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Abstract: Multiple studies revealed that pasture grasslands are a time-varying complex ecological
system. Climate variables regulate vegetation growing, being precipitation and temperature the
most critical driver factors. This work aims to assess the response of two different Vegetation
Indices (VIs) to the temporal dynamics of temperature and precipitation in a semiarid area. Two
Mediterranean grasslands zones situated in the center of Spain were selected to accomplish this
goal. Correlations and cross-correlations between VI and each climatic variable were computed.
Different lagged responses of each VIs series were detected, varying in zones, the year’s season,
and the climatic variable. Recurrence Plots (RPs) and Cross Recurrence Plots (CRPs) analyses were
applied to characterise and quantify the system’s complexity showed in the cross-correlation analysis.
RPs pointed out that short-term predictability and high dimensionality of VIs series, as well as
precipitation, characterised this dynamic. Meanwhile, temperature showed a more regular pattern
and lower dimensionality. CRPs revealed that precipitation was a critical variable to distinguish
between zones due to their complex pattern and influence on the soil’s water balance that the
VI reflects. Overall, we prove RP and CRP’s potential as adequate tools for analysing vegetation
dynamics characterised by complexity.

Keywords: cross-correlation; recurrence plots; vegetation indices; grasslands

1. Introduction

Pasture grasslands are considered one of the most important ecological systems
in the Iberian Peninsula, providing multiple agro-environmental services [1], including
biodiversity and meat production. Several studies [2,3] presented pasture grasslands as a
spatial temporal-varying complex ecological system involving multiple variables. Thus,
historical time-series analysis [4] is considered an appropriate method to examine and
characterise pasture grasslands complexity. In this work, we aim to assess the response of
two different Vegetation Indices (VIs) time series to the temporal dynamics of temperature
and precipitation in a semiarid area, characterised by a significant presence of bare soil and
dead vegetation.

Multiple research studies [5,6] demonstrated that climate variables greatly influence
vegetation growing. Among them, precipitation, and temperature [7] have been pointed out
as the most direct driver factors for plant growth. Based on this assumption, Gesner et al. [8]
showed that vegetation growth is strongly correlated to temporal and spatial patterns of
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precipitation in semiarid ecosystems, mainly because of the extreme precipitation events
and seasonal shifts that affect vegetation dynamics. The temperature has also been pointed
out as a critical driving factor in vegetation activity [9]. In this way, Piao et al. [10]
reported that temperature showed positive effects on grasslands growth; decreasing, as
temperature rises in high-cold areas. In the study area, two zones were selected to observe
the interactions between climate and vegetation in two distinct semiarid zones. Both zones
presented different precipitation regimes and annual temperatures. Ávila zone (ZAV)
showed a lower annual mean precipitation and annual mean temperature in comparison
to the Madrid zone (ZMA).

Researchers successfully applied remote sensing techniques in the agricultural [11,12]
and environmental fields to monitor vegetation cover changes. Nowadays, satellites allow
obtaining historical real-time acquisition data [13] about the vegetation status in vast
areas. Optical remote sensing techniques allow tracking vegetation cover due to its specific
spectral behaviour in the visible (0.4–0.7 mm) and infrared (0.74–1.11, 1.3–2.5 mm) bands of
the electromagnetic spectrum. However, alternative approaches, such as radar techniques,
have been pointed out as a promising tool for vegetation monitoring, crop mapping and
soil moisture estimation. Synthetic aperture radar (SAR) based on techniques are the most
widely used [14] in the agricultural field of study. Their principal advantages are the
capacity to obtain information independent of the weather conditions, minimising the
atmospheric effects, and the capacity to penetrate through the soil. However, they also
present disadvantages compared to optical remote sensing techniques, such as possible
speckle effects [15], that could reduce the quality of SAR imagery and the disturbance of
topography [16] in hilly regions.

Vegetation indices (VIs) proved to be a powerful tool to characterise vegetation among
all the optical remote sensing techniques. They are defined as a combination of two or
more spectral bands related to vegetation status. It has been proved that VIs present a close
relationship with climate [17] across different biomes and bioregions [18]. Significantly, the
Normalised Difference Vegetation Index (NDVI) demonstrated an excellent indicator of
the vegetation growth conditions [19,20] and the biophysical characteristics of ecosystems.
Multiple studies revealed [21,22] that NDVI is an adequate tool to monitor rangelands
conditions, being the most widely used spectral VI [23] by ecologists and agriculturalists
until nowadays. Its efficiency is based on its capacity to reduce variability caused by the
reflectance of the soil background [24], illumination, and view angle variation. NDVI
values tend to increase during the growing season, showing the biomass increase due to
the intense photosynthetic activity. On the contrary, there is a gradual reduction of NDVI
values when there is a lack of water or the temperature is excessively higher.

Several authors [25–27] pointed out that differentiated bare soil and dead vegetation
are still challenging due to the disturbances in the VIs sensitivity. Regions with sparse
vegetation tend to generate high reflectance values that might saturate sensors or produce
biased biomass and vegetation cover estimations. Thus, a modified soil-adjusted vegetation
index (MSAVI) [28] was proposed as a solution to consider the soil background effect
in semiarid areas. MSAVI has been successfully applied in numerous studies [29,30],
especially in the estimation of above-ground biomass in semiarid areas.

Previous studies suggested that VIs response to climate differed at different timescales
across the year’s seasons [31–33]. A high correlation between precipitation and NDVI
has been reported at a yearly scale [6]. On the other hand, on a monthly scale, several
studies revealed a delayed correlation between precipitation and NDVI [8,34]. Relation-
ships between NDVI and temperature were also reported during specific periods. As an
example, Tibetan Plateau (China) grasslands presented positive correlations during the
growing season (May–September) [35]. Found correlations presented spatial–temporal
variations [36], probably due to the differences in environmental factors or plant functional
traits over which the correlations were calculated. In this way, researchers suggested that
the optimal VI delayed response depends on the climate variable, shifting from one to two
months in temperature and precipitation [37].



