was comparable

to that of CC, a wide variation between clusters in each network was found. This was further

supported by the minimum and maximum values for each network, with those in the BC net-

work greater in both cases.

This discrepancy was found to be even more pronounced with regards to the intra-cluster

edge strength. As such, nodes in the BC network shared more and stronger edges with other

nodes in the same cluster than with nodes from different clusters. In other words, clustering of

the BC citation network was more topically-coherent than that of CC in the case of the EBPR

research field.

Degree of external isolation. In addition to being topically cohesive, clusters should be

well-separated from each other. Ideally the strength and the number of connections between

publications in separate clusters should be as low as possible. This is determined by the degree

of external isolation which, as defined in 2.3, can be quantified by the inter-cluster edge

strength as well as the inter-cluster density.

As shown in Table 3, the mean inter-cluster density was greater in the BC network,

accounting for a percent difference of about 72% compared to CC. Thus, the nodes in the BC

network exhibited a higher degree of connectivity both within the same as well as between dis-

parate clusters. In contrast, while the intra-cluster edge strength of nodes in the BC network

was on average much greater than that of their CC counterparts, the edge strength between

disparate clusters was not so pronounced, as shown in Table 3, with the CC network displaying

a lower strength than BC. However, the percentage difference between the intra- and inter-

cluster edge strengths were very different, approximately 171% and 28% respectively for BC

and CC, indicating that even if CC displayed an overall higher degree of external isolation, the

difference between the degree of internal coherence and external isolation is much more

Table 2. Summary statistics for the degree of internal coherence.

Bibliographic Coupling (BC) Co-citation (CC)

Intra-cluster density mean 0.452 0.274

median 0.312 0.205

standard deviation 0.254 0.244

min 0.171 0.0833

max 0.867 0.489

Intra-cluster edge strength mean 0.120 0.00945

median 0.0119 0.00821

standard deviation 0.210 0.00414

min 0.0022 0.00439

max 0.643 0.0208

https://doi.org/10.1371/journal.pone.0216126.t002
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pronounced for BC. This was thought to be a consequence of the marked difference between

the number of edges in the respective networks, in view of the relatively comparable number

of nodes that shared them. Thus, although the extent of cluster-to-cluster delineation was

lower in the BC than the CC network, the former was concluded to be more topically cohesive

on account of scoring significantly better among the coherence criteria.

2.7 Characterization of citation profiles in the EBPR domain

The citation profiles of publications within each cluster were re-traced in order to determine

their overall temporal evolution. Specifically, differences in the composition of each cluster’s

citation profiles were used as an indicator of the relevance of a particular research niche within

EBPR over time. For instance, two clusters may have similar proportions of “highly-cited pub-

lications”, but if the composition of citation profiles in one was dominated by the conventional

type, whereas the other leaned more towards multi-peak or monotonically increasing, then it

would be plausible to assume that the former contains papers covering popular, yet mostly

resolved aspects, whilst the latter comprised papers concerned with issues more relevant over

time including the present.

Publications in the EBPR domain exhibited a variety of different citation profiles, based on

the number and position of localized peaks. The distribution of citation profiles in different

clusters is shown in Table 4.

Table 3. Summary statistics for the degree of external isolation.

Bibliographic coupling (BC) Co-citation (CC)

Inter-cluster density mean 0.0903 0.0434

median 0.0765 0.0411

standard deviation 0.0733 0.0152

min 0.00560 0.0198

max 0.222 0.0696

Inter-cluster edge strength mean 0.00532 0.00401

median 0.00460 0.00259

standard deviation 0.00330 0.00346

min 0.000460 0.000820

max 0.0154 0.0199

https://doi.org/10.1371/journal.pone.0216126.t003

Table 4. Composition of the three most frequent citation profiles, conventional, multi-peak and delayed peak pro-

files, as a fraction of papers identified in each cluster. Clusters I, J, K and L did not have a sufficient number of quali-

fying candidates with which to assess the citation profile composition.

Cluster % of Cluster

Conventional Multi-peak Delayed peak

A 26.5 37.8 35.7

B 37.5 35.9 23.4

C 65.7 15.7 15.7

D 50.5 27.5 17.6

E 64.7 23.5 11.8

F 72.2 11.1 16.7

G 50.0 50.0 0.0

H 55.6 11.1 22.2

https://doi.org/10.1371/journal.pone.0216126.t004
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Although a diverse range of citation profiles was detected, on average, those of conven-

tional, multi-peak and delayed peak were the most common, constituting 46.7%, 28.4% and

22.3% of papers respectively. The early multi-peak, monotonic rise and fall categories collec-

tively comprised less than 3% of papers in the dataset. This suggests it has generally required at

least 5 years after publication for interest in the work to reach its zenith. Based on the propor-

tion of papers characterized by multi-peak profiles, in more than a quarter of cases, the find-

ings of papers in the EBPR corpus sustained interest over time.

To illustrate these citation profiles, examples of delayed peaks and multi-peaks are given in

Fig 3. The first delayed peak example is the work of Comeau et al. (1986) [29]. This was among

the most highly-cited papers in the EBPR corpus and is one of the most fundamental works

that proposed the metabolism of Polyphosphate Accumulating Organisms (PAO). It is a

delayed peak, reaching its maximum approximately 12 years after publication, but has main-

tained a nearly constant citation count for the last 10 years—likely because it is an important

introductory read for any paper concerned with metabolism of PAO, or differences between

PAO and Glycogen Accumulating Organisms (GAO). The second delayed peak is the work of

Crocetti et al. (2000) [30]. It is a method paper detailing the design of 16S rRNA fluorescence

probes to detect and quantify the abundance of PAO. The paper had an initial period of

increase that lasted 8 years, and has been declining, likely due to the increased reliance on

genetic sequencing techniques for microbial community identification. A first example of a

multi-peak is the work by Smolders et al. (1994) [31]. This represents the first implementation

of the anaerobic metabolic model of PAO, including the effect of pH on substrate uptake.

Fig 3. Examples of delayed-peak (top row) and multi-peak (bottom row) citation profiles.

https://doi.org/10.1371/journal.pone.0216126.g003
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Because it is generally cited by all publications concerned with metabolic models, as well as

those investigating anaerobic metabolism, it has sustained different peaks since its publication

date. The second example of a multi-peak is the work of Serafim et al. (2002) [32], a method

paper detailing the visualization of intra-cellular polymers, that reached the initial peak after 5

years of publication and then a renewed interest 4 years later.

In terms of the distribution of citation profiles among the identified clusters, as shown in

Table 4, Cluster A, and to some extent Cluster B, are the only ones in which the conventional

profile does not dominate, having an almost equal proportion of multi-peak and delayed-peak

profiles. Conversely, the most disparate distribution of citation profiles was observed in clus-

ters C, E and F, where more than 64% of papers were characterized by the conventional cita-

tion profile.

Relationship between impact and distribution of citation profiles. This work investi-

gated whether there was a relationship between the total number of citations of highly-cited

papers in the EBPR domain and their citation profiles. The corpus was segmented into citation

quartiles. The composition of each quartile in terms of the six citation profiles was determined,

as shown in Fig 4. The result is the conditional probability of a publication exhibiting a partic-

ular citation profile given its citation count.

As shown in Fig 4, the composition of citation profiles is dominated by the conventional,

multi-peak and delayed peak categories regardless of quartile. The one relatively stable group

is the delayed peak category, whose composition is nearly independent of the quartile, i.e., the

number of accumulated citations. The share of conventional profiles decreases consistently

from the lowest to the highest quartile, whereas the share of multi-peak profiles increases. This

indicates that papers that garner the most citations, and likely to have had an impact in the

Fig 4. Composition of each citation quartile in terms of the six classes of citation profiles, where quartiles are determined based on the frequency of total citation

counts. The arrow indicates the direction of increasing number of citations.

https://doi.org/10.1371/journal.pone.0216126.g004
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field, tend to do so by staying relevant to on-going research questions over their lifetime, rather

than accumulating a burst of citations initially upon publication. This was the case for all

examples given in Fig 3.

The proportion of papers with a monotonically decreasing profile decreases from the lowest

to the highest quartile. This was to be expected, as papers that have a decline in citations over

their lifetime would be likely have a limited total citation count. However, the opposite was

not true. The share of papers characterized by monotonically increasing profiles does not

increase across different quartiles. Nevertheless, both categories form only a negligible subset

of the data.

