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Abstract: Enzyme kinetic constants in vivo are largely unknown, which limits the construction of
large metabolic models. Given measured metabolic fluxes, metabolite concentrations, and enzyme
concentrations, these constants may be inferred by model fitting, but the estimation problems are
hard to solve if models are large. Here we show how consistent kinetic constants, metabolite
concentrations, and enzyme concentrations can be determined from data if metabolic fluxes are
known. The estimation method, called model balancing, can handle models with a wide range of rate
laws and accounts for thermodynamic constraints between fluxes, kinetic constants, and metabolite
concentrations. It can be used to estimate in-vivo kinetic constants, to complete and adjust available
data, and to construct plausible metabolic states with predefined flux distributions. By omitting
one term from the log posterior—a term for penalising low enzyme concentrations—we obtain a
convex optimality problem with a unique local optimum. As a demonstrative case, we balance
a model of E. coli central metabolism with artificial or experimental data and obtain a physically
and biologically plausible parameterisation of reaction kinetics in E. coli central metabolism. The
example shows what information about kinetic constants can be obtained from omics data and
reveals practical limits to estimating in-vivo kinetic constants. While noise-free omics data allow
for a reasonable reconstruction of in-vivo kcat and KM values, prediction from noisy omics data are
worse. Hence, adjusting kinetic constants and omics data to obtain consistent metabolic models is
the main application of model balancing.

Keywords: metabolic model; enzyme kinetic constant; parameter estimation; convex optimality
problem; parameter balancing; enzyme cost minimisation

1. Introduction

As the number of reconstructed metabolic networks is growing, so is the desire to
populate these networks with enzymatic rate laws inferred from omics data [1–5]. To
convert networks into kinetic models, one needs to determine arrows for small-molecule
regulation, choose enzymatic rate laws, determine the kinetic constants, and construct plau-
sible metabolic states (characterised by enzyme concentrations, metabolite concentrations,
and fluxes). Over the years, different approaches have been suggested to address these
issues. For example, Liebermeister et al. proposed standardised rate laws [1,6] to replace
unknown rate laws and to automate model construction. These rate laws were used to
automatically build models [7] and evaluate them for their practical use [8]. It is common
to populate models with in-vitro kinetic constants [9,10]. Although online databases such
as BRENDA [11,12] collect and aggregate many of these measured parameters, large gaps
remain when dealing with larger models or relatively unstudied organisms. An alter-
native, suggested by Heckmann et al. [13], is to infer unknown kcat values by machine
learning. Alternatively, one can estimate in-vivo kinetic constants directly from flux [14],
metabolite, and enzyme data [15,16], or use the kinetic model itself to fit its parameters to
collected data [17–19]. On the flip side, too much data on kinetic parameters can also pose
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a problem. For instance, Wegscheider and Haldane conditions (which are derived directly
from the laws of thermodynamics) impose strict dependencies between equilibrium and
kinetic constants and are likely to be violated when all the parameters are measured in-
dependently [1]. Methods for constructing thermodynamically consistent parameter sets
have been proposed [20–24]. For instance, Stanford et al. [5] applied these methods for
genome-scale metabolic network. Currently, one can easily find large kinetic models [2,25]
as well as workflows for model parameterisation [26,27]. Moreover, parameter sampling
and ensemble modelling [28–32] can yield plausible parameter sets [33] and help us reach
conclusions about dynamic behaviour independently of specific parameter values [34].

How can omics data be used to infer in-vivo kinetic constants? Methods for parameter-
ising metabolic models use different types of knowledge (in-vitro kinetic constants, omics
data, and physical parameter constraints) and different estimation approaches (including
machine learning, regression models, calculations based on rate laws, and model fitting).

1. Estimating kcat values by taking the maximum over apparent catalytic rates. To estimate
kcat values, Davidi et al. [15] combined proteomics data with flux data from flux balance
analysis (FBA). The method, which was later called kinetic profiling [35], assumes unknown
rate laws v = e k(c) with flux v, enzyme concentration e, and a catalytic rate k depending
on unknown metabolite concentrations (vector c). To determine kcat from data, the method
computes the apparent rate ks

app = vs/es in a number of metabolic states s. Since kcat is the
maximal catalytic rate of an enzyme (i.e., kcat ≥ k(c)), the maximum value of ks

app across
the different states satisfies the same inequality, namely kcat ≥ maxs ks

app. If each enzyme
reaches its maximal capacity in one of the states, then the maximum value becomes a
good estimator for kcat. Applied to E. coli data, this method was able to provide relatively
precise estimates of kcat values when compared to literature data (from the BRENDA
database). The simplicity of the method makes it scalable and easily applicable to any
organism whose metabolic network has been reconstructed. However, there are a few
severe limitations. First, due to the max function, a single large outlier value can completely
distort the result. Such outliers may arise if measured protein concentrations are small
and imprecise. Another caveat is that an enzyme may stay below its maximal capacity in
all of the samples, especially if the number of measured metabolic states is small or when
considering complex (compartmentalised) cells. This could explain why the correlation
between maxs ks

app and literature kcat values was lower for plants than for E. coli [36].
2. Ensemble modelling. If model parameters or state variables are sampled from

random distributions, we obtain a model ensemble. Ensemble modelling can be used to
estimate the likelihood of different states of a system, in line with our limited data and
knowledge. In Structural Kinetic Modelling (SKM) [34], model parameters are chosen
randomly to create a model ensemble. First, a metabolic state is defined by choosing fluxes
and metabolite concentrations. Then, rate laws are chosen in agreement with this state by
randomly sampling the saturation values of enzymes and reconstructing the corresponding
kinetic constants. Structural Thermokinetic Modelling (STM) [37], a variant of SKM,
considers reversible rate laws and implements thermodynamic constraints. SKM and STM
can use priors or data for KM values, but not for kcat values and enzyme concentrations,
and there is no simple way of fitting kinetic constants simultaneously to more than one
metabolic state.