Entropy 2021, 23, 559 3 of 26

In ecological systems, temporal variability is frequently measured as the standard
deviation of the records in a time series, though, these systems present nonlinear characters
as in any complex system. In particular, VIs time-series present time cycles, allowing agro-
environmental system dynamics description [38–40]. In this line, Eckmann et al. [41] intro-
duced recurrence plots (RPs) as a simple way to envision the periodic or chaotic behaviour
of a dynamical system through its phase space. Recurrence Plots–Recurrence Quantifica-
tion Analysis (RP–RQA) are able to measure temporal determinism and predictability [42].
RPs are used to detect dynamical patterns in time series [43], and Recurrence Quantification
Analysis (RQA) quantifies and characterises the small-scale structures in RP. RPs can be
visually interpreted to distinguish non-stationary dynamics with either smooth or abrupt
transitions [44] and finding the presence of periodic and non-periodic processes.

Furthermore, RPs can be extended to include multivariate relationships through Cross-
Recurrence Plots (CRPs). CRP is defined as a bivariate extension of RP [43]. It is computed
to analyse two variables by comparing their states and studying the dependencies between
two different systems; it may be regarded as a nonlinear cross-correlation function. Multiple
works analyse the behaviour of the VIs time series through RPs analysis. Li et al. [45]
computed RPs to study the determinism and predictability of the NDVI series and its
spatial patterns. Zurlini et al. [46] showed the landscape changes after a burn through RPs
methodology on Enhanced Vegetation Index (EVI) time series. Semeraro et al. [47] showed
the drought effects on a zone in the Amazon forest through RPs on MODIS EVI time-series.

Specifically, this study attempts to answer if: (i) VIs are an adequate tool to reflect the
complexity of the relationships between vegetation and climate in grasslands, (ii) MSAVI
performs better than NDVI to assess the vegetation response in a semiarid area and (iii)
the recurrence plots methodology is a complementary tool to the study of the complexity
of grassland ecosystems. This work is organised as follows: In Section 2, we present the
study plots and the methods used to relate and compare the VIs response to climate in
two different zones. In Section 3, we emphasise the main results of the paper. Then, in
Section 4, we discuss the remarkable outcomes of the research. Finally, we present the key
conclusions of the paper in Section 5.

2. Materials and Methods
2.1. Study Area and Plots Selection

We considered two study zones (Figure 1): ZAV situated in Tornadizos de Ávila, Ávila
(Spain) and ZMA located in Soto Del Real, Madrid (Spain). Both sites are characteristics of
inland Mediterranean grasslands under a Mediterranean climate with continental influence
(temperate with a dry season and hot summer (Cfa), according to Köppen classification).
Both grasslands rise during spring and autumn and have a summer senescence period and
a vegetative winter dormancy of variable annual length (Table 1).

Table 1. Annual climate and soil characteristics of both study zones. ZAV: Tornadizos de Ávila
(Avila), ZMA: Soto Del Real (Madrid).

Variable ZAV ZMA

Slope (%) 4.2 (±1.10) 4.7 (±1.60)
Height (m) 1290 (±70) 958 (±30)

Silt (%) 20 (±2.00) 18 (±1.00)
Sand (%) 60 (±2.00) 76 (±1.00)
Clay (%) 20 (±2.00) 6 (±1.00)

Bulk Density (g/cm3) 1.3 (±0.10) 1.6 (±0.10)
pH 6.5 (±0.30) 5.6 (±0.20)

Organic Matter (%) 3.8 (±0.20) 3.0 (±0.10)
Water Holding Capacity (%) 14.4 (±1.00) 11.1 (±1.00)

Precipitation (mm) 400 (±150.00) 560 (±80.00)
Temperature (◦C) 11.6 (±0.60) 13.6 (±0.60)
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nadizos de Ávila, Ávila (ZAV_1, ZAV_2, and ZAV_3), Right: ZMA, Soto del Real, Madrid 
(ZMA_1, ZMA_2 and ZMA_3). Mosaic of the most current orthophotographs corresponding to 
sheet 0509 of the MTN50 in Spain, during the years 2017, 2018. Pixel size: 0.25 km. RGB composition. 
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Plots were chosen based on three criteria: (i) maximum surface covered by pasture
grassland without woodland, (ii) continuous pastureland practices during the analysed
period, (iii) pastureland cover in the surrounding area. Thus, the ZAV zone was com-
posed of three pixels of 500 × 500 m between (3◦45′00′ ′ W, 3◦46′00′ ′ W) and (40◦43′00′ ′ N,
40◦44′00′ ′ N). ZMA was composed of three pixels (500 × 500 m) enclosed between
(4◦32′00′ ′ W, 4◦33′00′ ′ W) and (40◦37′00′ ′, 40◦39′00′ ′ N).

2.2. Acquisition of Satellite Data and VIs Calculations

Terra (EOS AM-1) satellite was launched in 1999, equipped with Moderate Resolution
Imaging Spectroradiometer sensors (MODIS) that have been collecting reflectance data to
date. MODIS imagery collection is structured in various products. Of them, the MOD09A1
was selected for this study. This product is a level-3 composite of the 500-m resolution, and
the best pixel observation was chosen within eight days. The selection criteria for the best
pixel observation were the aerosol content, view and solar zenith angle, cloud presence
and clouds shadows [48,49].

Study plots reflectance was monitored from 2002 to 2018. Each year, 46 images were
acquired, giving 782 images in the study period. In our case, only two of all the spectral
bands were extracted from the imagery collection: band 1 (RED: 620–670 nm) and band 2
(NIR: 841–876 nm). An average of each band per zone was applied in the VIs calculation to
assure a correct spectral characterisation.