Influence of time on the distribution of citation profiles. The publication date would

also be expected to influence the citation profiles of highly-cited publications, with older publi-

cations more likely to have been recognized for their contribution than more recent ones. As

such, the likelihood of exhibiting a particular citation profile, given knowledge about the publi-

cation date, was investigated. Fig 5 shows the different citation profiles across five evenly-

spaced periods of time between 1975 and 2010. Unlike Fig 4, the fraction of papers as a per-

centage of the total publication volume was provided, as the number of papers differs from

one time period to another. The result was the conditional probability of a publication exhibit-

ing a particular citation profile given its publication date.

As expected, the earliest bracket was dominated by the delayed-peak and multi-peak cate-

gories, whose fraction consistently decreased in subsequent time periods. Conversely, the most

recent publications exhibited a predominance of conventional profiles. Viewed in the context

of Fig 4, this indicates that papers in the highest citation quartile tended to have been published

earlier. This result seems intuitive, as older publications, if important, would have had more

time to accumulate citations gradually. With time, some of the conventional profiles in the

more recent years could still shift to multi-peak or even delayed peak. However, it could also

indicate that initial EBPR publications form the general foundations of the mechanisms and

principles of the process and hence have maintained interest over time as reference material,

whereas more recent contributions might only provide incremental knowledge or specialized

information that might not be as widely relevant or applicable. Finally, it is curious to note the

Fig 5. Composition of citation profiles and fraction of total publications across five evenly-spaced periods of time

between 1975 and 2010. The composition of citation profiles (bars) was normalized against the number of

publications in the corresponding time period, whereas the publication volume (line) was normalized with respect to

the total number of publications.

https://doi.org/10.1371/journal.pone.0216126.g005
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rise in the fraction of monotonically decreasing profiles starting from 1997, including the

appearance of the monotonically increasing category in the latest time period. This can be

explained by their profiles not having had sufficient time to ‘mature’, i.e., the impact of their

contribution has not been duly accounted for. It is likely that, given sufficient time, these may

shift into other citation profiles.

2.8 Benchmarking of total citation counts

To account for temporal bias on citation counts, a benchmark was defined where the mean

number of citations per year was calculated by dividing the sum of citations received by all

papers published in a particular year by their number. From now on, we will use this bench-

mark to define a ‘highly-cited paper’ as a paper whose citation count is higher than the mean

number of citations for all publications that year.

The procedure for selecting highly-cited publications, resulting in 680 papers, proved to be

less strict than the one for categorizing citation profiles, resulting in 377. These correspond to

25.3% and 14.1% of the corpus respectively. The proportion of highly cited papers agrees with

the reported skewed distribution, where approximately 20% of publications accumulate 80%

of citations [33].

The temporal profile of the median number of citations, as seen in Fig 6, follows that of the

mean closely, albeit with a (negative) vertical offset. This was in line with expectations, as it is

known that the citation frequency follows a long-tail distribution, i.e., Zipf or power law [17],

Fig 6. Profile of the mean and median number of citations received by papers published in a given year. Bars indicate the

number of papers published in a given year.

https://doi.org/10.1371/journal.pone.0216126.g006
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where only a small minority of publications accumulate very high citation counts, with the

vast majority of papers being cited only very sparingly. The seemingly anomalous peak in

1975, where the mean and median coincide is due to the occurrence of only a single paper that

year in our dataset, the initial paper by Barnard et al [2]. The other peak in 1986 arises due to

the importance of contributions from Wentzel et al. and Comeau et al. [29, 34], which have

been widely cited ever since, owing to the on-going debate concerning the biochemical path-

ways of the organisms responsible for luxury phosphate uptake.

The general trend is a rising number of citations from the initial to the middle period of the

lifespan of the EBPR domain, after which the average number of citations declines. This signi-

fied that key contributions to the understanding of EBPR took place roughly between 1990

and 2005. The decline of the mean citation count in recent years would be expected possibly

for two reasons: (1) these papers have not yet had the benefit of time to accumulate citations,

i.e., to have had the full impact of their contributions duly recognized; (2) the diversification

and specialization of topics within EBPR could lead to a reduced number of citations for each

new contribution. This highlights the usefulness of benchmarking publications against their

peers in the same year when selecting publications for a literature review as opposed to just

considering a total citation-count that might not reveal more recent but potentially relevant

contributions. An example of this, is that by using this benchmark we were able to include in

the literature review in section 3.4, in Cluster D, 3 publications with different citation counts

but all considered highly-cited. These were the work by van Loosdrecht et al in 1997 [35] (top

50 of total citation count) on the importance of bacterial storage polymers, that received almost

2 times as many citations as the work by Lopez-Vazquez in 2009 [36] (top 100 of total citation

count) on the effects of carbon source, pH and temperature and almost 10 times as many cita-

tions as the work by Carvalheira et al in 2014 [37] (not even in top 500 of total citation count)

on the impact of aeration on the competition between PAOs and GAOs.

2.9 Recommended workflow and discussion

Section 2 presented and discussed a combination of bibliometric techniques to objectively

select articles to include in a literature review. Based on the findings as applied to EBPR, we

recommend the following work-flow as the basis for applying this concept to other domains.

First, in order to determine key areas of research within the field, partition the publications

into distinct, non-overlapping clusters using VOSviewer [22]. In this case, the citation network

obtained via BC yielded more topically-coherent clusters. Readers should note that this may

not be the case for their dataset of interest. However, the analysis can be run for multiple cita-

tion approaches and the most suitable one selected based on the highest intra-cluster edge den-

sity and strength, complimented by the lowest inter-cluster edge density and strength, as

detailed in section 2.3 and discussed in section 2.6. The topic of each cluster can be inferred

using terms extracted from the title, abstract and keyword entries ranked according to their

TF-IDF score, as described in section 2.4.

Research trends and the contribution of each topic to the research field as a whole can be

investigated through differences in the composition of citation profiles from one cluster to

another, as detailed in Section 2.5, by distinguishing between declining, sustained or newly

emerging trends, as well as by differences in the distribution of publication dates, as discussed

in section 2.7 and then further in sections 3.3 and 3.4.

Finally, the articles to manually review and include in the literature review can be chosen

from a list of highly-cited publications in each cluster using the benchmark described in sec-

tion 2.8. This work used the mean number of citations received by papers published in a given

year as the benchmark for defining highly-cited publications. For the literature review itself, as
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the goal was a high-level description of key events in EBPR history, in each cluster only the top

highly-cited paper in each year, excluding reviews, was selected. If a review was the highest-

cited paper in that year it was also included in the analysis. However, depending on the objec-

tives of the analysis, both the benchmark definition and the article selection criteria can be

adapted to more or less strict requirements.

Comparison of this framework with alternative techniques. In essence, a literature

review consists of the (1) selection of articles for review and (2) a review of the selected mate-

rial. The objective of this work is to facilitate and automate the first process, that, if done in the

traditional sense, requires the author to be familiar with the subject matter, so as to boil down

the whole body of literature into its most critical components. With larger fields and increasing

number of publications, this task often becomes time-consuming and difficult, especially for a

newcomer in the field, with little prior knowledge of the subject matter.

To illustrate the advantages of the proposed framework, Table 5, compares it to a few other

options and tools available to produce and/or facilitate the review of a given field, including

the ‘traditional literature review’, other bibliometric techniques such as analysis of the citation

network, citation profiles, as well as an example of an existing WoS indicator for highly-cited

papers.

Given a sufficiently large data-set, our framework offers a more time efficient and auto-

mated way of conducting the first step, i.e., of arriving at a manageable selection of articles that

highlight the most important elements of a given field. More importantly, these can be selected

by sub-topic and also by year, which may reduce biases with respect to older and more highly-

cited publications or reviews, as well as to the popularity of sub-topics. Therefore coupling

clustering methods with benchmarks leads to a more selective result, where the date of publica-

tion as well as the research niche are weighted in addition to the citation count.

As the selection of articles for review is based on metrics determined from the metadata of

the corpus of interest, there is only a minimal prerequisite in terms of prior knowledge of the

research area to be reviewed—basic familiarity of the terminology to extract it. In addition, the

constituent sub-topics can be identified based on clustering methods as opposed to sifting

through the literature to (1) decide on how many niches it would be sensible to divide the corpus

into, and (2) allocating articles to each. For the experienced audience, the framework offers not

only an alternative way of organizing the body of knowledge, but also to refine this organization

into progressively more specific niches by re-running the clustering analysis on a smaller subset.

Lastly, coupling clustering methods with the analysis of citation profiles can lead to further

insights into the development of the field over time. Namely, differences between the distribu-

tion of different citation profiles among the identified clusters may indicate the importance of

different sub-topics at various points in time, allowing inferences about the future direction of

the field to be made.