3. Parameter estimation. Parameter estimation can be seen as ensemble modelling in
reverse. While ensemble modelling relies on a given distribution of model parameters
for forward prediction, parameter estimation establishes such distributions from data,
and possibly from prior information about the model (network structure) and its parameters
(prior distributions). In practice, parameter fitting can be performed by optimisation
or Monte Carlo methods such as random screening, genetic algorithms, or simulated
annealing. For example, one may generate a large ensemble of possible parameter sets,
compute the likelihood values for each of them, and choose the best parameter set (see [33]
for an example). Optimisation by sampling is generic and easy to implement, but the larger
the parameter spaces are, the more important it becomes to understand the optimality
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problem, and whether local optima can be expected. Knowing whether a problem is convex
makes optimisation tasks more transparent.

4. Fitting kinetic constants in single reactions. If the flux, enzyme concentration,
and metabolite concentrations in a reaction are known for several states, the kinetic con-
stants can be fitted [38], for example by the SIMMER method [16]. Treating reactions one by
one is much easier than fitting all constants for an entire network simultaneously. However,
this approach has some limitations: complete information is typically unavailable for most
reactions. Moreover, kinetic constants that were estimated independently for different
reactions may violate Wegscheider conditions.

Despite all these efforts, the problem of inferring in-vivo kinetic constants is largely
unsolved: the kcat values in-vivo are hard to measure, and in-vitro values can be unreliable.
If our aim is to obtain complete, consistent kinetic constants for a given kinetic model,
two distinct approaches can be taken: (i) starting from known in-vitro kinetic constants
and adjusting and completing them based on omics data, to obtain a consistent, fully
parameterised kinetic model, or (ii) estimating in-vivo kinetic constants directly from
omics data. In both cases, we consider a kinetic model and fit its parameters (i.e., KM, kcat,
etc.). Ideally, if enzyme concentrations, metabolite concentrations and fluxes were known
precisely for a sufficient number of metabolic states, we could directly compute kinetic
constants [16] that satisfy the kinetic rate laws in all metabolic states. Conversely, if kinetic
constants and enzyme concentrations were known precisely, metabolite concentrations and
fluxes could be computed by simulating the model. Of course, neither one of these ideals is
realistic: typically, data are incomplete and imprecise and cannot be directly inserted into
the models. For a complete picture and reliable estimates, these heterogeneous data must
be combined—but how? In practice, this depends on our aims: on the one hand, we may
use an existing model for checking data consistency or augmenting it, e.g., by estimating
in-vivo kinetic constants from omics data (measured enzyme concentrations, metabolite
concentrations, and fluxes); on the other hand, we may adjust and complete empirical data
to construct models with consistent parameters and metabolic states. This may involve
predictions of physiological metabolite concentrations [39,40] or predictions of metabolite
and enzyme concentrations based on resource allocation principles [41–43].

Hence, in order to fit kinetic constants, we also need to reconstruct consistent metabo-
lite concentrations and enzyme concentration from known metabolic fluxes and other
available data. To reduce the uncertainties, we may further impose constraints by physical
laws, including thermodynamic relations (Wegscheider conditions and Haldane relation-
ships) between kinetic constants [1,6] and relations between kinetic constants and metabolic
variables (e.g., the fact that flux directions follow from equilibrium constants and metabo-
lite concentrations). In addition, we can use prior distributions (for kinetic constants,
metabolite concentrations, or enzyme concentrations); and we can use measured (in vitro)
parameter values as additional data. However, one problem remains. The resulting esti-
mation problems are typically non-convex, allowing for multiple local optima, and global
optima may be hard to find.

Here we propose a method for estimating consistent kinetic constants and metabolic
states based on heterogeneous kinetic, metabolomics, and proteomics data, where metabolic
fluxes must be known from measurements or previous calculations. This method, called
Model Balancing, uses the following input data: kinetic constants, metabolite and en-
zyme concentrations in a number of metabolic states, and metabolic fluxes from the same
metabolic states. Unlike Flux Balance Analysis (FBA), Model Balancing is not restricted to
stationary fluxes, since Michaelis-Menten kinetics can also be used in dynamic simulations
if the quasi-steady state approximation holds; however, the fluxes must be thermodynami-
cally feasible. Except for the fluxes, no data are strictly required, but any additional data
will make the estimates more precise. From these data, model balancing determines kinetic
parameters and state variables (metabolite and enzyme concentrations) that respect the
constraints, agree with prior distribution and data, and agree with the rate laws defined
in the model. For the estimation, we maximise the Bayesian posterior density, which is
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the probability density function of all parameters given the priors and the measured data.
Maximum-likelihood estimation can be obtained by the use of flat priors (i.e., wide and
uniform distribution functions that have essentially no effect on the posterior). Among the
terms in the logarithmic posterior, there is one that penalises enzyme concentrations that
are lower than suggested by priors and data. If we neglect this term (or sufficiently scale
it down), the posterior score becomes strictly convex, and the maximum-posterior prob-
lem has a single solution and can be solved by gradient descent. The convexity relies on
two main assumptions: (i) all fluxes are predefined and thermodynamically consistent
(i.e., infeasible cycle fluxes must be excluded) and (ii) kinetic constants and metabolite
concentrations are described in log-scale. Model balancing builds upon other methods
for model construction: Parameter Balancing [21,24] and Enzyme Cost Minimisation
(ECM) [43], which are reviewed in the discussion section.

2. Materials and Methods

A reconstruction of kinetic constants and metabolic states, based on kinetic models
and Bayesian estimation, was outlined in [20]. Here we implement this programme under
the assumption that the fluxes are known. Building on [43], we show that this assumption
makes the problem nearly convex.