Two VIs were calculated using the same spectral bands (RED and NIR), but a different
approach in reducing the soil effect. The first one was the NDVI, calculated by the following
Equation (1):

NDVI =
NIR− RED
NIR + RED

(1)

where NIR is the reflectance in the near-infrared band (band 2) and RED (band 1) is the
reflectance in the red band.
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The second index was MSAVI, proposed as an improved version of NDVI. It includes
bare soil and dead vegetation effect by adding a new variable named soil factor adjustment
(LM). LM is calculated by the following Formula (2):

LM =
2 ∗ s ∗ (NIR− RED) ∗ (NIR− s∗RED)

NIR + RED
(2)

where s is defined as the soil line given by a plot of RED vs. NIR brightness.
To obtain s, a set of points is extracted, characterised by the minimum NIR value

within the RED breaks (0.005) in the RED vs. NIR plot [50]. A weighted least-squares linear
regression is fitted over these points, being s the slope of the regression [51]. This method
is recommended to be implemented when non-photosynthetic vegetation or bare soil is
predominant in the scene, as it is our case in the Mediterranean summer.

Once the s parameter was calculated for each plot, the average s was used in Equation
(2) to obtain the LM factor. Then, MSAVI was calculated by Equation (3):

MSAVI =
NIR− RED

NIR + RED + LM
× (1 + LM) (3)

2.3. Meteorological Variables

Two different AEMET [52] stations were considered to provide daily measurements of
average air temperature (Tmean, minimum temperature (Tmin), maximum temperature
(Tmax) and precipitation. The meteorological station of ZAV is settled at the centre of
Ávila (40◦39′33.024′ ′ N, 4◦40′48.000′ ′ W) and located at 1130 m.a.s.l. In the ZMA zone, the
meteorological station is sited between Soto del Real and Colmenar Viejo (40◦41′46.008′ ′ N,
3◦45′54.019′ ′ W) at 1004 m.a.s.l).

2.4. Inter-Annual and Intra-Annual Analysis

On a first approach, we estimated the annual average of VIs, temperature, and accumu-
lated precipitation. Then, a linear fitting was conducted to analyse the VIs and temperature
annual trends. Precipitation was plotted to show the water availability along the time. A
statistical test was performed to detect significant data trends [53]. The slope of the linear
regression was compared to 0 using a Student t-test. If the t-estimated value was inferior to
the critical t-value at the 95% level, then the slope was not significantly different from zero.

In the next step, a min–max normalisation (0–1) method was applied to determine
whether annual climate variations were fluctuating with VIs behaviour. Each VI was
compared to each climate variable in both zones (ZAV and ZMA).

A more in-depth analysis was performed to characterise date-to-date VIs behaviour.
Average temperature and accumulated precipitation in an 8-day (PCP) period were esti-
mated based on daily meteorological data. Descriptive statistics were applied to charac-
terise each one of the 46 dates using box-plots charts. Based on the VIs trend changes in
the date-to-date series, we distinguished several annual pasture phases. Individualised
phase linear regressions were compared using the Chow test to confirm each phase datasets
differences [54]. Then, linear regressions by phase were plotted to analyse the relationship
between VIs and climate variables.

2.5. Time-Series and VIs Phase Cross-Correlations

Correlation Pearson’s coefficients (CR) were calculated to reveal relationships between
VIs and climatic variables series along the time. Additionally, partial correlation coefficients
(PCR) were calculated to detect the most determinant variable in the VIs response. Then,
time-series lagged cross-correlation analysis was performed to obtain an optimal lag (`)
where the correlation between climate variable and VI is maximum. The following Formula
(4) is applied:

ρ(`) =
cov(x(j, t), y(j, t− `))

σx(j,t)σy(j,t−`)
(4)
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where x(j, t) are the VI values, NDVI or MSAVI, at year j and time t. The y(j,t − `) are the
meteorological values, temperature, or precipitation, at year j and delayed ` times the lag
time, which is eight days.

Pearson’s coefficients analysis was replicated in each VI phase, defined in Section 2.4.
Then the expression becomes (5):

ρ(i, `) =
cov(xi(j, t), yi(j, t− `))

σxi(j,t)σyi(j,t−`)
(5)

where xi (j,t) are the VI values at year j and time t that belong to phase i. The yi(j,t − `) are
the meteorological values at phase i at year j and delayed ` times the lag time, which is
eight days.

2.6. Recurrence Plots and Recurrence Quantification Analysis

Recurrence plots (RP) allow visualising system states in the phase space. In complex
dynamical systems, recurrence is related to the temporal evolution of dynamical systems
trajectories in the phase space.

Generally, to compute an RP, an embedding dimension (m) and a time-delay (τ) are
necessary. Delay, τ, is the minimum time lag to minimise the autocorrelation of a time
series. Then, m represents the number of independent variables needed to characterise the
dynamics of the system. Finally, RP is a square matrix, with time on both axes, of pairwise
Euclidean distances between the reconstructed system states to which a distance threshold
(ε) is applied [43]. Mathematically RP is defined as:

Rij = Θ
(

ε− ‖→x i −
→
x j‖

)
,
→
x i ∈ Rm, i, j = 1 ... N, (6)

where N is the number of measured states
→
x i, Θ is the Heaviside step function (i.e., Θ(x) = 1,

if ‖→x i −
→
x j‖ ≤ ε, and Θ(x) = 0 otherwise), ‖·‖ is a norm, and ε is a threshold previously

defined based on the time-series properties. In this study, the phase space trajectories are
based on the Euclidean distance between

→
x i and

→
x j of the series. If Rij = 1 at a time (i, j), is

marked as a black dot in the position (i, j). Otherwise, if Rij = 0, the corresponding states
will be represented as white dots.

The same principle is maintained in the cross-recurrence plot (CRP) methodology.
However, in CRP, two different time series are analysed simultaneously, and black dots
represent the co-occurrence of similar states between two time series. Mathematically, a
CRP (x1, x2, · · · xi, · · · xN) and

(
y1, y2, · · · yj, · · · yN

)
, is calculated by:

Cij = Θ
(

r− ‖→x i −
→
y j‖

)
,
→
x i,

→
y j ∈ Rm, i, j = 1 ... N, (7)

Several measures of complexity have been proposed to be quantified by the RQA,
though, in this work, we focused on Determinism (DET), Average length of structures
(LT), Shannon’s Entropy (ENT), Laminarity (LAM) and trapping time (TT), the extended
formulas are added in the Appendix A. Furthermore, RQA was extended by computing
the diagonal-wise recurrence quantification profile [55]. The recurrence rate around the
line of coincidence (LOC) and the surroundings time lags was calculated to measure the
two time-series coupling as a lag function. The maximum number of lags to be analysed
was six, the same as the cross-correlation method.