Table 5. Comparison of automated features in literature review methodologies. TC stands for the ‘total citation’ count.

This

work

Traditional

review

TC ranking Network

analysis

WoS Highly Cited

Papers

Citation profile

analysis

Identification of sub-topics ✓ ✓

Custom resolution of sub-topics ✓ ✓

Identification of highly-cited publications (overall) ✓ ✓ ✓

Identification of highly-cited publications (per

year)

✓ ✓

Identification of highly-cited publications (per sub-

topic)

✓ ✓ ✓

Assessment of sub-topic temporal trends ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0216126.t005
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Limitations of the applied methods. It must be acknowledged that the results presented

in this work depended on the quality of the input metadata. The first source of bias, often

referred in bibliometric literature, is that this work only considered papers written in English.

While this was unavoidable, due to the background of the authors and the origins of the EBPR

domain, research articles in other languages could be considered in future studies provided

that citation information is available across the data sets in question. However, this might be

more of a problem when comparing the scientific productivity at national level [38] rather

than when analyzing a whole research field. Even if some distortion could result from this bias,

since this framework deals essentially with highly-cited publications, it would only occur if a

significant portion of the leading researchers in the area were publishing in languages other

than English.

Further, it is expected for there to be an interaction between the paper type and the citation

approach, e.g., the connections with review papers are stronger by definition (see section 2.2)

in the case of CC than BC. This could have resulted in more than one cluster concerned with

the same topic, because different review papers can be expected to cover the same subject mat-

ter but at different stages in time.

There might also exist a bias related to the nature of each paper, e.g., papers introducing a

novel method, but which may not have contributed to the development of novel theories in

the field. However, whether the impact of a paper (represented by the citation count) should

be gauged by direct or indirect means remains a matter of debate. The main effect of this bias

would manifest in the identification of highly-cited publications, e.g., in the automated selec-

tion of articles for a more in-depth review, as opposed to allocation of publications during

clustering, therefore the bias could eventually be circumvented by manual assessment.

Another important point is that citation-based review approaches assume that the many

experts in the field cite new papers based on the recognition of their importance instead of

themselves using citations as a proxy for importance. This could negatively bias the attention

paid to newer works.

Lastly, this work did not account for the effect of self-citations. While this would have

served to inflate the citation counts of certain publications, whether this effect was mainly arti-

ficial, contributing to the distortion in the cluster analysis, or a natural consequence of formal

communication in the EBPR domain can only be determined on a case-by-case basis.

One potential way to account for the myriad of reasons one paper cites another, and

thereby account for the aforementioned biases, would be to pinpoint the location of the refer-

ence within the cited paper. Papers cited mainly in the ‘introduction’ (background theory, his-

torically important work) could be expected to be different from those cited in the ‘materials &

methods’ (techniques) or ‘discussion’ (recent papers of similar nature) sections. Different

weightings could then be applied based on the specific type of review and/or analysis most

appropriate to the research question at hand. While we acknowledge that this would have pro-

vided an additional dimension to the results, the required information was not part of the

WoS metadata. A more comprehensive data collection step would be required, followed by

data mining of the underlying papers themselves, rather than the metadata.

The bibliometric analysis and literature review obtained using the framework developed in

this work is presented in section 3.

3 EBPR: Bibliometric analysis and literature review using

automated article selection

The bibliometric framework described in section 2 was applied to the EBPR corpus in order to

provide a bibliometric and systematic review of the field. The goal for this approach was to
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understand, after 40 years of research: 1) the key topics within the field; 2) infer their impor-

tance and development through their size and inter-relationships; 3) analyze their temporal

evolution as determined by citation-based indicators; 4) review each topic’s key research devel-

opments as determined by an automated citation-based selection.

3.1 Identification of the different topics in EBPR research

Twelve clusters, each corresponding to one main EBPR research topic, were identified. Their

topic, as determined from keyword analysis (see section 2.4) on the set of highly-cited publica-

tions, size and median publication year are presented in Table 6. Clusters A, B, C and D

account for 68% of all publications. Furthermore, most of the highly-cited and review papers

(Table 7) are also concentrated in these clusters, notably in cluster C.

The range of topics in cluster A was broad, with significant overlap with clusters B, C and

D. For instance, publications concerned with metabolic pathways in cluster D built upon the

findings reported in cluster A to take into account the additional challenge of modelling

Table 6. TF-IDF based decomposition of research problems in the domain of EBPR, ordered by cluster size.

Cluster Research Problem Size Size Median

(% of Corpus) Publication Year

A Early development of EBPR 534 23.6 1997

B Combining EBPR with N-removal 419 18.5 2008

C Identification of EBPR microbial communities 314 13.9 2008

D Metabolism of EBPR organisms on mixed substrate 275 12.1 2009

E ASM Models and MBR Applied to EBPR 225 9.9 2009

F VFA generation from WAS and N2O emissions 168 7.4 2013

G P-recovery from WAS 166 7.3 2011

H BNR with aerobic granular sludge 101 4.5 2013

I Characterization of AS flocs 29 1.3 2005

J P-removal using Acinetobacter monocultures 15 0.7 2008

K BNR from aquaculture wastes 13 0.6 2013

L Application of micro-electrode sensors to AS 6 0.3 2010

https://doi.org/10.1371/journal.pone.0216126.t006

Table 7. Characteristics of each cluster including the two most common citation profiles and number of highly-cited and review papers Clusters I, J, K and L did

not have a sufficient number of qualifying candidates with which to assess the citation profile composition.

Cluster Two most Common Citation Profile Highly-cited Highly-cited Review Papers

Citation Profiles (% of Cluster) (% of Cluster) (% of Reviews)

A multi-peak delayed-peak 37.8 35.8 111 20.8 18.5

B conventional multi-peak 37.5 35.9 99 23.6 6.7

C conventional delayed-peak 65.7 15.7 141 44.9 28.6

D conventional multi-peak 50.5 27.5 98 35.6 9.2

E conventional multi-peak 64.7 23.5 44 19.6 9.2

F conventional delayed-peak 72.2 16.7 78 46.4 5.9

G conventional multi-peak 50.0 50.0 57 34.3 16.0

H conventional delayed-peak 55.6 22.2 46 45.5 3.4

I - - - - 3 10.3 1.7

J - - - - 0 0 0

K - - - - 2 15.4 0

L - - - - 1 16.7 0.84

https://doi.org/10.1371/journal.pone.0216126.t007
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(1) PAO together with GAO, (2) the uptake of different carbon sources and (3) the differentia-

tion of poly-β-hydroxyalkanoates (PHA) monomers, among other aspects. Similarly, while

publications focusing on the isolation of PAO in cluster A relied primarily on culture-depen-

dent techniques, those in cluster C employed primarily culture-independent methods to eluci-

date both the identity as well as function of the organisms in question. Thus, cluster A was an

amalgamation of publications which constitute the early development of the EBPR domain.

Publications in cluster B further expanded on the topic of simultaneous nitrogen (N) and P

removal that commenced in cluster A. Publications in Cluster C focused on the identification

and genetic characterization of PAO and GAO. The timeline of the cluster demonstrates how

initial efforts were concerned with finding single organisms involved in EBPR, whereas cur-

rent efforts increasingly focus on whole systems-biology analyses beyond EBPR systems to

consider the wider AS ecosystem. Although it is dominated by publications with a conven-

tional citation profile, it remains, as shown in Table 7, one of the areas with the highest impact,

containing the highest number of highly-cited publications (as well as the highest number of

reviews), indicating that this has been the central research question throughout the lifetime of

the EBPR domain.

Publications allocated into cluster D cover two closely related and inter-dependent topics:

(1) the development of metabolic models that predict the behaviour of EBPR organism on

multiple substrates, and (2) the characterization of their PHA production capacity. This infor-

mation has been extensively used to determine the factors affecting competition between PAO

and GAO. Clusters E to H deal with more specific topics within the EBPR domain, constitut-

ing approximately 29% of all publications. Such topics include mostly variations of the conven-

tional EBPR configurations, e.g. membrane bio-reactors (MBR) and granular sludge, as well as

process enhancements, e.g. volatile fatty acid (VFA) production and P-recovery from waste

activated sludge (WAS). Finally, clusters I, J, K and L account for less than 3% of the EBPR

domain, indicating niche areas of research.

3.2 Historic development of EBPR topics

Fig 7 presents the different clusters along with the citations that link them together.