2.1. Metabolic Model and Statistical Estimation Model

The model balancing problem is depicted in Figure 1 (for mathematical symbols see
Supplementary Materials Table S1). We consider a kinetic metabolic model with logarith-
mic kinetic (and thermodynamic) constants (e.g., equilibrium constants, catalytic constants
and Michaelis–Menten constants) in a vector q = ln p. We further assume a number of
metabolic states s, characterised by flux vectors v(s), metabolite concentration vectors c(s),
and enzyme concentration vectors e(s). These states may be stationary (with steady-state
fluxes) or non-stationary (e.g., snapshots from a dynamic time course) and the fluxes must
be thermodynamically feasible. In each state, the fluxes v(s)l = e(s)l kl(p, c(s)) depend on

enzyme concentrations e(s)l , metabolite concentrations c(s)i , and catalytic rates kl . A typical
rate law k(c), for a uni-uni reaction, is given by the reversible Michaelis–Menten kinetics,

where v =
k+cat s/Ks−k−cat p/Kp

1+s/KS+p/Kp
[6]. In general, we use modular rate laws [6]. The vector of ther-

modynamic forces depends on metabolite concentrations as θ = ln keq − S> ln c, where S
is the stoichiometric matrix. In thermodynamically feasible rate laws, these forces deter-
mine the flux directions sign(vl) = sign(θl) (where vanishing fluxes are always allowed).
This sign constraint holds for any thermodynamically feasible rate laws. For convenience,
reversible rate laws can also be written in the factorised form [44] v = k+cat · ηrev(c) · ηsat(c)
with unitless efficiency terms ηrev = 1− e−θ(c) (for thermodynamic reversibility) and ηsat

(for enzyme saturation and allosteric regulation) between 0 and 1, depending on metabolite
concentrations. With efficiency terms close to 1, k(c) approaches its maximal value kcat.

Due to physical laws [1,6], the kinetic constants and state variables in our model
depend on each other: each rate law contains forward and backward catalytic constants
and Michaelis–Menten constants, and all these parameters may depend on each other
via Haldane relationships and Wegscheider conditions. Only activation and inhibition
constants are independent of all other kinetic constants. To deal with these dependencies,
we use a schema (see Figure 1) with a set of basic kinetic parameters (independent equilib-
rium constants, Michaelis–Menten constants, and velocity constants) that are physically
independent and determine all remaining kinetic constants (Figure 1, top left, and Supple-
mentary Materials). Notably, thermodynamic forces and enzyme concentrations appear as
dependent variables. By inverting the rate laws, we obtain the enzyme demand function

e(s)l =
v(s)l

kl(p, c(s))
, (1)
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a function of kinetic constants, metabolite concentrations, and fluxes. We can also describe
the enzyme demand as the flux, multiplied by a reaction time τl = 1/kl . Importantly, the
functions (1) as well as their logarithms are convex in the space spanned by q = ln p and
x = ln c (see Supplementary Materials).
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Figure 1. Model balancing relies on a dependency schema for kinetic constants and state variables.
All kinetic constants are described in logarithmic scale. A subset of kinetic constants determines all
other kinetic constants through linear relationships. If kinetic constants, metabolite concentrations,
and fluxes are known, the enzyme concentrations can be computed from rate laws and fluxes: each
enzyme concentration is a convex function of the (logarithmic) kinetic constants and metabolite
concentrations. The signs of thermodynamic forces are constrained by the flux directions.

2.2. Model Balancing

In model balancing, kcat values are not estimated separately, but together with other
kinetic constants and with metabolite profiles, enzyme profiles, and thermodynamic forces
in a number of metabolic states (for simplicity, we refer to all the kinetic/thermodynamic
constants and the state variables together as “model variables”). In this way, full use can
be made of prior knowledge and heterogeneous data. The data for all model variables
may be available, but uncertain and incomplete. Only the fluxes are assumed to be known.
Besides dependencies and data, we may use prior distributions and impose upper and
lower bounds on model parameters and on metabolite and enzyme concentrations. All
kinetic constants and concentrations – but not the thermodynamic forces and fluxes – are
described by their natural logarithms. In model balancing, we distinguish between basic
variables (basic kinetic constants and metabolite concentrations) and dependent variables
(dependent kinetic constants, enzyme concentrations and thermodynamic forces). The basic
variables are constrained by predefined ranges and, indirectly, by bounds on dependent
variables. The resulting solution space is a convex polytope, on which a Bayesian posterior
distribution is defined. Here, we compute the posterior mode (with maximum-likelihood
estimation as a special case), but posterior sampling [45] would also be possible. For details,
see Supplementary Materials.

Model balancing follows the ideas outlined in [20]. Starting from a Gaussian prior
density p(x) for metabolite log-concentrations x, we take the negative logarithm, omit
constant terms, and obtain the prior loss score

P(x) =
1
2
(x− x̄pr)

>Σx
pr
−1(x− x̄pr) = quad(x− x̄pr, Σx

pr) (2)
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for metabolite log-concentrations. The shorthand quad(a, Σ) = 1
2 a>Σ−1a is used for

convenience, and the inverse covariance matrix Σx
pr
−1 is called precision matrix. The vector

x may contain metabolite log-concentrations from one or several metabolic states. If we treat
log-scaled kinetic constants (q), metabolite concentrations (x), and enzyme concentrations
(z = ln e) as variables with independent priors, we obtain the preprior score

P?(q, x, z) = quad(q− q̄pr, Σ
q
pr) + quad(x− x̄pr, Σx

pr) + quad(z− z̄pr, Σz
pr). (3)

The name “preprior” and the star ? remind us that q, x, and z still appear as separate
variables, despite their dependency in the model. Similarly, using data for q, x, and z, we
define the “pre-likelihood score”

L?(q, x, z) = quad(q− q̄lk, Σ
q
lk) + quad(x− x̄lk, Σx

lk) + quad(z− z̄lk, Σz
lk). (4)