CRQA R package [55,56] was used to construct RP, obtain RQA measures and compute
diagonal-wise recurrence profile. First, the VIs series were normalised using a z-score nor-
malisation; then, the distance matrix was rescaled based on the maximum value following
the recommendations of Webber and Zbilut [57]. Optimizeparam function is then com-
puted to find the three parameters’ optimal values (τ, m, and ε). The delay (τ) was found
by obtaining the local minimum where mutual information drops to both series [58]. The
embedding dimension (m) was calculated by the false nearest neighbours’ algorithm [59].
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The threshold εwas estimated by an iterative process based on the time-series’ standard
deviation (SD). In this work, ε was limited to 5% of the recurrence rate (RR) in all the cases.
When multiples values of m, τ, were obtained by the optimisation, the maximum of them
was selected as the optimal value to apply in the construction of CRPs.

The quantification of RP and CRPs structures was calculated with the Crqa function
using the values obtained from the optimisation function. Then, the drpfromts function
was computed to plot diagonal-wise recurrence profiles in the RPs and CRPs.

3. Results
3.1. Soil Line Acquisition

The soil line was calculated for each studied plot in each zone, and the results are
displayed in (Figure 2). RED-NIR method’s linear regression displayed an R2 > 0.90 in
all the cases. ZAV s values were higher than ZMA in most cases. We could not detect
significant differences between the s values from ZAV and ZMA, even if the s average in
ZAV (1.40) tends to be higher than in ZMA (1.17).
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Figure 2. Soil slope (s) estimation from the spectral bands NIR vs. RED plots adapting the minimum NIR method [50].
Inside each figure, the regression equation was obtained from the Weighted Least Squares method. Each black point
represents the NIR vs. RED reflectance in an 8-day interval between 2002 and 2018. Red points are the minimum value of
NIR at 0.005 RED breaks. Panels (a–c) correspond respectively to the soil slope of pixels 1, 2 and 3 for the Tornadizos de
Ávila (ZAV) zone. Panels (d–f) correspond respectively to the soil slope of pixels for the Soto del Real (ZMA) zone.

3.2. Inter-Annual Analysis

In the time series, VIs, temperature, and precipitation values were higher in ZMA
than ZAV (Figure 3). VIs and precipitation displayed a descending trend over the years
in both zones. In contrast, temperature showed an ascending trend in both zones. All the
estimated slopes were non-statistically significant (Supplementary Material Table S1).



Entropy 2021, 23, 559 8 of 26

Entropy 2021, 23, x FOR PEER REVIEW 8 of 26 
 

Figure 2. Soil slope (s) estimation from the spectral bands NIR vs. RED plots adapting the minimum 
NIR method [50]. Inside each figure, the regression equation was obtained from the Weighted Least 
Squares method. Each black point represents the NIR vs. RED reflectance in an 8-day interval be-
tween 2002 and 2018. Red points are the minimum value of NIR at 0.005 RED breaks. Panels (a–c) 
correspond respectively to the soil slope of pixels 1, 2 and 3 for the Tornadizos de Ávila (ZAV) zone. 
Panels (d–f) correspond respectively to the soil slope of pixels for the Soto del Real (ZMA) zone. 

3.2. Inter-Annual Analysis 
In the time series, VIs, temperature, and precipitation values were higher in ZMA 

than ZAV (Figure 3). VIs and precipitation displayed a descending trend over the years 
in both zones. In contrast, temperature showed an ascending trend in both zones. All the 
estimated slopes were non-statistically significant (Supplementary Material Table S1). 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3. Inter-annual variations of vegetation indices (Normalised Difference Vegetation Index—NDVI, modified soil-
adjusted vegetation index—MSAVI) and meteorological parameters of water (Annual accumulated precipitation) and en-
ergy (Annual average Temperature) from 2002 to 2018 in Tornadizos de Ávila (ZAV) (a–c) and Soto del Real (ZMA) (d–f). 

Generally, an inverse relationship was observed between VIs and temperature fluc-
tuations (Figure 4). For instance, in 2009 and 2017, the temperature was remarkably higher 
in both zones; consequently, NDVI and MSAVI showed a severe fall. In contrast, we de-
tected a direct relationship between VIs and precipitation. Usually, when precipitation 
was limited, VIs tended to be reduced. This tendency was observed over 2009 and 2017 in 
ZAV, and over 2003–2004 in ZMA, respectively. 

ZA
V

 

  
 (a) (b) 

Figure 3. Inter-annual variations of vegetation indices (Normalised Difference Vegetation Index—NDVI, modified soil-
adjusted vegetation index—MSAVI) and meteorological parameters of water (Annual accumulated precipitation) and
energy (Annual average Temperature) from 2002 to 2018 in Tornadizos de Ávila (ZAV) (a–c) and Soto del Real (ZMA) (d–f).

Generally, an inverse relationship was observed between VIs and temperature fluctua-
tions (Figure 4). For instance, in 2009 and 2017, the temperature was remarkably higher
in both zones; consequently, NDVI and MSAVI showed a severe fall. In contrast, we
detected a direct relationship between VIs and precipitation. Usually, when precipitation
was limited, VIs tended to be reduced. This tendency was observed over 2009 and 2017 in
ZAV, and over 2003–2004 in ZMA, respectively.

In general, we detected that both VIs showed similar inter-annual variations in both
zones. However, there were unusual VIs changes in certain years, i.e., in 2007, VIs showed
a remarkable rise, even when temperature and precipitation did not show a notable change
of trend.