From Fig 7, patterns in the flux of knowledge can be determined based on the fraction of

inward and outward citations, i.e., the number of citations a given cluster received, and the

ones that it gave to others. If the number of inward citations is greater than the number of out-

ward ones, then this cluster can be expected to form a reference basis for other topics in the

EBPR domain. This is the case for cluster A, where the ratio of inward to outward edges was

not only the highest, at 18.9, but also the only one to exceed a value greater than 1. In other

words, publications in cluster A were the only ones to garner more citations from those in

other clusters than it reciprocated. This was within expectations, as publications in cluster A

were the oldest, with half being published before 1997. It is clear from Fig 7 that cluster A is

the target of the largest fraction of outward edges from all other clusters, suggesting that it

forms the theoretical and/or empirical foundation for EBPR. For example, the works of

Comeau et al in 1986 [29] and Smolders et al in 1994 [31] are largely recognized as the founda-

tions for the biochemical models of EBPR, whereas the work of Kuba et al in 1993 [39] and the

work of Cech and Hartman in 1990 [40] set the first steps for denitrification in EBPR and the

competition by GAOs, respectively. Further examples can be found in section 3.4.

In the case of cluster B, which deals predominantly with anoxic EBPR, the number of

inward citations was approximately equal to the number of outward ones, indicated by a ratio

of 0.94. From Fig 7, it is clear that most of the citations given by cluster B are directed to publi-

cations in cluster A (approximately 80%), whereas the majority of the citations it received
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Fig 7. Chord diagram of the flow of citations between the identified clusters, excluding intra-cluster citations. Outer-most arch: sum of all links to and from a given

cluster. Second outer-most arch: inward links, representing citations received from publications in other clusters. Third outer-most arch: outward links, representing

citations given to publications in other clusters.

https://doi.org/10.1371/journal.pone.0216126.g007
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originate from publications in cluster D. This suggests that cluster B built on the foundations

laid down by A, whilst simultaneously influencing cluster D, associated with the development

of metabolic models for EBPR organisms on mixed substrates. The ratio of inward to outward

citations in clusters C, D, E, and F were low, averaging at 0.18, under strong influence from

clusters A and B. This suggests that these topics, although making use of EBPR principles, did

not further advance the core knowledge of the process itself, branching instead into other

areas.

Despite their smaller size, clusters G and H had a higher fraction of inward to outward cita-

tions than C, D, E and F, at 0.58 and 0.62 respectively, suggesting that they have had more

wide-reaching influence on other topics in EBPR. This makes intuitive sense for cluster H, as

findings in the study of aerobic granular sludge can be expected to have made important con-

tributions elucidating metabolic processes, spacial distribution and identity of microorganisms

relevant to EBPR, as confirmed in Fig 7 by outward links to clusters D, B and C respectively.

As for cluster G, it is possible that the high fraction of review papers, shown in Table 7, was

responsible for the difference in the ratio of inward to outward citation, as they tend to gather

more citations than ordinary papers. Alternatively, the high ratio of inward to outward edges

may be explained by the fact that the associated topic, P-recovery from WAS, provided an

additional justification for EBPR.

3.3 Identification of temporal trends in EBPR research

Fig 8 shows the distribution of publications over time in each cluster ranked in order of the

‘oldest’ to ‘youngest’ moving from left to right, based on the median year of publication. In

addition, the two dominant citation profiles, as well as the number of highly-cited publications

are shown in Table 7.

Fig 8. Boxplot of the publication year distribution for each cluster, indicating the median (band), interquartile range (box), as

well as the minimum and maximum (whiskers) values. The inter-quartile range indicates the time period during which 50% of

papers in a cluster were published.

https://doi.org/10.1371/journal.pone.0216126.g008
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Out of the four core EBPR clusters, A is, as expected, distinctively the oldest. It covers the

widest range of publication years, however it is in decline as the value of the 75th percentile

occurred nearly two decades ago in 2000, and the last publication occurred in 2014. It is the

only cluster for which the most common citation profiles are multi-peak and delayed peak,

suggesting that the majority of the papers in this cluster have either sustained interest over

different periods of time or reached their peak number of citations at least 5 years after

publication.

Clusters B, C and D seem to have all developed at the same time, with an interval of roughly

10 years after cluster A, all characterized by the delayed-peak or conventional as the most com-

mon citation profiles. Clusters B and D seem to be slightly in decline, although the former still

contains recent publications, likely in relation to the on-going debate of anoxic pathways of

PAO and GAO.

It was surprising that the most common citation profile by far in cluster C was the conven-

tional type, since genetic profiling of microbial communities is currently an area of increasing

research intensity, owing to the recent developments in genomic, proteomic and related

techniques. This may have been due to the fact that publications using such techniques were

clustered in line with the particular ecosystem of interest, i.e., split between microbial commu-

nities specific to conventional suspended growth processes in cluster C, those specific to mem-

brane-assisted configurations in cluster E and those specific to aerobic granular sludge

processes in cluster H. Nevertheless, cluster C housed both the absolute number as well as the

highest fraction of highly-cited publications and review papers respectively.

Clusters E, F and H developed more recently, with median publication years lying between

2009 and 2013. Cluster F, associated with VFA production from WAS, was the first to be

addressed, with initial publications in 1992, whereas cluster H, associated with granular sludge,

was the most recent technological development, with initial publications occurring a decade

later.

All of the smaller clusters (I to L) seemed to have well defined lifespans, i.e., where the most

recent publication year occurred just before the time of this study. Clusters I and J are the old-

est and seem to be in decline, as expected, since they relate to very specific topics with limited

scope for expansion. Cluster K, associated with the application of Biological Nutrient Removal

(BNR) to aquatic wastes, is still relatively new, with potential for further development. Con-

versely, cluster L, associated with the development of micro-electrode sensors, is very well

defined in time, from 2002 to 2011, with the median biased strongly towards the more recent

end of the cluster’s lifespan.

3.4 Review of the key developments of 40 years of EBPR

The following sub-sections present a review of EBPR research for clusters obtained in Table 6.

Only key highly-cited publications were selected, one per publication year in the lifespan of

each cluster, in accordance with section 2.9.

Cluster A: Early development of the EBPR research domain. Publications in cluster A

were concerned with elucidating the biochemical mechanism of EBPR, particularly at a time

where molecular methods to identify and study PAO in situ were not available.

EBPR, much like the AS process, was first discovered by chance. Due to increasingly strin-

gent requirements for the removal of organic matter and N and its resultant increased eco-

nomic burden due to aeration, research shifted from aerobic to anaerobic treatment. In

addition to low nitrate, the concentration of P in the effluent could be consistently ensured at

levels below 1 mg/l without the addition of chemical precipitants [2]. Full-scale EBPR plants

had been built at a time when the underlying mechanism of EBPR was still unknown.
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Therefore the first steps focused on defining operational aspects such as the influence of the

concentration of organic pollutants, nitrates and dissolved oxygen (DO) on the efficiency of P-

removal [41, 42]. The introduction of the first theoretical frameworks occurred in 1986 [29].

Poly-phosphate is thought to serve as the sole source of energy for the anaerobic uptake and

storage of organic substrates in the form of PHA, alongside reducing equivalents obtained

from the tricarboxylic acid (TCA) cycle [29, 43]. In aerobic conditions, stored poly-β-hydroxy-

butyrate (PHB) would be expended for growth and P-uptake for the replenishment of poly-

phosphate reserves. The synthesis and degradation of PHA and poly-P were regulated by the

ratio of NAD/NADH and ATP/ADP respectively, themselves dependent on the intra/extra-

cellular balance of substrates and the availability of electron acceptors. An alternative model

diverged in the source of reducing equivalents for PHA formation, as well as in the mecha-

nisms for the uptake of organic substrates, where glycogen was the source of energy and reduc-

ing power and transport was active rather than passive [44].

Reliance on both the TCA cycle and glycolysis to resolve the energy requirements for sub-

strate uptake and PHA synthesis has been suggested [44, 45] to explain the varying composi-

tion of the synthesized PHA [43, 46], as well as to balance the internal redox potential. Despite

initial findings from NMR tracer experiments indicating that the anaerobic degradation of gly-

cogen proceeded through the Entner-Doudoroff (ED) pathway, the possibility of utilizing the

Embden-Meyerhof-Parnas (EMP) pathway remained in question. The last difference between

the two models was the mechanism of organic substrate uptake where, through the variation

of anaerobic P-release under different pH, it was demonstrated that an active means of trans-

port was in play [31]. Nevertheless, the supply of reducing equivalents, the pathways for glyco-

gen degradation and the mechanism of organic substrate transport continue to be a subject of

interest in light of new information concerning the identity as well as genomic potential of

organisms relevant to EBPR. Alternative metabolic pathways for biological P-removal, e.g. in

single-stage aerobic processes have also been reported [47].