The vectors x̄lk and z̄lk and matrices Σx
lk and Σz

lk contain the mean values and covariances
for measurement data. For simplicity, we assume that each state variable has been measured
exactly once; a formula for the general case with missing and duplicate values is given in
Supplementary Materials. By adding the functions (3) and (4), we obtain the preposterior
score R?(q, x, z) = P?(q, x, z) + L?(q, x, z), and by combining the quadratic functions
(see [20,21]), we obtain the formula

R?(q, x, z) = quad(q− q̄po, Σ
q
po) + quad(x− x̄po, Σx

po) + quad(z− z̄po, Σz
po) (5)

with covariance matrix and mean vector

Σx
po = [Σx

pr
−1 + Σx

lk
−1]−1

x̄po = Σx
po [Σ

x
pr
−1 x̄pr + Σx

lk
−1 x̄lk]. (6)

for metabolite concentrations in x, and analogous formulae for q and z. Equation (6) is
based on the fact that when data and prior terms are combined, their precision matrices are
additive and the posterior mean is a weighted sum of prior and likelihood means.

Until here, all score functions are convex functions: the prior score P?, likelihood
score L?, and posterior score R? are convex in q, x, and z, and since non-flat priors are
used, prior and posterior scores are strictly convex. However, as we remember, the enzyme
concentrations are not free variables, but dependent on metabolite concentrations and
fluxes. Therefore, the vector z can be eliminated from the formulae, and the same holds
for dependent kinetic constants in the vector q. From the enzyme demand function
Equation (1), we obtain the function z(q, x). By inserting this function into Equation (4)
and merging x and the independent parameters in q into a vector y, we obtain the three
score functions as functions of y alone:

Prior loss P(y) = quad(y− ȳpr, Σx
pr) + quad(z(y)− z̄pr, Σz

pr)

Likelihood loss L(y) = quad(y− ȳlk, Σx
lk) + quad(z(y)− z̄lk, Σz

lk)

Posterior loss R(y) = quad(y− ȳpo, Σx
po) + quad(z(y)− z̄po, Σz

po). (7)

In contrast to our pre-scores, these score functions depend only on the basic variables
in y. To maximise the posterior density, we now need to

Minimise R(y) in the polytope of feasible vectors y,

where the vector y describes the metabolite profiles and basic kinetic constants.

2.3. A Convex Version of the Score Functions

Will this problem still be convex? Convex optimality problems are numerically
favourable, and methods like parameter balancing and ECM profit from this. Thus, are
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the prior, likelihood, and posterior losses (7) convex functions in y? In all three cases, the
first term is a quadratic function of y and therefore convex. Thermodynamic forces are
linear functions of y and therefore adding them to the score would still keep it quadratic.
The second term is composed of a convex function quad(·) and a convex function z(y),
but this does not make it convex. If it consisted of an inner convex function and an outer
non-decreasing function, it would be convex, but in fact the outer function quad(·) contains
terms that can be decreasing.

However, a small modification suffices to make the functions convex (see Figure 2
and Supplementary Materials). The posterior score term for enzyme levels, given by
quad(z(y) − z̄post, Σz

po) with a diagonal matrix Σz
po, is a sum of quadratic functions of

the form 1
2 (zlt(y)− z̄lt)

2/σ2
lt. Each of these functions consists of a decreasing branch (for

zlt(y)− z̄lt < 0) and an increasing branch (for zlt(y)− z̄lt ≥ 0) If we replace the decreasing
branches with zeros, we obtain a non-decreasing, truncated function
quad0(z(y)− z̄post, Σz

po). Using this function instead of quad makes the model balancing
problem convex (see Figure 2 and Supplementary Materials). Instead of omitting the
decreasing branch, we scale it down by a factor α ∈ [0, 1], leading to a relaxed function
quadα(z(y)− z̄post, Σz

po). The stringency parameter α has a simple interpretation: when-
ever a predicted enzyme concentration is below the preposterior mean, the corresponding
score term is omitted (for α = 0), or scaled down (for 0 < α < 1). Effectively, replacing
α = 1 by a smaller value increases the assumed preposterior standard deviation of (loga-
rithmic) enzyme concentrations, selectively for values below the preposterior mean (setting
α < 1 increases the assumed standard deviations by a factor 1/

√
α, e.g. by a factor of ≈ 3

when α is set to 0.1). For sufficiently small values of α, and for α = 0 specifically, the entire
model balancing problem becomes strictly convex. However, the penalty for low enzyme
levels is under-represented. To summarise, we can choose between three versions of the
model balancing problem: (i) the original version (α = 1) that penalises small or large
enzyme levels symmetrically and is non-convex; (ii) a truncated version (α = 0) that is
strictly convex and can be implemented by Disciplined Convex Programming [46]; here the
estimates of enzyme levels may be too low, entailing poor estimates in kinetic constants;
(iii) and a relaxed version (0 < α < 1) that is convex for small values of α; in our tests, we
usually obtained good results at α ≈ 0.1 and above.

2.4. Details and Variants of Model Balancing

How can we deal with inactive reactions? If a flux vanishes, then either the catalyzing
enzyme’s level has to be zero, or the reaction is at thermodynamic equilibrium. In our
method, enzyme concentrations are treated on log-scale and cannot be zero. One could
redefine the problem using absolute enzyme concentrations (rather than log-scaled) but
that would be harder to solve numerically. Furthermore, exact zero fluxes (e.g. from FBA
results) may not be reliable and enforcing them would likely over-constrain the other
model variables. Instead, we omit that specific reaction from the scoring function (only for
metabolic states where the flux through it is zero) and ignore the measured enzyme level
even if it is provided in the prior.

Kinetic constants estimated from omics data may be poorly determined or even non-
identifiable (see Supplementary Materials). Due to the usage of priors, non-identifiability
does not mean that variables are ill-determined: the method will return a posterior with a
unique mode. However, the estimates of “non-identifiable” variables are not supported
by data, but completely depend on prior means. Since the priors have a strong impact
on model balancing results, the usage of informative priors [21,47] is key to our method.
To obtain realistic priors for all our model variables, we started from priors in [12,24,43]
and modified them based on experimental data (see Supplementary Materials).