3.3. Intra-Annual Analysis

The VIs phases were closely related to the Mediterranean climate seasons (Table 2),
being (P1 and P2) the cold season, (P4) the hot season and (P3 and P5) the transitional
periods. Chow’s test revealed that all of them were significantly different from each other
(Supplementary Material Table S2). We found that VIs, temperature, and precipitation
were higher in ZMA than ZAV on an intra-annual scale (Figure 5). We also observed that
VIs and precipitation were notably different between zones in P2 and at the beginning of
P3 and P5. It should be noted that ZMA VIs declined faster in P3 and increased quicker in
P5 than ZAV VIs. NDVI dispersion was generally greater than MSAVI. At the same time,
VIs and precipitation showed a higher data dispersion in ZMA than ZAV. Both variables
reached their dispersion peak in the same period of the year (P3 and P5).
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Table 2. Annual pasture phases based on vegetation index (VIs) trend at the studied zones (Tornadizos de Ávila and Soto
del Real).

Code Phase Initial Date Final Date Months
Implied

Seasons
Implied VIs Trend

P1 25 November 25 January November-December-January Autumn–Winter Constant
P2 2 February 23 April February-March-April Winter–Spring Increasing
P3 1 May 20 June May-June Spring–Summer Decreasing
P4 28 July 22 September July-August-September Summer–Autumn Constant
P5 30 September 17 November September-October-November Autumn Increasing

Based on the box plots results, it was observed that P1 and P4 phases did not show
any variation along the time, being stable and less dispersed than the other phases. For
this purpose, linear regression analysis between VIs and climate variables was conducted
only in the phases in which a trend was observed in VIs (Figure 6 and Supplementary
Material Figure S1). In this way, the most critical vegetation–climate driving factors were
detected. Generally, the temperature was identified as the potential driving factor in the
vegetation–climate system as it showed R2 > 0.9 in all the studied phases in both zones. We
observed that the temperature trend varied throughout the year, being positive in P2 and
negative in P3. Instead, precipitation showed lower R2 values than temperature, being the
highest (>0.7) in P3, and maintained the same positive trend in all the phases. From this
point, we detected that both indices showed similar behaviour, though, generally, MSAVI
showed better results, suggesting that its dynamics would be more distinct than NDVI.
Thus, NDVI analysis and results are presented in the Supplementary Material.
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(ZMA) (d–f).

3.4. Time-Series Correlation

Pearson’s coefficients analysis revealed that all correlation coefficients between VIs
and meteorological time-series were statistically significant along the time (Table 3 and
Supplementary Material Table S3). The corresponding Pearson’s coefficients for tempera-
ture showed a negative relationship, whereas precipitation displayed a positive relationship.
The temperature was the most correlated variable, and partial coefficients indicated that
temperature is the main driving factor in the relationships between climate variables
and VIs.

Table 3. Time-series Pearson correlation coefficients (CR) and partial correlation coefficients (PCR)
between Modified Soil-Adjusted Vegetation Index (MSAVI) and meteorological time-series for each
study zone (ZAV: Tornadizos de Ávila; ZMA: Soto del Real) during the period of 2002–2018. TEMP is
8-day average air temperature (◦C), and PCP is the accumulated precipitation in 8-day (mm).

Zone CR PCR

TEMP PCP TEMP PCP

ZAV −0.435 ** 0.165 ** −0.571 ** 0.199 **
ZMA −0.572 ** 0.199 ** −0.504 ** 0.074 **

Note: ** represents p < 0.01 significance.
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Figure 6. Growing phases response of MSAVI and water (Accumulated precipitation) and energy
(Average temperature) parameters, in 8 days periodsat Tornadizos de Ávila (ZAV) (a) and Soto del
Real (ZMA) (b). In each figure, the regression equation was obtained from the Least Squares method.

Cross-correlation showed the sinusoidal behaviour of the climate variables and the
seasonality of VIs (Figure 7 and Supplementary Material Figure S2). The Lagτ varied
between variables and zones, i.e., MSAVI-PCP showed an Lag of −2 (16 days) in ZAV,
while Lag was of −3 (24 days) in ZMA. The Lag also fluctuated depending on the VI
used, NDVI could not differentiate precipitation lags between zones; meanwhile, MSAVI
distinguished them.

3.5. Correlation by Phase

Pearson correlation coefficients by phases (Table 4 and Supplementary Material Table
S4) indicated that VIs dynamics varied over a year. Correlation coefficients varied between
zones, being the highest difference in P3 and P5. The temperature was the most correlated
climate variable, achieving values higher than 0.7 in P3 and P5 in both zones and VIs. As
expected, there were some inaccuracies in the precipitation; thus, it was not possible to
obtain high correlations values (<0.5). However, in P3, MSAVI showed significant results
(0.270 in ZAV and 0.248 in ZMA), most likely due to the decrease of MSAVI data dispersion
during the dry season.
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Table 4. Pearson correlation coefficients (CR) and partial correlation coefficients (PCR) of MSAVI and meteorological
parameters in five distinct phases. TEMP is 8-day average air temperature (◦C), and PCP is the accumulated precipitation in
8-day (mm). ZAV is Tornadizos de Ávila, and ZMA is Soto del Real.

CR PCR

PHASE MSAVI xTEMP MSAVI x PCP MSAVI x TEMP MSAVI x PCP

ZAV

P1 0.130 0.046 0.173* 0.008
P2 0.489 ** 0.066 −0.027 0.180 *
P3 −0.714 ** 0.283 ** −0.095 −0.003
P4 0.270 ** −0.037 −0.130 0.106
P5 −0.550 ** 0.216 * 0.072 −0.052

ZMA

P1 0.101 0.023 0.144 0.015
P2 0.428 ** 0.042 0.026 0.125
P3 −0.763 ** 0.359 ** −0.007 −0.053
P4 0.248 ** 0.029 0.007 0.135
P5 −0.594 ** 0.160 0.040 −0.157

Note: * represents p < 0.05 significance, ** represents p < 0.01 significance.