Increasingly stringent regulations have been the main driver for the intensification of waste

water treatment technologies. The possibility of using nitrate as an electron acceptor in lieu of

oxygen was confirmed in lab-scale experiments [39]. Although stoichiometric and kinetic

assays indicated that cell yield and energy production, and therefore P-uptake efficiency were

lower with nitrate (NO3
−) [39], selective enrichment of the sludge in denitrifying PAO

(DPAO) circumvented the issue of incomplete denitrification in earlier systems, specially

those with low organic loading such as MBR-assisted processes, detailed further in section

3.4.5. An initial metabolic model for anoxic P-uptake was proposed in 1997 [48].

The discovery that the deterioration of P-removal performance could be induced by the

proliferation of what would eventually come to be known as GAO was a critical junction [49].

This highlighted the need to understand not only the relationship between the P-removal per-

formance and the composition of the microbial community, but also of the precise identity

and characteristics of organisms both beneficial and detrimental to the EBPR process [50].

Although a number of works investigated the factors influencing EBPR performance, e.g.

linking P-removal to temperature [51], pH [52] or the concentration of Ca2+ and Mg2+ ions in

the influent [53], these were conducted mostly in the absence of knowledge of PAO identity,

nor of reliable means to quantify their population [54]. Based on cultures incubated with

sludge from full-scale WWTP, P-removal in the presence of VFA was initially attributed to

Acinetobacter [55]. It was not until the dawn of culture-independent molecular techniques that

the relation between operational conditions and the composition of the microbial community

could be explored directly, as detailed in section 3.4.3. It was shown via fluorescence in situ
hybridization (FISH) that pure-culture methods had overestimated the importance of Acineto-
bacter in full-scale EBPR [56]. Noting differences between microbial communities with
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different capacities for P-removal, EBPR performance was correlated with the abundance of

Rhodocyclus-related bacteria [57].

Cluster B: Simultaneous nitrification, denitrification and phosphorus removal. EBPR

with N-removal is typically COD limited due to the competition between PAO and heterotro-

phic denitrifiers for carbon substrate. In addition to ascertaining the identity and metabolism

of denitrifying PAO, the optimization of available COD use [58] and alternative N-removal

processes such as partial nitrification and anammox [59] have been the major lines of research.

The initial findings established the existence of DPAO, along with the key operational fea-

tures of anoxic P-removal. PAO found in pilot-scale AS plants could be sub-divided into two

groups: those only capable of using oxygen, and those able to use both oxygen and nitrate as

electron acceptors [60]. Consequently, P-uptake was more rapid under aerobic conditions

since only a fraction of the PAO population was active in anoxic conditions. Simultaneous N

and P removal with DPAO could reduce COD demand, oxygen consumption, as well as

reduce sludge production by 50, 30 and 50% respectively [61]. While lower anoxic P-uptake

rates could be attributed to DPAO only being a fraction of the total PAO population [60], it

was later determined that this was also due to the lower efficiency of P-uptake using nitrate

compared to oxygen as electron acceptors [62]. This was confirmed in a study of DPAO kinet-

ics on NO3
− [63].

A method to quantify the fraction of DPAO by comparing P-uptake rates of anaerobic-aer-

obic and anaerobic-anoxic batch tests was proposed [62], which would play an important role

in optimising simultaneous N and P-removal processes and in verifying model predictions,

even after the emergence of molecular methods able to quantify this population directly. The

combination of the metabolic model for anoxic P-removal [48] with the ASM2 model was

used to successfully model simultaneous N and P removal in a full-scale WWTP [64]. It was

also shown that since DPAO are enriched by minimising the ratio of aerobic to anoxic SRT,

long overall SRT are required in order to ensure the establishment of autotrophic nitrifiers

[65]. The importance of influent feed characterisation and empirical knowledge for model cali-

bration was also highlighted.

Extensive research has been done to ascertain the role of nitrite (NO2
−) on the efficiency of

integrated N and P-removal systems. Although anoxic P-uptake can occur regardless of

whether the electron acceptor present was nitrate or nitrite, the ratio of P to N-removed has

been reported to increase along with the initial concentration of NO3
−, whereas it decreased

slightly with NO2
− [66]. Observing that the relative abundance of PAO decreased with respect

to GAO following a nitrite shock event, it was suggested that NO2
− inhibits P-uptake in both

aerobic and anoxic conditions, thereby stimulating GAO over PAO [67]. However, a stronger

correlation between P-uptake with free nitrous acid (HNO2) rather than NO2
− was reported in

an investigation of the effect of pH on nitrite speciation, where P-uptake was completely inhib-

ited at a HNO2 concentration of 0.02 mg/l regardless of the degree of DPAO enrichment [68].

The capability of DPAO to carry-out simultaneous nitrification and denitrification (SND),

i.e., partial oxidation of ammonium (NH4
+) to NO2

−, followed by direct reduction to nitrogen

gas was investigated in an effort to further reduce COD requirements [69]. While NH4
+ was

oxidized without NO2
− nor NO3

− accumulation, low P-uptake rates indicated that it was

DGAO rather than DPAO who were responsible for the observed N-removal activity. It is pos-

sible that HNO2 inhibits the aerobic synthesis of glycogen in GAO to a lesser extent than in

PAO, allowing them to outcompete PAO for VFA. Despite the potential for further reduction

of COD requirements, sludge production, as well as CO2 emissions from denitrification, SND

in sequencing batch reactor (SBR) systems has not received much attention as a result of PAO

inhibition by NO2
− and/or HNO2 [70]. SND via the nitrite pathway seems to be more
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promising in biofilm [71] and granular sludge [72, 73], where stratification of the microbial

community and the associated concentration gradients prevent NO2
− inhibition of PAO

activity.

While the presence of NO3
− in anaerobic conditions had been known to cause EBPR

deterioration, it was unclear whether this was due to (1) the inhibitory effect of an intermediate

molecule, or (2) COD limitations arising from competition for substrate with ordinary hetero-

trophic denitrifying bacteria. EBPR was found to be feasible even in the presence of NO3
− in

the anaerobic zone [74]. ASM2d simulations with two-step nitrification and denitrification

showed that rather than the NO3
− concentration, it was the availability of VFA in anaerobic

conditions that determined EBPR performance. It has been suggested that NO3
− deteriorated

EBPR not directly by inhibition of P-release, but indirectly by inhibiting the fermentation of

carbon substrates into simpler molecules, i.e., VFAs. Indeed, using a combination of FISH and

denaturing gradient gel electrophoresis (DGGE), it was confirmed that while denitrification in

a full-scale SBR depended strongly on DPAO activity, the community composition varied

greatly over time due to variations of influent composition [75]. The relationship between SBR

operational stability and microbial diversity remains an evolving question. The interaction of

microorganisms with their environment and different microbial groups is further discussed in

section 3.4.3.

Cluster C: Identification and genetic profiling of EBPR microbial communities. The

topic began with FISH investigations of full-scale AS processes to show how the role of the first

isolated PAO, belonging to the genus Acinetobacter, might have been overestimated [76]. Sub-

sequent studies have either used different techniques to isolate or enrich communities in puta-

tive PAO and GAO, and/or used 16S rRNA sequencing techniques to determine their

taxonomic diversity. Constructing clone libraries of 16S rDNA fragments, a new genus and

species was proposed, Candidatus Accumulibacter phosphatis [77], henceforth referred to as

Accumulibacter, belonging to the Betaproteobacteria class. FISH probes designed for Accumuli-
bacter [30] continue to be widely used to this day. A finer diversity within Accumulibacter
PAO was demonstrated by way of the polyphosphate kinase 1 gene as opposed to 16S rRNA

[78], with potentially distinct ecological roles. This was followed by the proposition of two new

FISH probes to distinguish between Accumulibacter clades I and II (often referred as PAOI

and PAOII) [79]. Other putative PAO have been investigated, including members of the Gam-
maproteobacteria class and Actinobacteria phylum, e.g. Tetrasphaera [80]. Other results have

supported widespread occurrence and role of Betaproteobacteria and Actinobacteria as PAO in

full-scale EBPR plants, although the latter did not take up PHA [81]. A similar result had been

obtained in a study based on the use of respiratory quinones as biomarkers that demonstrated

the influence of synthetic vs. real sewage on community selection, showing that Betaproteobac-
teria and Actinobacteria were the two of the most abundant organisms [82].