We explored variants of model balancing with additional terms in the score functions,
including pseudo values for dependent variables and regularisation terms for c/KM ratios
(see Supplementary Materials). In our tests, these variants did not improve the results.
Another variant concerns the usage of cross-covariances. The preposterior for kinetic con-
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stants in a model (equilibrium constants, forward and backward kcat values, and KM values)
is a multivariate normal distribution, characterised by a covariance matrix. For simplicity,
this matrix can be replaced by a block matrix in which cross-covariances between different
types of variables are omitted. This does not affect the Haldane relationships, because all
physical dependencies between variables are maintained through the parameterisation
by independent basic variables. In our tests, omitting the cross-covariances had little
effects on the estimation results. Other variants of the algorithm—with priors and data
for thermodynamic forces, and terms reducing fast metabolite changes in time series—are
described in the Supplementary Materials.

3. Results
3.1. Model Balancing

Model Balancing is a Bayesian method for fitting metabolic models to kinetic and omics
data, where the fluxes must be given and consistent metabolite and enzyme concentrations are
determined from incomplete, uncertain data for metabolite and enzyme concentrations. Math-
ematically, the problem resembles Enzyme Cost Minimisation (ECM) [43], which assumes a
kinetic model with known parameters and predefined fluxes and optimises metabolite and
enzyme concentrations for a minimal biological cost. In model balancing, concentrations are
not optimised but fitted to data, along with the kinetic constants, by maximising the posterior
density. Metabolite and enzyme concentrations are described by natural logarithms. Fur-
thermore, metabolite concentrations are restricted to a thermodynamically feasible solution
space, which ensures that Equation (1) yields positive results for the enzyme concentrations.
To illustrate the basic idea, let us first assume that all kinetic constants are known, and
consider a single metabolic state. For the metabolite log-concentration vector x = ln c, we
assume Gaussian priors (with mean vector x̄pr and a diagonal covariance matrix Σx

pr) and
lower and upper bounds (possibly different for each metabolite). Likewise, for the enzyme
log-concentration vector z = ln e, we assume Gaussian priors with mean vector z̄pr and
covariance matrix Σz

pr). The possible metabolite log-profiles x form a convex polytope Px in
log metabolite space [43]. The polytope is defined by physiological upper and lower bounds
and by thermodynamic constraints, depending on flux directions and equilibrium constants.
The metabolite log-concentrations xi, our free variables, determine the enzyme concentrations
el through Equation (1), and the resulting enzyme concentrations and log-concentrations are
convex functions on the metabolite polytope (Supplementary Materials). To define an estima-
tion problem, we construct the polytope as our solution space and use prior, likelihood and
posterior functions on this polytope to estimate metabolite concentrations and corresponding
enzyme concentrations.

Model balancing has the same favourable properties as this simplified problem. A de-
scription of the algorithm, including the convexity proof for the function ln e(q, x), is given
in Supplementary Materials. Following Liebermeister and Klipp [1], the kinetic constants
can be parameterised by independent basic constants. Instead of a metabolite vector x
(as in our simplified problem), we consider a larger vector y, containing the metabolite
log-concentrations for all metabolic states and the vector of log kinetic constants. Along
with metabolite and enzyme data, data for kinetic constants may be used (for instance,
equilibrium constants Keq from thermodynamic calculations), and consistent values need
to be estimated. Since kinetic constants cannot change between metabolic states and since
kinetic constants and state variables are estimated together, all these variables become
effectively coupled and need to be estimated in one go.

All terms in the posterior score, except for the terms for enzyme levels, are con-
vex. Non-convexity and convexity are illustrated in Figure 2, for a simple model with
two enzymes and one adjustable metabolite log-concentration x; for simplicity, the other
metabolite concentration as well as kinetic constants are assumed to be known. Subfig-
ures (a) and (b) show how the enzyme demand for the two reactions (as a function of x)
gives rise to non-convex score functions (while their truncated α = 0 version is convex).
By adding these two curves and a convex score term for x, we obtain the posterior score
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shown in subfigure (c). In the original problem (top), it is non-convex; with a lower α
(centre), the enzyme terms are non-convex, but the total score is convex due to the convex
term for x; and in the truncated α = 0 version, all terms are convex and so the total score is
known to be convex as well.
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Figure 2. Model balancing and its convex variants. Top right: Example model. Given the fluxes and external metabolite
concentrations, the log concentration x determines the enzyme log concentrations y1 and y2. (a) Posterior score for the
enzyme level in reaction 1. Top: the log enzyme level y1 depends on the metabolite log concentration x (solid curve).
Horizontal lines show the preposterior mean (solid) and standard deviation (dashed). Black line: the posterior score term is
zero where y1 matches the preposterior mean and increases for smaller and larger values. Since the left part of the curve is
negatively curved, the function is non-convex. In the plots below, this left part is decreased by a factor α = 0.2 (dark blue) or
removed completely by setting α = 0 (cyan). The resulting last curve is convex; (b) same as (a), for reaction 2. The posterior
score has its minimum at a lower x value than for reaction 1; (c) Posterior score for x. Top: The enzyme posterior scores for
reaction 1 and 2 (solid and dotted black curves from (a,b)) are added (thick solid line). By further adding the metabolite
term (which is strictly convex), we obtain the posterior score (dashed line), which is non-convex. In the case of α = 0.2 (dark
blue), the enzyme term is still non-convex, but the total posterior score becomes convex. In the case α = 0, the enzyme term
is convex, and the total posterior score is convex as well.