A fluctuating lag was observed in cross-correlation coefficients by phases, pointing out
the different VIs dynamics during a year (Table 5 and Supplementary Material Table S5).
The most correlated variable was the temperature. Precipitation did not achieve higher
correlation values, though a lag was needed in all the cases. As a result, the correlation
by phase method improved the correlations in all the precipitation cases. Overall, cross-
correlation by phases was significant in P3 and P5, allowing us to achieve better correlation
coefficients than time-series analysis, regardless of VI and zone.
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Table 5. Cross-correlation coefficients between MSAVI and meteorological parameters with different
lags (`) in different phases. ZAV: Tornadizos de Ávila and ZMA: Soto del Real. TEMP is 8-day
average air temperature (◦C), and PCP is the accumulated precipitation in 8-day (mm). The bold
number represents the maximum correlation in each row. Each time lag is of 8 days.

Time Lag (`)

Phase Param. 0 1 2 3 4 5 6

ZAV

P2
TEMP 0.492 0.451 0.418 0.333 0.271 0.198 0.041
PCP 0.067 0.039 0.074 0.133 −0.031 −0.003 0.079

P3
TEMP −0.714 −0.739 −0.741 −0.726 −0.714 −0.681 −0.629
PCP 0.283 0.312 0.378 0.243 0.256 0.186 0.064

P5
TEMP −0.550 −0.553 −0.575 −0.584 −0.605 −0.613 −0.561
PCP 0.216 0.359 0.396 0.424 0.235 0.214 0.241

ZMA

P2
TEMP 0.422 0.308 0.259 0.233 0.169 0.109 0.029
PCP 0.032 0.088 0.186 0.221 0.156 0.102 0.093

P3
TEMP −0.763 −0.757 −0.717 −0.699 −0.695 −0.697 −0.637
PCP 0.359 0.396 0.381 0.321 0.357 0.309 0.230

P5
TEMP −0.594 −0.600 −0.625 −0.602 −0.603 −0.581 −0.512
PCP 0.159 0.297 0.393 0.397 0.293 0.275 0.304

In NDVI and temperature, ` varied in both zones from zero in P2 to 5 (40 days) in P5.
In the MSAVI case, temperature ` showed a similar pattern to the NDVI case, varying only
in the P5 phase on ZMA. Concerning precipitation, in the NDVI case, an ` of 2 (16 days)
was found in all the phases studied for both zones. Though, MSAVI showed different
precipitation ` depending on the zone and the phases. Precipitation ` was 3 (24 days) in
the phases when the VI increases (P2 and P5) in both zones. In P3, with a decreasing trend
in the VI, the precipitation ` was 2 in Avila and 1 in Madrid. This fact pointed out a higher
precipitation MSAVI sensitivity and recognised ` as a variable able to distinguish different
zones in the same phase.

MSAVI performance was better than NDVI in winter and at the beginning of the spring
(P2). It was remarkable because precipitation dispersion reached its peak during this phase.
This fact might reveal that MSAVI might improve NDVI results in the springtime at a
correct time scale. It is recommendable to analyse both series from a dynamic point of view,
emphasising the behaviours of MSAVI in both zones.

3.6. RPs Characterisation and Recurrence Diagonal Profile

The Optimizeparam function was computed to estimate the parameters of RPs and
showed that the embedding dimension (m) increased in all VI series for both zones
(Table 6 and Supplementary Material Table S6). In the case of NDVI, m was 2 for both
zones, then for the MSAVI case, m was 6 for ZAV and 8 for ZMA. The τ ranged from 8 to
11 varying between zones. The same dimensionality increase was detected in the climate
variables where precipitation showed a higher dimension than the temperature in ZMA,
pointing out a higher precipitation complexity than temperature.
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Table 6. Recurrence plot (RP) parameters in ZAV: Tornadizos de Ávila and ZMA: Soto del Real.
MSAVI: Modified Soil-Adjusted Vegetation Index, m: Embedding dimension, τ: Delay, r: threshold.

Zone RPs m τ r RR (%)

ZAV
MSAVI 6 9 20.91 4.99
TEMP 2 11 8.76 4.99
PCP 2 3 1.35 4.97

ZMA
MSAVI 8 11 26.32 4.99
TEMP 2 11 9.00 4.99
PCP 10 9 13.25 5.00

NDVI RPs showed a noisy behaviour, characterised by many isolated points. Meanwhile,
MSAVI RPs showed white stripes on a large scale (Figure 8 and Supplementary Material
Figure S3). Furthermore, we could observe that MSAVI RPs present small-scale structures
and periodic patterns (diagonal line like-shapes). This kind of structure is visible in the
temperature RP, where we could observe the temperature seasonality through diagonal-like
structures. At the visual inspection, we did not detect significant temperature changes
between the two zones.
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Figure 8. Optimised recurrence plots (RP) using normalised vegetation indices (MSAVI), Average 
temperature (TEMP) and Accumulated precipitation (PCP) data and rescaled distance matrix for 
Tornadizos de Ávila (ZAV) and Soto del Real (ZMA). Time units are represented as the X and Y-
axis. Each time-unit is 8-days, coincident with 8-day composed MODIS images during the study 
period (2002–2018). Panels (a–c) correspond respectively to RP of MSAVI, Temperature and Accu-
mulated Precipitation for the ZAV zone. Panels (d–f) correspond respectively to MSAVI, Temper-
ature and Accumulated precipitation for the ZMA zone. 

In contrast, precipitation RP showed a distinct pattern in each zone. In ZAV, we could 
observe a block-like structure, whereas, in ZMA, we could distinguish a more line-like 
pattern. This difference was likely due to the different precipitation regimes in each zone. 

We found that the profile tendency varied between VIs and zones (Figure 9 and Sup-
plementary Material Figure S4). NDVI showed a more distinctive RR drop on the first days 
(0–8 days) in both zones. In contrast, MSAVI maintained higher values of RR until 16 days. 