The work that first identified G-bacteria was allocated to cluster A [40] and GAO were sub-

sequently categorized as a new genus: Amaricoccus [83]. However, the main GAO has been

Candidatus Competibacter phosphatis, henceforth referred to as Competibacter, a member of

Betaproteobacteria, for which FISH probes were designed by the same research group that

designed the ones for Accumulibacter [84]. Other GAO have been suggested over the years and

their abundance, alongside PAO, has been comprehensively analysed over three years in full-

scale EBPR plants via FISH quantification [85]. Although Accumulibacter and Tetrasphaera
PAO were shown to be abundant, no temporal variations were detected. Competibacter and

Defluviicoccus GAO were also found to be occasionally abundant in certain plants with each

site exhibiting specific PAO/GAO fingerprints. These findings were further expanded with

genetic sequencing data on bacterial assembly and temporal dynamics [86], suggesting that

these contained a core community of organisms with little seasonal variation. Advances in this
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area have been extensively reviewed [87, 88], highlighting the key mechanisms and biochemi-

cal pathways.

The diversity within Accumulibacter [78, 79] suggested that each clade would have different

denitrifying capabilities, with PAOI being able to use nitrate as an electron acceptor, whereas

PAOII not. These results were aligned with previous metagenomics findings where clade IIA

has been shown not to have the necessary respiratory nitrate reductase to denitrify from

nitrate—only from nitrite [89]. Other studies have focused on the influence of operational

parameters such as dissolved oxygen levels on microbial dynamics and diversity of AS [90].

Finally a number of tools have emerged over the years that allow a much more substantial

analysis of complex microbial communities and their genetic potential. The mapping of the

proteome, using two-dimensional polyacrylamide gel electrophoresis, and later of the proteo-

genome, was demonstrated for Accumulibacter [91, 92]. The first metagenomic analysis of two

EBPR sludge communities [89] provided insight into the genetic potential of Accumulibacter
PAO, particularly clade IIA. These findings were further expanded in 2012 [93]. The sophisti-

cation of the new sequencing techniques have led to the emergence of other bioinformatics

research questions that have shifted focus away from classic EBPR topics, e.g. new methodolo-

gies and software for correct analysis and assignment of metagenomic data [94, 95]. Further,

the best approaches for primer selection in sequencing studies have been discussed [96].

Cluster D: Metabolism of EBPR organisms on mixed substrate. The main point of

departure emphasized the importance of different species of PHA, as well as the complexities

of PHA formation mechanisms [35]. Initially, the accumulation of storage polymers was con-

sidered important in view of improving sludge settleability [97].

Metabolic models offer a way to integrate information from various sources within a math-

ematical framework to describe and assess observations with respect to EBPR on a mechanistic

basis. The driving force to their application has been the prediction of conditions favouring

the growth of PAO over GAO [4]. Metabolic models developed separately for PAO and GAO

[98] have been combined to predict the fraction of PAO to GAO based on the total acetate

(HAc) uptake and glycogen consumption [99]. This demonstrated that cultures previously

thought to be highly enriched in PAO without microbial characterization could have had siz-

able fractions of GAO. This approach was further employed to take into account the effect of

temperature, pH and the composition of VFA in the feed, composed of HAc and propionate

(HPr) at different ratios on the competition between PAO and GAO [36]. In particular, HPr

has been suggested as an important selector for PAO over GAO [100, 101]. These models

allowed for the rationalization of potential explanations for contradictory findings regarding

microbial compositions in different lab-scale cultures, as well as full-scale systems. The stoichi-

ometry and kinetics of EBPR conversions remain uncertain, due to factors such as pH on the

P/HAc ratio or GAO activity.

In addition to the composition of the influent carbon source, the P/COD ratio has been one

of the most thoroughly studied factors in the competition between PAO and GAO. While it is

expected that high P/COD ratios select for PAO, complete elimination of GAO from the sys-

tem has not been achieved with this ratio alone, and the precise effect of its manipulation on

the population balance has not been quantified. Research on this front focuses on PAO selec-

tion in systems starved of carbon substrates and at low dissolved oxygen concentrations [37,

102].

In parallel to the development of metabolic models for PAO and GAO, the concept of PHA

production from AS or EBPR sludge was proposed as a bio-degradable alternative to oil-based

plastics [103]. Considerable effort has been devoted to the development of optimal bacterial

strains as well as more efficient fermentation and recovery processes to reduce the cost, and by

extension, increase the economic viability of PHA production [104]. Different strategies for
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PHA production from mixed cultures have been reviewed [105]. Interestingly, it was found

that the fraction of stored substrate could be predicted by the ratio of specific PHB production

to HAc uptake [106]. This provided the groundwork for a generalized metabolic model to pre-

dict PHB production and consumption in mixed cultures grown on HAc [107]. A critical step

was the standardization of analytical methods to detect PHA [108]. The characterization of

metabolic pathways for PHA production on single or mixed substrates has been a subject of

great interest, further enabling the refinement of metabolic models applied in EBPR, namely

with respect to the influence of the feed composition [109]. PHA production is tied closely to

the competition between PAO and GAO by the focus on substrate uptake mechanisms [110].

Cluster E: Activated sludge models and membrane bio-reactors applied to EBPR. The

first cornerstone was achieved with the publication of the ASM2d model that expanded the

original ASM2 model to include the denitrification activity of PAO [111]. This model has been

applied to different systems and subsequent modifications have been proposed, e.g. for the

simplification of ASM3 [112], and later the inclusion of a chemical analysis in terms of pH and

ion pairing and/or speciation [113]. A number of review papers were produced that kept track

of the key developments in this area, e.g. that of Kovarova et al in 1998 [114]. Given the com-

plexity of the ecosystem of interest, much-needed standardization and reference material for

any mechanistic model for both AS and EBPR processes has been assembled [115, 116]. A note

goes to the work of Hellweger [117] who reviewed the relevance of individual-based, also

referred to as agent-based modelling.

An overall less-cited topic in this cluster but with nonetheless important contributions was

the use of MBR for EBPR. The connection between the two topics likely stemmed from the

application of knowledge included within the ASM2d model to MBR technology. The shortage

of organic substrate for simultaneous EBPR and N-removal coupled with increasingly strin-

gent regulations led to the development of MBR and integrated fixed-film activated sludge

(IFAS) configurations [118]. The first successful MBR-assisted EBPR processes were trialled in

both pre- as well as post-denitrification configurations, with the membrane replacing the final

clarifier, achieving P-removal efficiencies above 90% [119]. Effluent P concentrations were

maintained below 100 μg/l under SRT characteristic of conventional and MBR-assisted plants,

suggesting that long SRT do not necessarily inhibit EBPR mechanism [120]. Simultaneous N

and P-removal has been successfully achieved in MBR systems, both in small-scale [121] and

full-scale municipal WWTP [122]. MBR technologies for wastewater treatment has been sys-

tematically reviewed [123].

Finally, as with any MBR-assisted process, factors leading to fouling were investigated.

Higher SRT were found to negatively affect both fouling and nutrient removal [124]. A similar

influence on fouling was reported with regard to floc size distribution and amount of extra-

polymeric substances (EPS) [125].

Cluster F: Generation of VFA from waste activated sludge. The shortage of VFA is

often a limiting factor in wastewater [126]. This can be exacerbated by the competition for the

substrate by organisms other than PAO, whereby supplementation of carbon sources is critical

to support BNR. Although this requirement can be met by addition of synthetic VFA, a more

sustainable and cost-effective means is to obtain them from the fermentation of WAS gener-

ated on-site. As such, extensive research has been conducted to optimize VFA from WAS

from biological treatment.

The high-strength liquors generated by hydrothermal treatment in an effort to reduce

waste sludge volumes had been considered a disadvantage. By controlling the composition of

the resultant organic fractions, these products could be suitable to support BNR. 95% hydroly-

sis of sludge at sub-critical temperatures was achieved to produce highly concentrated liquors,

where the fraction of HAc was found to be as high as 80% of the soluble COD [127]. The
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accumulation of HAc was found to be favourable under such conditions due to its resistance

to both thermal degradation and oxidation. Although an SBR fed with substrate from hydro-

thermally treated sludge exhibited higher P-release as well as uptake rates, due to the fact that

the soluble COD for the control reactor was also lower (152 compared to 307 mg/l), to what

degree this difference in EBPR performance could be attributed to increased availability of

VFA as opposed to higher influent VFA concentration was unclear [128].