Implementations for Matlab and Python are freely available (see Supplementary
Materials and [48]). As a test case for model balancing, we consider a model of E. coli
central metabolism and corresponding metabolite, enzyme, and kinetic data from [43] (for
details, see [48]). We studied estimation scenarios with artificial and experimental data
(data from [43] from one metabolic state, aerobic growth on glucose). Smaller example
models, including model balancing results, are provided along with our code. In all
cases, the model balancing algorithm was run with the same settings, priors, and bounds
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and without pseudo values and regularisation for c/KM. The results below stem from a
non-convex version of model balancing with strictness parameter α = 0.5.

3.2. Tests with Artificial Data

For our tests with artificial data, we first generated “true” kinetic constants and
state data (metabolite concentrations, enzyme concentrations, and fluxes). To obtain
realistic distributions of kinetic constants, we used the same broad distributions that were
also used as a prior. By doing this, we assume that our priors are realistic. Otherwise,
the reconstruction may be slightly worse than suggested by our tests with artificial data.
State variables were generated from the kinetic model (with the “true” kinetic constants)
by choosing enzyme concentrations and external metabolite concentrations at random
(for small test models) or close to realistic metabolic states (for the E. coli model) and
computing the steady states (details in Supplementary Materials). Now the aim was to
reconstruct the true values for six simulated states from (noise-free or noisy) artificial data.
We considered different scenarios (Figure 2 in Supplementary Materials) in which variables
were either fitted (metabolite and enzyme concentrations, and kinetic constants given as
data) or predicted from the other data (“unknown” kinetic constants).

Figures 3 and 4 show the model balancing results with artificial data and different
combinations of noise-free or noisy kinetic and noise-free or noisy state data. We chose a
stringency value of α = 0.5 (results for other stringency values can be found on github.
com/liebermeister/model-balancing; accessed on 20 october 2021). Results for noise-free
kinetic and state data are shown in Figure 3. Scatter plots compare true and fitted variables
(metabolite concentrations, enzyme concentrations, and different types of kinetic constants).
Deviations from the diagonal line indicate estimation errors. Subfigures show different
types of variables (columns) and estimation scenarios (rows). In the top row, data for all
kinetic constants were provided; in the centre row, only data for equilibrium constants
were provided, and in the bottom row, no kinetic data were used at all. Depending on
whether data for equilibrium constants and other kinetic constants were used, scatter
plots represent either fitting scenarios in which kinetic constants only adjusted (dots),
or prediction scenarios (crosses) in which kinetic constants were determined from state data.
The quality of fits or predictions is quantified by Pearson correlations (in log-scale) and
geometric standard deviations (i.e. the exponent of the root mean square of the residuals
in log-scale).

The first scenario (top row) assumes ideal conditions, with noise-free and complete
kinetic and state data. The reconstructions are perfect, with small deviations arising from
conflicts between priors and data. The other rows show estimation results using equilib-
rium constants only (centre row) or using no kinetic data at all (bottom row). Metabolite
and enzyme data were used in all cases, either without or with noise. The predictions
of kcat and KM values from complete and noise-free data are rather good. To assess the
effect of noise, we next used state data (metabolite concentrations, enzyme concentrations,
and fluxes) with a noise level of about 20 percent (geometric standard deviation 1.2) and
noisy kinetic data, with a geometric standard deviation of 1.5. With noisy data, the esti-
mates become worse (Figure 4f), and especially KM values are predicted poorly. Using
equilibrium constants as data improves the results, and kcat values can be reconstructed
more reliably (Figure 4d,e).

github.com/liebermeister/model-balancing
github.com/liebermeister/model-balancing
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Figure 3. Model balancing results for E. coli model with artificial data (stringency parameter α = 0.5). The model structure
is shown in [48]. Each subfigure shows “true” artificial values (x-axis) versus reconstructed values (y-axis). The quality
of fits or predictions is quantified by geometric standard deviations and by Pearson correlations on logarithmic scale.
(a) Metabolite concentrations; (b) enzyme concentrations; (c–f) equilibrium constants, kcat values, and Michaelis–Menten
constants. The three rows show different estimation scenarios (see Supplementary Materials Figure S2). Upper row: simple
scenario S1 (noise-free artificial data, data for all kinetic constants). Centre row: scenario S1K (noise-free artificial data,
kinetic data given only for equilibrium constants). Lower row: scenario S2 (noise-free artificial data, no data for kinetic
constants). Depending on the scenario, kinetic constants are either fitted (dots) or predicted (crosses).

To explore how our stringency parameter α affects the results, we ran model balancing
(for the E. coli example and several smaller pathway models) at different values of α.
The results were as expected: at α = 0, enzyme concentrations tend to be underestimated,
while this effect typically disappeared at α values above 0.1. Generally, our tests with
artificial data show that model balancing can adjust noisy data sets: relatively small
changes in the data suffice to obtain a consistent set of kinetic and state data. Second,
they show that information about kcat values can be extracted from state data. It turns out
that KM values are much harder to reconstruct. Given that real metabolic data are noisy,
estimating in-vivo values from omics data remains difficult, and adjusting in-vitro kinetic
constants to realistic in-vivo values remains the main application of model balancing.
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Figure 4. Model balancing results for E. coli model with artificial data (stringency parameter α = 0.5). Same as Figure 3, but
with noisy kinetic data and noisy state data.

3.3. Model Fitting with Experimentally Measured Data

After this test, we balanced the E. coli model with experimentally measured data from
the literature. We used the in-vitro kinetic constants collected in [43] (“original kinetic
data”) and, for comparison, a parameter-balanced version of the same data set (“balanced
kinetic data”).