Figure 8. Optimised recurrence plots (RP) using normalised vegetation indices (MSAVI), Average temperature (TEMP) and
Accumulated precipitation (PCP) data and rescaled distance matrix for Tornadizos de Ávila (ZAV) and Soto del Real (ZMA).
Time units are represented as the X and Y-axis. Each time-unit is 8-days, coincident with 8-day composed MODIS images
during the study period (2002–2018). Panels (a–c) correspond respectively to RP of MSAVI, Temperature and Accumulated
Precipitation for the ZAV zone. Panels (d–f) correspond respectively to MSAVI, Temperature and Accumulated precipitation
for the ZMA zone.

In contrast, precipitation RP showed a distinct pattern in each zone. In ZAV, we could
observe a block-like structure, whereas, in ZMA, we could distinguish a more line-like
pattern. This difference was likely due to the different precipitation regimes in each zone.

We found that the profile tendency varied between VIs and zones (Figure 9 and
Supplementary Material Figure S4). NDVI showed a more distinctive RR drop on the first
days (0–8 days) in both zones. In contrast, MSAVI maintained higher values of RR until
16 days. As expected, temperature showed similar behaviour in the two zones. Meanwhile,
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PCP showed a different maximum lag. Both PCP profiles showed lower values of RR from
eight days till the end. We speculate that different maximum lags are a consequence of the
different PCP distribution in both zones.
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3.7. CRPs Characterisation and CRPs Diagonal Profile

Once RPs were constructed, the maximum m and τ for the two time series were
selected as the parameters to the construction of CRPS (Table 7 and Supplementary Material
Table S6), then a RR of 5% was selected for all of them.

Table 7. Cross-Recurrence plot (RP) parameters in ZAV: Tornadizos de Ávila and ZMA: Soto del Real. MSAVI-TEMP:
Cross-Recurrence plot between MSAVI and Average temperature. MSAVI-PCP: Cross-Recurrence plot between MSAVI and
Accumulated precipitation.

Zone CRPs m τ r RR (%)

ZAV
MSAVI-TEMP 6 11 23.04 5.00
MSAVI-PCP 6 11 17.27 5.00

ZMA
MSAVI-TEMP 8 11 25.60 5.00
MSAVI-PCP 10 11 23.74 5.00

We detected the seasonal temperature effect on the VIs dynamics in the CRPs (Figure 10
and Supplementary Material Figure S5). In the case of NDVI-TEMP, we could not distin-
guish between zones. However, MSAVI-TEMP showed a different pattern in each zone,
probably due to the distinct MSAVI dynamics that distinguish between different CRP
patterns. Cross-recurrence profile allowed us to distinguish the interactions between VIs
and climate variables in the LOC and the surroundings lags. The temperature did not show
a difference between zones. As we observed in TEMP-VIs CRPs, the LOC was non-existent
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(Figure 10 and Supplementary Material Figure S5), and the surrounding regions were
similar. Then it was expected that RR was near zero on the first lags. We believe that this
fact was due to the temperature seasonality not being detected on the first lags.
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Figure 10. Optimised Cross-Recurrence Plots (CRPs) and diagonal-wise recurrence profiles between vegetation index data
(MSAVI) temperature data (TEMP) and accumulated precipitation data (PCP) for Tornadizos de Ávila (ZAV) and Soto del
Real (ZMA). Time units are represented as the X and Y-axis. Each time-unit is 8-days, coincident with 8-day composed
MODIS images during the study period (2002–2018) in the CRPS. Lags are represented in days in the diagonal-wise
recurrence profile The panels (a,c,e,g) represent the CRPs of MSAVI-TEMP and MSAVI-PCP. The panels (b,d,f,h) represent
the diagonal-wise profile of the CRPS, respectively.

In contrast to the temperature, CRPs of precipitation and VIs were able to characterise
a different dynamic in each zone. In this case, we observed that NDVI-PCP CRPs showed
vertical lines in ZAV and diagonal-like structures in ZMA. In MSAVI-PCP CRPs, the most
distinct region zone occurred during 400–600 time-units, where ZMA presented an isolated
point structure, while ZAV did not show any recurrence in that timeframe. This fact might
be explained due to the increase of dimensionality produced by the precipitation in the
CRPs. VIs-PCP recurrence profile showed an evident maximum lag of 16 days in the ZMA.
In contrast, the ZAV presented a lower RR in precipitation, and the maximum lag was
not evident, presenting a more stable recurrence profile. This difference can be explained
because the CRQA analysis detected a higher number of precipitation events coupled to
the MSAVI index, showing a more evident maximum lag. in the ZMA zone.

3.8. Recurrence Quantification Analysis of RPs and CRPs

We will present a more quantitative analysis by carrying out the RQA of the RPs and
CRPs considered for each study zone (Table 8 and Supplementary Material Table S6).
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Table 8. Recurrence plot (RP) and Cross Recurrence plots (CRP) parameters and Recurrence Quantification Analysis (RQA)
using general z-score vegetation indices series in ZAV: Tornadizos de Ávila and ZMA: Soto del Real. MSAVI: Modified
Soil-Adjusted Vegetation Index, m: Embedding dimension, τ: Delay, r: threshold, RR: Recurrence rate, DET: Determinism,
LT: Average length of diagonal structures, ENTR: Shannon Entropy, LAM: Laminarity, TT: Trapping time.

Zone RPs and
CRPs RR (%) DET (%) LT ENTR LAM (%) TT

ZAV

MSAVI 4.99 73.20 3.40 1.57 82.66 3.55
TEMP 4.99 40.26 2.31 0.72 52.89 2.49
PCP 4.97 14.65 2.10 0.32 33.72 2.35

MSAVI-
TEMP 5.00 63.75 2.88 1.29 75.30 3.62

MSAVI-PCP 5.00 19.25 2.17 0.47 23.08 2.27

ZMA

MSAVI 4.99 78.42 4.17 1.80 86.13 3.88
TEMP 4.99 42.02 2.35 0.76 54.35 2.60
PCP 5.00 6.57 2.03 0.14 20.72 2.11

MSAVI-
TEMP 5.00 69.06 3.21 1.50 76.59 3.75

MSAVI-PCP 5.00 25.70 2.26 0.64 29.23 2.29

Now, we present the values of DET, LT, ENTR, LAM and TT. The DET is related to the
system’s random or periodic behaviour based on the density of recurrence points, being
higher when the system shows more periodical behaviour. The MSAVI presented a higher
DET in both zones, being ZMA the highest. DET obtained in precipitation RP was higher
in ZAV than ZMA.