In the fermentation process, hydrolysis is considered to be the rate-limiting step, influenced

by temperature and pH to attain higher rates and more effective degradation of complex

organic matter [129]. Contrary to previous findings where fermentation was found to be opti-

mal at neutral pH [130], it has been reported that alkaline conditions led to greater VFA yields

thanks to the inhibitory effect of high pH on the activity of methanogens, confining the anaer-

obic digestion (AD) process to the hydrolytic and acidogenic stages [126]. Pyrosequencing and

FISH analysis confirmed that alkaline conditions increased the abundance of bacteria involved

in hydrolysis and acidogenesis and decreased the abundance of methanogenic archaea [131].

Interestingly, the diversity of the resident archaea increased despite the overall reduction in

population size. This was contrary to expectations, as only a few methanogenic archaea had

been thought to grow at pH far from neutral.

VFA production can be enhanced with physico-chemical pre-treatment of sludge, an area

of growing interest. Low-intensity methods, e.g. mechanical treatment, have been reported to

improve degradation kinetics, whereas high-intensity methods, e.g. thermal hydrolysis,

improve both the rate as well as the extent of degradation [132]. Pre-treatment with HNO2

seems to inhibit obligate methanogenic activity by changing the strictly anaerobic conditions

to anoxic, as well as by enhancing the solubilisation of carbohydrates and proteins [133, 134].

In a similar manner, chemical surfactants improve the solubilisation of EPS, breaking down

the AS floc matrix to release more substrate for VFA generation by fermentative bacteria

[135]. Further elucidation of the effect of surfactants on acidogens, as well as the resultant VFA

yields is required.

Finally, N2O has received considerable attention in recent years on account of being

roughly 300 times more potent as a greenhouse gas (GHG) than CO2 [136]. The tendency of

WWTP to decrease energy consumption by decreasing aeration, e.g. in implementing EBPR

and/or anoxic denitrification may have adverse effects towards GHG emissions. Nitrous oxide

has been observed to accumulate as soon as PHB becomes the growth substrate due to COD

limitation [137]. However, N2O accumulation has been reported as due to the speciation of

NO2
− into HNO2 at acidic pH rather than the competition between nitrous oxide reductase

and nitrate reductase enzymes [138]. Nevertheless, plants achieving high levels of N-removal

emit less N2O, indicating that no compromise is required between effluent quality and GHG

emissions [136].

Cluster G: Phosphorus recovery from waste activated sludge. Although the timeline for

peak P is contentious, it is clear that the phosphate rock deposits that remain are of lower

grade and are becoming more difficult to access. It is estimated that roughly 20% of the global

demand for phosphate rock could be satisfied by P-recovery from municipal waste streams

alone. As such, there is growing interest in the technical and economic feasibility of large-scale

P-recovery from municipal and agro-industrial waste streams [139].

Spurred by the greater availability of P in secondary sludge compared to using chemical

precipitation, EBPR followed by crystallisation as struvite (magnesium ammonium phosphate)

or apatite (calcium phosphate) has been concluded be the most effective means of P-recovery

[140]. Most research into P-recovery has been conducted with struvite precipitation in mind,

as the final product from the crystallisation of apatite is of lower value as a fertilizer and is

more difficult to separate [139]. In addition, apatite crystallisation does not appear to occur to
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any appreciable extent in WWTP, given that the concentration of phosphate (PO4
3−) and cal-

cium ions must be at least 50 and 100 mg/l respectively [141]. In contrast, struvite precipitates

spontaneously in WWTP environments, where high concentrations of soluble P and ammo-

nium are present. Unintentional struvite precipitation has long been recorded as a nuisance,

disrupting operation of WWTP by blocking valves, pipes and pumps. This has been exacer-

bated by the increase of the required nutrients as a result of greater degrees of nutrient

removal. As such, controlled struvite crystallisation serves to (1) alleviate routine operational

problems, (2) reduce sludge volumes by as much as 49% and (3) recover a useful raw material

[142]. In this context, EBPR is most commonly coupled to AD, as P bound in organic matter

within secondary sludge is hydrolyzed in the latter to produce a concentrated phosphate

stream, thereby increasing the fraction of recoverable P.

The factors that affect P-removal via struvite precipitation using digested sludge from a full-

scale EBPR plant have been investigated [143]. At alkaline pH, the PO4
3− concentration

increases, while those of Mg2+ and NH4+ decrease, such that their molar ratio becomes favour-

able for the formation of struvite crystals. Struvite precipitation is strongly influenced by the

ratio of Mg2+, NH4
+ and PO4

3+, and is inhibited by the presence of ions such as Ca2+, K+ and

CO3
2−. The optimal ratio of Mg:N:P appears to be 1.2:3:1 [144]. Further, the molar ratio of N

to P can cause transformation of struvite to newberyite, which degrades the quality of the final

product. The importance of using quantitative X-ray diffraction for quality control by deter-

mining the various crystal phases and amorphous content of recovered struvite-containing

products has been highlighted [145].

Recently, novel means of P-recovery have been explored. For instance, instead of dosing

magnesium salts at rapidly changing pH, electrolytic deposition using a sacrificial magnesium

anode was shown to be an effective way to precipitate struvite at high purity, achieving a P-

removal efficiency of 98%, without any by-products [144]. Finally, the need to expand our

knowledge of Fe-P chemistry in order to improve the economic viability of P-recovery,

highlighting that fungi, bacteria and plants routinely release Fe-bound P for their metabolic

needs has slowly come to be recognized [146].

Cluster H: EBPR using aerobic granules. Due to the requirement of large settling tanks

to retain biomass as well as large reactor volumes arising from low biomass concentrations,

suspended growth processes cover large land footprints. Aerobic granular sludge (AGS) pres-

ents an opportunity to intensify the AS process, as granules are more dense and have consider-

ably higher settling velocities than conventional AS flocs.

P-accumulating granules were first developed in an SBR [147]. These simultaneously

released P with uptake of organic carbon substrates in anaerobic conditions and assimilated P

in aerobic conditions. Investigations have focused primarily on the influence of the influent P/

C ratio, DO levels and temperature on granule formation and characteristics, as well as on

nutrient removal efficiencies. While the enrichment of PAO in the granules was positively cor-

related with the P/C ratio, high metabolic activity in the aerobic stage was incorrectly identified

as a cause rather than a consequence of EBPR deterioration [147]. Recently, AGS in continu-

ous flow was investigated to improve granule stability and their distribution in the anaerobic

and aerobic stages [148].

By manipulating DO levels, the ratio of aerobic to anoxic volume was identified as the

major factor influencing simultaneous nitrification, denitrification and P-removal [149].

Based on previous findings, a mathematical model was developed to describe AGS in an SBR

[150], accounting for the effect of DO, T, granule diameter, sludge loading rate and cycle con-

figuration. As expected, P-removal was dependent primarily on sludge age, as sufficiently long

SRT is required to maintain slow-growing PAO biomass in the system. P-removal was later
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confirmed to be relatively insensitive to changes in temperature [151]. This was surprising, as

PAO are thought to be outcompeted by GAO at temperatures above 20 ˚C.

Using FISH, granules towards the bottom of the reactor were found to be more enriched in

PAO (relative to GAO) than those in the top of the reactor as a result of cell density differences

(arising from the storage of poly-phosphate) and concentration gradients of substrate in the

reactor [152]. P-removal efficiency could be maintained, even improved to 100%, by discharg-

ing WAS from the top of the reactor, effectively exposing GAO to a shorter SRT. This showed

how granule heterogeneity provides different ecological niches. In addition to competition, an

important finding was made concerning the coexistence of PAO and GAO in AGS systems. In

systems where PAOII, incapable of reducing nitrate, were the dominant clade, coexistence

with DGAO was possible, perhaps even necessary, as they contributed not only to denitrifica-

tion but also indirectly to EBPR by supplying DPAO with suitable electron acceptors for

anoxic P-uptake [153]. A cascade inhibition effect was identified in a study of AGS in highly

saline conditions, where NO2
− accumulation arising from the inhibition of nitrite-oxidizing

bacteria (NOB) led to the inhibition of both anoxic and aerobic P-uptake, particularly at Cl−

concentrations exceeding 20 g/l [154]. This resulted in the wash-out of PAO and NOB.

Interestingly, there has been some debate over the role of EPS, in terms of granule stability

as well as its involvement in EBPR using AGS, given that they affect mass transfer in floccular

systems. A metabolic model has been formulated in which poly-phosphate was hydrolyzed

and synthesized in the EPS matrix surrounding PAO cells in anaerobic and aerobic conditions

respectively, as opposed to intra-cellularly [131]. Finally, a model of the physical structure of

P-removing AGS has been proposed, where poly-phosphate was confirmed to be the dominant

form of P within microbial cells as well as in the EPS matrix [155].

