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A procedure for the identification of ligands bound in crystal

structures of macromolecules is described. Two characteristics

of the density corresponding to a ligand are used in the

identification procedure. One is the correlation of the ligand

density with each of a set of test ligands after optimization of

the fit of that ligand to the density. The other is the correlation

of a fingerprint of the density with the fingerprint of model

density for each possible ligand. The fingerprints consist of an

ordered list of correlations of each the test ligands with the

density. The two characteristics are scored using a Z-score

approach in which the correlations are normalized to the mean

and standard deviation of correlations found for a variety of

mismatched ligand-density pairs, so that the Z scores are

related to the probability of observing a particular value of the

correlation by chance. The procedure was tested with a set of

200 of the most commonly found ligands in the Protein Data

Bank, collectively representing 57% of all ligands in the

Protein Data Bank. Using a combination of these two

characteristics of ligand density, ranked lists of ligand iden-

tifications were made for representative (Fo � Fc)exp(i’c)

difference density from entries in the Protein Data Bank. In

48% of the 200 cases, the correct ligand was at the top of the

ranked list of ligands. This approach may be useful in

identification of unknown ligands in new macromolecular

structures as well as in the identification of which ligands in a

mixture have bound to a macromolecule.
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1. Introduction

It is common in macromolecular crystal structure determina-

tions to find that a small-molecule ligand has been cocrys-

tallized with the macromolecule, even in cases where this

ligand was not known to be present in the crystallization

media. This situation occurs, for example, if the protein has

been expressed in a complicated cell-based system containing

many compounds and some of these compounds bind to the

macromolecule and remain bound throughout purification

and crystallization (see, for example, Zarembinski et al., 1998).

The identification of the ligand in these cases can be an

important step in characterizing the macromolecule, as it may

give clues as to the natural function of the macromolecule. A

related situation occurs in increasingly many drug-discovery

and ligand-discovery projects in which a mixture of ligands is

included in crystallization or after crystallization, a structure is

determined and the identify of the bound ligand is determined

from the density (see, for example, Tickle et al., 2004).

We have recently developed an approach to the fitting of

flexible ligands to electron-density maps that is well suited to

large-scale automated analyses (Terwilliger et al., 2006). The

ligand-fitting approach is quite similar to the process that an



expert crystallographer would follow; it consists of the iden-

tification of an optimal location and orientation of a core

fragment of the ligand within the largest contiguous region of

density in the map, followed by building the remainder of the

ligand by tracing the density out from this core region. We

previously have used this approach to build 9327 ligands from

the Protein Data Bank (PDB; Berman et al., 2000) into

(Fo � Fc)exp(i’c) difference density created by removal of

ligands from entries from the PDB and found that 68% of

these ligands could be rebuilt with an r.m.s.d. from the original

coordinates of 2 Å or less. Several other methods for auto-

matic fitting of ligand density have been developed recently

(Diller et al., 1999; Oldfield, 2001; Zwart et al., 2004) and these

could also most likely be used in the procedures we describe

below.

Here, we evaluate the utilities of two approaches to ligand

identification using electron density alone. The first approach

is simply to fit each of a large set of possible ligands to the

density and rank these ligands based on the correlation of

calculated and observed density. The second approach extends

this by creating a ‘fingerprint’ of correlations expected for

density from each of a set of possible ligands and comparing

this fingerprint with that obtained using the observed density

in the map to identify the ligand. We test these approaches by

applying them to examples of 200 of the most frequently found

ligands from the PDB.

2. Methods

2.1. Models, structure factors and ligands from the PDB

We began with 27 812 entries from the November 2004

release of the PDB stored in an Oracle database populated,

using version 1.5.1 of the openMMS Toolkit (Greer et al.,

2002), from mmCIF files obtained at ftp://beta.rcsb.org/pub/

pdb/uniformity/data/mmCIF/divided. We selected the 12 001

entries that contained at least one large polypeptide molecule

(20 or more residues) and one ligand, which we defined as a

nonmacromolecular mmCIF entity with 6–150 non-H atoms

and, if a polypeptide, containing no more than two residues.