Figure 5 shows results for one metabolic state, aerobic growth on glucose, with a
stringency value of α = 0.5. Since the true kinetic constants and state variables are
unknown, the reconstructed kinetic constants, metabolite concentrations and enzyme
concentrations are plotted against the available data, where dots refer to fits and crosses
refer to predictions (where kinetic data were used only for validation). In a first test,
we used a complete set of kinetic constants obtained by parameter balancing (Figure 5).
With these constants used as data (top row, red dots), slight adjustments were sufficient
to obtain a consistent kinetic model. Using only equilibrium constants as data (centre
row) yields reasonable predictions of the kcat values. In the bottom row, both equilibrium
constants and other kinetic constants were predicted, but the correspondence to in-vitro
values is relatively small.
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Figure 5. Results for E. coli central metabolism with experimental data (aerobic growth on glucose). The kinetic data stem
from previous parameter balancing based on in-vitro data. Top: estimation using kinetic data. Centre: model fit using
equilibrium constants as data. Bottom: estimation without usage of kinetic data. Metabolite, enzyme, and kinetic data were
taken from [43]. A stringency parameter α = 0.5 was used. The fact that our kinetic data were obtained from parameter
balancing, based on the same network model and the same priors, leads to a bias. However, a test with original in-vitro
kinetic data (and thus fewer data points, not shown) yielded similar results. Predicted kinetic constants may be validated
by cross-validation; the results can be expected to lie in between the results from our “fitting” (dots) and “prediction”
scenarios (crosses).

4. Discussion
4.1. Model Balancing in Relation to Other Methods

To integrate kinetic and omics data into consistent metabolic models, uncertainties and
missing data need to be handled. Here we showed that the Bayesian framework proposed
in [20] leads to nearly convex estimation problems if the metabolic fluxes are known.
Depending on data availability and quality, model balancing can either be used to infer
kinetic constants from omics data or to make data complete, consistent, and more precise.

Kinetic constants have been inferred by various methods. Kinetic profiling is easy to
implement, and its computational effort is low, but it provides only lower bounds. Model
fitting, in contrast, can integrate different types of data (including Keq values and in-vitro
kcat values) and can estimate kcat values even if enzymes do not reach their maximal rates
in experiments. In contrast to methods like SIMMER [16], which considers single reactions
(and requires complete data for each of them), model balancing can transfer information
between different parts of a network. Maud [49] is a similar approach for integrating flux,
metabolite, enzyme and kinetic data. Maud uses Markov Chain Monte Carlo (MCMC)
sampling combined with an ODE solver for determining steady states and with posterior
sampling. One of its advantages over model balancing is that metabolic flux data are not
required for running the algorithm. However, since running an ODE for each sample point
requires more computational resources, it is expected to be less scalable.
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Parameter fitting are often non-convex, especially if thermodynamically feasible flux
distributions are to be estimated [50] (noisy flux data will compromise the estimation
results, but as long as the fluxes can be thermodynamically realised, model balancing
remains applicable). To obtain problems that are nearly convex, model balancing borrows
ideas from existing methods, Parameter Balancing (PB) and Enzyme Cost Minimisation
(ECM) (see Figure 6): it assumes that fluxes are predefined and uses logarithmic kinetic
constants and metabolite concentration as the free variables. We note that estimating the
fluxes themselves would require an additional level of optimisation which, typically, is
hard to solve numerically [50].

• Parameter balancing. Parameter balancing determines consistent kinetic constants from
kinetic and thermodynamic data. Unlike model balancing, it does not use rate laws or
flux data. All multiplicative constants (such as Michaelis–Menten constants or catalytic
constants) are described by log-values, which leads to a linear regression problem. The
equilibrium constants are parameterised directly by standard chemical potentials rather
than independent variables that can be adjusted if needed [24]. With Gaussian priors
and measurement errors (in log-scale), likelihood and posterior terms are quadratic
and convex. Parameter balancing can handle either kinetic and thermodynamic con-
stants (“kinetic parameter balancing”), metabolite concentrations and thermodynamic
forces (“state balancing”), or kinetic constants and metabolic states (“state/parameter
balancing”). With known signs of thermodynamic forces, defined by the flux direc-
tions, parameter balancing can predict thermodynamically feasible kinetic constants
and metabolite concentrations. While its optimisation takes place on the same set as
in model balancing, it does not consider rate laws and cannot be used to fit kinetic
constants to flux data. As a post-processing step, balanced kinetic constants can be
adjusted to rate laws and flux data, but this works only for a single metabolic state so,
unlike in model balancing, data from multiple states cannot be combined.

• Enzyme cost minimisation. Enzyme cost minimisation (ECM) [43] predicts optimal
enzyme and metabolite concentrations in kinetic models with given parameter values.
ECM determines metabolite and enzyme concentrations that realise predefined fluxes
at a minimal cost, for instance, at a minimal total enzyme and metabolite concentration.
The optimisation is carried out in (log-)metabolite space. In contrast to parameter
balancing, ECM assumes given kinetic constants and optimises a biological cost rather
than a goodness of fit. With given rate laws, the cost function (a weighted sum of
enzyme and metabolite concentrations) is convex in log-metabolite space.

Model balancing combines aspects of these two methods. Just like parameter balanc-
ing, it estimates model parameters and steady-state variables; kinetic constants and metabo-
lite concentrations are treated as basic variables that define a parameter/concentration
polytope as the solution space. From ECM, we inherit the assumption that fluxes are given
and that enzyme concentrations are convex functions of the metabolite log-concentrations.
Model balancing relies on two additional insights: the fact that (both absolute and loga-
rithmic) enzyme concentrations are convex functions on the combined solution space of
kinetic and metabolic variables, and the fact that most of the terms in the posterior score
are convex, while non-convex terms (limiting enzyme concentrations from below) can be
omitted or weakened by a tunable prefactor.