Cluster I: Characterization of activated sludge flocs. The mechanisms and factors that

influence floc formation in suspended growth systems of heterotrophic bacteria with algae

have been systematically reviewed [156]. Although the aim was to optimize the nutritional

value and morphological characteristics for use as feed for aquaculture systems, such knowl-

edge is applicable in conventional wastewater treatment, e.g. for improving sludge settle-ability

as well as subsequent resource recovery applications. Sludge settle-ability in IFAS processes

has been reported to be lower compared to suspended growth processes [157]. Interestingly,

this was correlated to lower poly-phosphate content of the suspended relative to the attached

phase, suggesting that the addition of IFAS media had a detrimental effect on EBPR. The last

publication in this cluster reviewed the deployment of quantitative image analysis techniques

for biomass characterization, with particular focus on identifying intra-cellular polymers

involved in EBPR, notably poly-P, PHA and glycogen, and later on the microorganisms them-

selves via hybridization with fluorescent probes [158].

Cluster J: Biological phosphorus removal with pure cultures of Acinetobacter.
Although the role of Acinetobacter in full-scale EBPR processes has been a subject of consider-

able debate, some research has focused on the attachment of pure cultures of A. calcoaceticus
[159] and A. junii [160] on natural zeolite as a biofilm to improve P-removal.

Cluster K: Biological nutrient removal from aquaculture wastes. The deterioration of

water quality due to excessive nutrient loading is of great concern in recirculating aquaculture

systems, where P introduced in the feed is discharged with the organic solids and aqueous

effluent. The oldest publication [161] presented evidence of denitrifying bacteria capable of

storing poly-P, although not PHA, where simultaneous N and P-removal occurred under

completely anoxic conditions. P-content was as much as 11.8% of the dry weight, which is

inline with values reported for typical PAO. Although a number of different configurations

have been compared [162], the expression of poly-phosphate related genes via meta-transcrip-

tomics showed that it was sulfur-oxidizing bacteria rather than PAO that stored and
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hydrolyzed poly-P upon exposure to anoxic or sulfidic conditions, resulting in phosphate min-

eral formation [163]. As such, P-removal from recirculating aquaculture systems seems to be

due to biologically-induced precipitation rather than EBPR.

Cluster L: Design, manufacture and application of micro-electrode sensors. Probing at

different depths of a biofilm, micro-scale sensors revealed a delay between the beginning of the

aerobic phase and the start of nitrification hypothesized as being due to competition between

PAO and nitrifying bacteria for oxygen [164]. As such, in addition to the availability of carbon

substrate, successful nitrification with EBPR was found to depend on a sufficiently long aero-

bic period to establish a nitrifying population.

3.5 Perspectives on applying the framework to conduct a literature review

of EBPR

In this section we produced a bibliometric analysis and a review of the EBPR research domain,

based solely on publications selected using the indicators developed in section 2. The initial

clustering coupled with the keyword analysis allowed us to gain an immediate insight into the

different research topics within EBPR. Analysis of citation profiles and dates of publication

provided information on the temporal distribution of each topic and on whether they were

declining or emerging. The number of highly-cited publications also indicated their overall

impact. In each cluster, selecting only the most highly-cited publication each year and briefly

analyzing their title, abstract and conclusions was sufficient to tell a fairly accurate story of the

key developments of EBPR in its 40 years of history. Although the final content evaluation

needed to be done manually, exercising a certain degree of critical sense, the number of

selected publications constituted less than 5% of the original corpus. The same result would

not have been possible by selecting the most cited publications in EBPR, due to the inevitable

bias towards specific topics that have garnered more interest, e.g. cluster C, as well as by older

publications that have had more time to accumulate citations, e.g. cluster A. Finally, the flow of

information between clusters—how the topics evolved chronologically and inter-topically—

could be inferred from the distribution of citations between different clusters.

One complication in the automated selection of key publications for review was the inclu-

sion of papers seemingly unrelated to EBPR research, featuring e.g. phosphate adsorption [165,

cluster G] or a review of mathematical models of the human gut ecosystem [166, cluster E].

Such publications did not feature any of the search terms applied in section 2.1, in either the

title, abstract or keyword fields. This distortion was found to be due to the KeyWord Plus fea-

ture [167] which artificially tagged papers with keywords not listed by the original authors.

This was intended to uncover publications that otherwise may not have been found due to

changes in the use of scientific terms. Nevertheless, this feature does have merits, as exempli-

fied by the contributions to metagenomic approaches applied to AS in cluster C [96, 168]. As

there is no simple means to exclude results retrieved by KeyWord Plus terms, care must be

exercised in the initial corpus assembly.

It must also be acknowledged that while clusters obtained via BC exhibited the highest

degree of topical cohesion, the separation was not perfect. For instance, an article investigating

the effects of titanium dioxide nano-particles on community shift in AS [169] was allocated to

the topic of VFA generation from WAS (cluster F) instead of cluster G which dealt with com-

munity composition. It is possible that this was due to the consideration of enzymatic activity

in addition to microbial community, as is common in publications related to fermentation

processes for VFA production. Likewise, an investigation of the inhibitory effect of free nitrous

acid (FNA) [170] was allocated to cluster D rather than with the other publications dealing

with inhibition of P-uptake by nitrification-denitrification intermediates in cluster F. It could
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be argued that this was due to FNA inhibition of PAO metabolism being an important factor

in their competition with GAO. The seemingly erroneous allocation may thus be attributed to

topical overlap between two clusters.

Despite these challenges, the overall review is able to accurately describe, to our knowledge,

the history of EBPR throughout its lifetime. In addition, while this framework was applied

with the aim of presenting a review of key events, it can be adapted to suit other purposes.

Each cluster can be subjected to further clustering to investigate sub-topics in greater depth.

For instance, in our case cluster D could have been further subdivided to reduce the overlap

between publications related to PHA production in mixed cultures and those that consider

only the competition between PAO and GAO in EBPR systems. This would be particularly rel-

evant in research areas with much larger volumes of publications. Further, the threshold defi-

nition may be varied in order to expand or contract the selection of highly-cited publications

designated for review in each cluster. For instance, one may decide to review only the top cited

publication in 5 year moving intervals, or alternatively select 5 publications in each year, allow-

ing for a much higher level of resolution.

Conclusions

This work proposed a framework for facilitating the selection of articles when conducting a lit-

erature review based on the combination of bibliometric techniques and other indicators

applied to EBPR. In section 2, two clustering techniques were compared, bibliographic cou-

pling and co-citation, with the former yielding the best results. The framework also included

the use of keyword analysis, citation profiles, statistical analysis of dates of publication and

benchmarks of citation counts as indicators to measure impact in the form of popularity, tem-

poral trends and patterns in the flow of information. The fact that all this information can be

statistically retrieved as opposed to relying uniquely on expert judgment, is the main advantage

of using this framework for newcomers to a certain research field or even for experienced

researchers to obtain a more systematic perspective. As a result of the framework, in section 3,

twelve clusters were obtained, each equivalent to a topic under the umbrella of EBPR and a lit-

erature review was produced based on less than 5% of the size of the original EBPR corpus,

meaning a less time-consuming approach.

The research domain of EBPR evolved in two principal ‘waves’: (1) correlation of opera-

tional conditions with process performance, theoretical frameworks for mechanisms and the

identity and competition between the responsible organisms; (2) EBPR process intensification,

optimization and further justification for the technology. Some topics are in decline, e.g. early

developments of theoretical frameworks, metabolism of organisms relevant to EBPR, EBPR

combined with MBR, and a number of smaller clusters on the characterization of AS flocs and

the attachment of Acinetobacter on natural zeolite. Other topics are emerging, e.g. VFA pro-

duction from WAS for simultaneous N and P-removal, P-recovery for the circular economy,

and aerobic granular sludge for better treatment efficiency and process stability. Although

BNR from aquaculture wastes is also an emergent area of research, P-removal was a result of

biologically-induced precipitation rather than EBPR. Topics which have had the highest

impact include the genetic profiling of microbial communities in EBPR systems, the competi-

tion between PAO and GAO, VFA generation and P-recovery from WAS, as well as EBPR

using aerobic granules.

The development and application of this framework to conduct a literature review of EBPR

achieved two main outcomes. First, we provided insights into the evolution of a multi-disci-

plinary area of research, detected its emerging areas and outlined the key events throughout its

development. Second, with increasing rates of scientific publication and information
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dissemination, we hope to have contributed a step in the direction of systematic and auto-

mated curation of knowledge repositories.
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