From these entries, we selected the 7025 entries that contained

structure-factor amplitudes or intensities that, with minor

automated editing, could be read by the CCP4 program

cif2mtz (Collaborative Computational Project, Number 4,

1994). These 7025 entries contained 23 514 total instances of

ligands, of which 22 562 (96%) could be successfully analyzed

by our algorithms. The 22 562 ligands represent 2740 different

ligand compounds, as defined by an ordered string of

heterocompound codes (one for each residue in the mmCIF

entity). The number of PDB entries containing each ligand

was counted and the most common 200 were noted. These 200

most common ligands in our data set ranged from 658 PDB

entries containing HEM (heme) and 593 with GOL (glycerol)

to six entries with NAG-NAG-BMA. Some of these ligands

had the same number and ordered list (by atom name) of non-

H atoms in each instance, but many had some variability in the

number and listing of non-H atoms, with some instances

missing some or even the majority of atoms compared with

another. For some purposes we further subdivided instances of

each ligand into sets of instances in which both the hetero-

compound string and the list of non-H atom names were

unique, calling these more exacting groupings the set of

‘unique ligands’, of which there were total of 3364 in the

subset of the PDB we analyzed. The 200 unique ligands that

were used in this study account for 57% of all ligands in the

PDB. That is, 22 538 of the 39 607 ligand instances in the entire

PDB match one of these 200 unique ligands both in hetero-

compound string and the list of non-H atoms.

We carried out the ligand-identification procedures as

follows. For each of the most common 200 ligands from our

data set, we chose one PDB entry that contained the ligand,

along with that instance of the ligand, as an example. The

examples were chosen arbitrarily (alphabetically) from a list

of all entries that (i) contained the most complete version of

this ligand (i.e. the most atoms) and (ii) had a correlation of

(Fo � Fc)exp(i’c) difference density calculated after removal

of this ligand with model density calculated from the original

ligand from the PDB entry of at least 0.75. If no entry satisfied

the second condition, then the entry with the highest value of

the correlation of density was chosen. A total of 200 Fo � Fc

difference density maps were obtained from the 200 ligand–

PDB entry combinations by removal of the ligand followed by

calculation of maps. The corresponding 200 ligands were each

used to fit the 200 difference maps, except that in cases where

a ligand was to be fitted to the PDB entry that it came from, a

second example of that ligand (with the identical listing of

non-H atoms) from a different PDB entry was used as a

starting point for fitting. In this way, the original conformation

could not be simply placed into density without any actual

fitting of torsion angles. If no example from another PDB

entry existed, the rotatable bonds in the ligand were adjusted

arbitrarily before the ligand was used in the fitting procedures.

2.2. Clustering of ligands based on fitting of model ligand
density

To cluster ligands into groups that can be fitted into similar

density, model density was calculated at a resolution of 2.5 Å

for one example of each of the most common 200 ligands from

the PDB. All 200 of the most common ligands were then fitted

to this density. Each combination of model density for ligand i

and fitted ligand j was then scored by calculating the corre-

lation of the model densities for ligand i and fitted ligand j. The

correlation was calculated over a comparison region defined

as all points within 2.5 Å of an atom in the fitted ligand. This

resulted in a 200 � 200 matrix ccij of correlation of density for

all ligand pairs. The matrix is not symmetric because the fitting

of ligand i into the density for ligand j is not the same as the

reverse. As we were interested in clustering the ligands based

on effective shape similarities (after adjustment of torsion

angles to match as closely as possible), we averaged the fit of

ligand i into density for ligand j and the fit of ligand j into

density for ligand i, yielding a symmetric similarity matrix

cc
avg
ij .
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We then clustered the most common 200 ligands from the

PDB using the similarity matrix cc
avg
ij and choosing several

different thresholds for similarity between members of a

cluster and a unique member of that cluster used to represent

the whole cluster. The procedure used in clustering was to find

the ligand that had the largest number of values of cc
avg
ij

greater than the threshold and to group all the corresponding

ligands with this unique member. The process was then

repeated with all remaining ligands until none could be clus-

tered.

3. Results and discussion

3.1. Clustering the most common 200 ligands from the PDB

Many of the most common ligands in the PDB are quite

similar to each other. For example, the nucleotides ATP,

ddATP and GTP are all highly similar in shape (Fig. 1). In

order to develop a set of ligands that has less redundancy, the

most common 200 ligands from the PDB were clustered based

on how well each ligand could be fitted into density for

another, as described in x2. Clustering in this way with a

correlation coefficient threshold of 0.85 yielded 119 unique

ligands, with clusters having between one and 18 members.

Clustering with a threshold of 0.75 yielded 31 unique ligands,

with clusters having between one and 110 members.