In summary, all three methods—parameter balancing, ECM, and model balancing—
use a convex (or nearly convex) score function in a convex solution space, a high-dimensional
polytope in the space of log kinetic constants, metabolite log-concentrations, or both (de-
pending on the method). To construct it, we define a box by upper and lower bounds
and add linear constraints describing dependencies. The solution polytope for model
balancing is obtained from the polytopes of the other methods by taking their Cartesian
product and removing infeasible regions, in which constraints between kinetic constants
and metabolite concentrations are violated (shown in Supplementary Materials Figure S1).
Since all variables are estimated together, information about one variable (bounds, priors,
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or data) can improve the estimates of other variables as well. In model balancing, this
holds not only for kinetic constants, but also includes metabolic states.
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Figure 6. Estimation methods for kinetic constants and metabolic states. (a) Kinetic model and metabolic states. A model is
parameterised by kinetic constants (e.g., equilibrium constants, catalytic constants, and Michaelis–Menten constants) and is
used to generate a number of metabolic states (characterised by enzyme concentrations, metabolite concentrations, and
fluxes). States may be stationary (with steady-state fluxes) or not (e.g., states during dynamic time courses); (b) dependencies
between kinetic constants and state variables (see Figure 1); (c) model balancing. Kinetic constants and metabolite
concentrations (for several states) are the free variables of a statistical model. Dependent kinetic constants, thermodynamic
driving forces, and enzyme concentrations (bottom) are the dependent variables, and fluxes (top right) are predefined.
Priors and data may be used in the estimation. The other graphics show (d) parameter balancing [21,24] for kinetic data and
metabolite concentrations; (e) model balancing with given kinetic constants; (f) enzyme cost minimisation [43], in which
enzyme and metabolite concentrations are optimised for a low enzyme and metabolite cost.

4.2. Model Balancing in Practice

Model balancing can integrate different types of variables (defined by dependency
schemas), integrate different types of knowledge (network structure, data, priors, and con-
straints). Our tests show that small adjustments of kinetic and omics data suffice to obtain
consistent models and metabolic states. While precise data for state variables and equilib-
rium constants would allow for a partial reconstruction of kcat and KM values, noisy omics
data lead to poor prediction results. While this may be disappointing, model balancing can
still tell us what information about kinetics can be obtained from data with realistic noise
levels, and whether other data (or improvements in measurement accuracy) can improve
the results. This may have a bearing on experimental design.
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Depending on the types of data available (kinetic constants, metabolite concentrations,
or enzyme concentrations), model balancing can be applied in different ways.

• Inferring missing data types If fluxes and two of the data types are given, the third type can
be estimated. For example, we may estimate in-vivo kinetic constants from metabolite
concentrations and enzyme concentrations; we may estimate metabolite concentra-
tions from enzyme concentrations and enzyme kinetics; or we may estimate enzyme
concentrations from metabolite concentrations and enzyme kinetics. If the data were
complete and precise, the third type of variables could be directly computed, and model
balancing would not be necessary. But when data are uncertain and incomplete, model
balancing allows us to infer the missing data while completing and adjusting the others.

• Adjusting omics data to obtain complete, consistent metabolic states Given a model with
known kinetic constants, we can translate metabolite and enzyme data into complete,
consistent metabolic states. Again, fluxes must be given and thermodynamically real-
isable with the assumed equilibrium constants and metabolite bounds. We can even
estimate metabolic states without any enzyme or metabolite data: in this case, model
balancing predicts plausible states with the given fluxes, relying on priors for enzyme
or metabolite concentrations.

• Imposing thermodynamic constraints and bounds on data To build consistent metabolic
models, we may collect data for kinetic and state variables and apply model balancing.
The resulting kinetic constants and state variables satisfy the rate laws, agree with
physical and physiological constraints, and resemble data and prior values. Above we
used this to construct a physically and biologically plausible model of E. coli central
metabolism. Posterior sampling (as in [16]) might be used to assess uncertainties in
model parameters.

In all cases, diagnostic plots on networks can help curate data, e.g. by displaying how
data points were adjusted. In summary, estimating in-vivo kcat values from metabolomics
and proteomics data remains difficult: in our tests with artificial data, data with realistic
noise levels led to unreliable predictions. However, adjusting existing in-vitro kinetic
constants to in-vivo values seems to be feasible: the results in Figure 5, top, show that mild
adjustments of in-vitro kinetic constants suffice to obtain consistent models that explain
omics data. This type of model adjustment, to improve metabolic models, could be a
main application.

Model balancing can be applied to heterogeneous data. Even if few or no data are
available (except for the fluxes), it can be used to build model ensembles. In our tests
with noise-free artificial data, model balancing performed well in prediction, and with
noisy data it can still be used to make models consistent. Unlike its predecessor methods,
model balancing is not a convex problem unless the terms that penalise low enzyme
concentrations are omitted or made very small. We expect that non-convexity arises,
in particular, if enzyme data values are overly high, carrying large errors, but if small
error bars are wrongly assumed. To find the right value of α, we recommend starting
from small values and gradually increasing them until the enzyme fitting error becomes
acceptable. In our tests, this was typically the case above α = 0.1. Another limitation of
model balancing is its calculation speed, which ranges between minutes and several hours
for the E. coli example shown. The number of variables increases with model size and the
number of metabolic states, which impacts memory requirements and calculation time.
Because it is simple, kinetic profiling can be much faster. However, model balancing is
probably faster than standard model fitting approaches, such as Maud [49] that compute
steady states by numerical integration.

In this paper the kinetic constants and state variables in a metabolic model were scored
by a posterior distribution, and we computed the posterior mode. Posterior sampling,
as a next step, would allow us to estimate the posterior mean, variance, covariances and
marginal distributions of kinetic constants and state variables. Moreover, entire parameter
sets could be sampled and model ensembles could be constructed. To simplify sampling,
the posterior can be approximated by a multivariate Gaussian distribution, obtained from
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the posterior mode and the Hessian matrix of the posterior score in this point. Such
a sampling procedure has been implemented for parameter balancing, but not yet for
model balancing. We hope that our formulation of the problem, with a nearly convex
posterior score, will facilitate posterior sampling and will pave the way to efficient sampling
algorithms, which may also include a sampling of fluxes [50].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11110749/s1, Figure S1: Solution space in model balancing, Figure S2: Model balancing:
estimation scenarios with artificial data, Table S1: Mathematical symbols used in model balancing.
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