3.2. Identification of ligands based on correlation of densities
after fitting

A simple approach to identification of a ligand from

experimental (Fo � Fc)exp(i’c) electron density would be to

fit a set of candidate ligands to this density, scoring each based

on the correlation of (fitted) model density to the experi-

mental density in the region of the model and choosing the

highest scoring ligands as the most likely to be correct. We

tested this procedure using the set of 119 unique ligands

selected above (obtained by clustering the most common 200

ligands from the PDB at a threshold correlation of 0.85).

For each ligand, a PDB entry containing the ligand was

chosen as described in x2, the ligand was removed from the

entry and (Fo � Fc)exp(i’c) difference density was calculated.

An example of each of the 119 unique ligands (from a

different PDB entry if possible, as described in x2) was then

fitted into this difference density and the correlation of

resulting model density and observed difference density was

calculated.

Fig. 2(a) shows the utility of the correlation coefficient in

identifying ligands based on difference density. For the set of

119 unique ligands, the rank number of the correct ligand (i.e.

that in the PDB entry from which the density was obtained) is

shown. Overall, in 46% of cases the ligand with the highest

correlation was the correct ligand. In most remaining cases the

correct ligand was within the top-ranked few ligands, but some

were as low in rank as number 14.

The reason why some of the ligands could be identified with

this approach and others could not is likely to be that some

density is relatively unique in shape, allowing substantial

discrimination among ligands, while other density is not and

many ligands can fit into it. Fig. 3 illustrates examples of ligand

density that could be fitted well by only one ligand among the

200 most common from the PDB. Difference density for

bacteriochlorophyll a at a resolution of 2.35 Å (PDB code

1ogv; Katona et al., 2003), for example, is highly distinctive, as

is density for cyclohexyl-hexyl-�-d-maltoside at a resolution of

1.1 Å (PDB code 1ong; Nukaga et al., 2003).

Fig. 4 illustrates an example of density that can be fitted by

many ligands. The (Fo � Fc)exp(i’c) difference density for

tris-(hydroxylmethyl)-aminomethane is from PDB entry 1m6z

(A. Noergaard, P. Harris, S. Larsen & H. E. M. Christensen,

unpublished work) at a resolution of 1.4 Å. It can be fitted by

this same ligand (Fig. 4a) with a correlation of 0.72, but it can

also be fitted even better by several other ligands such as

oxalate (Fig. 4b, correlation of 0.76) or dioxane (Fig. 4c,

correlation of 0.76).

3.3. Identification of ligands based on Z scores using
correlation of densities after fitting

Some density can be readily fitted by several ligands as

shown above and conversely some ligands can fit most density
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Figure 1
(a) ATP fitted into model 2.5 Å density for ATP. (b) ddATP fitted into model density for ATP. (c) GTP fitted into model density for ATP.



better than other ligands. For example, the mean � SD of

correlation of density after fitting tris-(hydroxylmethyl)-

aminomethane to all 119 unique observed ligand difference

density maps was 0.61 � 0.08, while the same quantities for

dioxane were 0.68� 0.08. Therefore, it might be reasonable to

conclude that a fit of tris-(hydroxylmethyl)-methane that had
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Figure 2
Histograms of rank position of correct ligands. (a) Scoring using correlation of density, considering 119 unique ligands. (b) Scoring using Z score derived
from correlation of density. (c) Scoring using Z score derived from correlation of fingerprints of density and fingerprints of model density. (d) Scoring
using sum of Z scores from correlation of density and correlation of fingerprints of density. (e) As in (d), but considering all 200 of the most common
ligands in the PDB. (f) As in (d), but considering only 31 unique ligands.



a correlation of 0.61 is approximately equivalent to a fit of

dioxane with a correlation of 0.68. We used a Z-score

approach to carry out this normalization, with the Z score

given by

Zi ¼ ðcci � hcciiÞ=�ðcciÞ; ð1Þ

where cci is the correlation of model density for ligand i to the

Fo � Fc difference density after fitting and hccii and �(cci) are

the mean and SD of correlations of ligand i to all 119 differ-

ence density maps. In essence, hccii and �(cci) are the mean

and SD of the correlation of ligand i to representative

difference density from the PDB.

Fig. 2(b) shows the use of Z scores based on correlation

coefficient in identifying ligands. The Z-score normalization

increases the percentage of cases where the ligand with the

highest correlation was the correct ligand from 46% to 64%.

3.4. Identification of ligands based on fingerprints of
correlation coefficients

The process of fitting each of 119 ligands to difference

density and obtaining correlation coefficients for each fit

yields some information that we have not taken full advantage

of by simply choosing the highest correlation or Z score to

identify the best-fitting ligand. This additional information is

the pattern of fits of the entire set of 119 ligands. Fig. 5 illus-

trates the fingerprints for difference density for tris-(hydroxyl-

methyl)-methane and for ATP. The correlation coefficients for

each of the 119 ligands are shown, where the ligands are sorted
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Figure 4
Fitting of Fo � Fc difference density for tris-(hydroxylmethyl)-methane from PDB entry 1m6z (A. Noergaard, P. Harris, S. Larsen & H. E. M.
Christensen, unpublished) at a resolution of 1.4 Å. (a) Density fitted by the same ligand from a different PDB entry (1s18; Dai et al., 2004). (b) Density
fitted with oxalate. (c) Density fitted with dioxane.

Figure 3
(a) Fo � Fc difference density for bacteriochlorophyll a at 2.4 Å (PDB code 1ogv; Katona et al., 2003), fitted with the same ligand from PDB entry 1dv6
(Axelrod et al., 2000). (b) Difference density for cyclohexyl-hexyl-�-d-maltoside at a resolution of 1.1 Å (PDB code 1ong; Venkatesan et al., 2004), fitted
with the same ligand from PDB entry 1q2p (Nukaga et al., 2003).



on the basis of the number of non-H atoms. The fingerprint for

tris-(hydroxylmethyl)-methane shows that many small ligands

fit well to its difference density, while large ligands do not. In

the case of ATP, the pattern is much more complicated, with

some small and some large ligands fitting well and others not.

We use the correlation of the single fingerprint calculated

from the difference density to be identified, with the finger-

prints obtained for model density for each of the 119 ligands

considered as a second measure of the compatibility of the

density with each of those 119 ligands. We calculate this as a Z

score in the same fashion as described above for single

correlation coefficients.

Fig. 2(c) shows the use of Z scores based on correlation of

fingerprints derived from difference density with fingerprints

for each ligand using model data. This approach (without

including any Z-score information directly on the fit of the

individual ligand to the density) is capable of identifying 41%

of the 119 ligands (Fig. 2c). When combined by simple

summation with the Z score based on correlation coefficient,

68% of the top-ranked ligands are the correct ligands (Fig. 2d).

We examined how the accuracy of identification varies with

the number of possible ligands considered. Fig. 2(e) shows that

if all 200 of the most common ligands are considered, then

48% of the top-ranked ligands are correct. If only 31 ligands

are considered (Fig. 2f), 90% of the top-ranked ligands are

correct.

4. Conclusions

We find that our combination of two measures of the char-

acteristics of ligand density, a Z score based on the correlation

of the density with model density from fitted ligands and a Z

score based on the correlation of the fingerprint of the density

with model fingerprints of the same ligands, can be of

considerable utility in identifying the correct ligand. The

summed Z scores Zi that are used can be converted to

approximate estimates of relative probabilities with

Pi ’ expð�Z2
i =2Þ; ð2Þ

allowing a probabilistic assessment of the ranking of ligands

that may correspond to the experimental density. This in turn

allows the construction, for example, of a list of all the ligands

with probability greater than 0.2 or a list of the ligands that,

considered together, make up a cumulative probability of 0.5.

If there are only a few possible ligands to consider and these

ligands are dissimilar in shape, then this approach can reliably

identify which ligand is present, as in Fig. 2(f). If there are

many ligands, then the identification will consist more often of

a group of ligands that are similar to each other, any of which

might be the ligand present in the crystal structure.

There are a number of improvements that might be made to

this method. Probably the most important one will be to

include the contacts between ligand and macromolecule and

other compounds present in the crystal in the scoring of the fit

of the ligands. Many of the alternatives for ligand placement

are likely to form implausible contacts, allowing them to be

eliminated or at least reduced in probability. Other improve-

ments might include resolution-dependent and possibly noise-

dependent tables of correlations of model ligands and ligand

density and the use of difference maps after fitting to evaluate

the quality of fit of a ligand to density.
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ligands are sorted from left to right based on increasing numbers of non-
H atoms. (b) As in (a), except fitting to difference density for ATP from
PDB entry 1aq2 at a resolution of 1.9 Å (Tari et al., 1997). The
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