Concerning CRPs, MSAVI-TEMP showed a higher DET than NDVI-TEMP. Both
of them showed a higher DET than PCP CRPs. MSAVI-PCP showed a DET increase
in comparison to NDVI-PCP in ZMA. We believe that MSAVI could characterise better
precipitation data dispersion, allowing us to improve the NDVI results in ZMA.

The LT is interpreted as the system’s predictability time, increasing when the pre-
dictability time is longer. The LT values in both VIs obtained were low. Temperature
showed a higher LT than precipitation, suggesting that temperature predictability time was
higher than precipitation. In CRPs, we observed similar results, being the LT of VIs-TEMP
higher than VIs-PCP.

The ENTR value refers to the disorder of the system. MSAVI RPs showed a higher
value than NDVI, higher in ZMA than ZAV. Concerning climate variables, temperature
showed a higher ENTR than precipitation in their separate RPs and their CRPs with VIs.

The LAM value refers to the chaos–chaos transitions and is directly related to the de-
tection of laminar states. The MSAVI LAM was higher than NDVI. Generally, temperature
showed higher LAM values than precipitation. We also noticed that when precipitation
was involved, LAM values tended to decrease in the CRPs, being temperature the highest
in both cases.

The TT represents the average length of vertical structures and indicates how long
the state will be trapped at the same time. The MSAVI showed a higher value of TT in
both zones. In the climate variables RPs, Temperature TT was higher than precipitation TT.
The same phenomenon happened in the CRPs, where TT was higher in VIs-TEMP than
VIs-PCP.

4. Discussion

Concerning s values, we obtained different values of s in each zone. According to [60]’s
findings, s increased when soil moisture grew. As shown in Table 1, ZAV topsoil was more
clayey and less sandy than ZMA soil. Thus, a higher water holding capacity (WHC) was
expected in ZAV than ZMA, explaining the differences between zones. We could not obtain
significant differences between the s values from ZAV and ZMA, most likely because of the
litter and non-photosynthetic material influence [61].
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Temperature and precipitation yearly tendencies found in this work are consistent
with what was reported in previous studies, where the temperature is increasing, and
precipitation is decreasing in semiarid zones due to the climate change effect [62,63]. We
detected specific years when VIs dramatically dropped (2005, 2009, and 2017). These years
coincide with drought periods [64,65] that happened in Spain (2004–2008 and 2016–2017).
These phenomena most likely negatively affected the vegetation growth; thus, VIs values
decreased during this time. We expected a non-significant result in the trend slope because
environmental works suggested a significant data quota is needed to obtain trustworthy
climate trends at a yearly scale [66].

We obtained different inter-annual trends depending on the climate variable. An
inverse relationship between temperature and VIs was found, in agreement with previous
research [67], pointing out that NDVI and other optical indices are generally inversely
related to temperature. In contrast, the precipitation was directly related to VIs. This
fact ties nicely with previous studies [68] wherein precipitation events were related to
vegetation growth, leading to increased VIs values.

Both VIs used the same NIR-RED spectral bands, leading to a similar performance [11].
However, the soil factor’s addition in the MSAVI case was expected to increase the sensi-
tivity in semiarid areas [27,28,69]. In our results, MSAVI showed lower dispersion than
NDVI, pointing out a better potential for characterisation of semiarid pasture grasslands.

Several studies [62,63,70] emphasise that precipitation and temperature combine in a
dynamic and complex system; thus, their networks must be considered. As was reported
by Suzuki et al. [71], NDVI could be affected by other complementary variables, such as
evapotranspiration, that depends on the combination of local wetness and warmth. The
lack of these variables might explain the unusual behaviours in the VIs time series that are
not directly related to temperature or precipitation.

We believe that ZMA VIs were higher than ZAV because of the higher amount of
precipitation in ZMA during P2 and at the beginning of the P5 phase. Precipitation events
increased soil moisture leading to an increment in vegetation growth that VIs detected. We
speculate that the interaction between soil moisture and soil texture with the vegetation
in P2 and P5 might explain the differences between zones [72]. At the end of the rainy
season (P2), both soils’ water storage is likely to be highest after the winter water recharge.
However, water holding capacity was lower for the sandy than for the clayey soil (Table 1),
and so less water was available in the ZMA than in the ZVA soil. During P3, the temperature
raised, then the pasture in the ZMA depleted the soil water more quickly than in the ZAV.
Therefore, ZMA vegetation decreased faster than ZAV (Figure 5). A similar effect took
place at the beginning of the P5. Water storage in both soils was expected to be the lowest
due to the previous dry season (P4). During P5, precipitation increased in both zones. ZMA
sandy soil permeability was higher than ZAV clayey soil allowing a faster increment in
ZMA vegetation than ZAV.

We detected an increase in the VIs dispersion during P3 and P5. This variability
increase was expected due to the precipitation variability increase that occurred during
spring and autumn. As reported by Grant et al. [73], precipitation variability leads to
increased soil moisture variability. Therefore, grassland productivity is altered due to water
availability fluctuations, leading to higher variability in VIs results.

Fu and Burgher [74] pointed out the temperature as the most potential driving factor
in NDVI dynamics. They also revealed that temperature harms NDVI as we detected the
same result in P3. This effect is explained by the limitation in vegetation growth produced
by higher temperatures and fewer precipitations during the dry season. These climate
conditions enhance the intensity of transpiration and reduce the available soil water [17];
thus, vegetation growth is expected to be limited in these unfavourable conditions.

Precipitation was the only variable that maintained the same positive trend in all
the phases, pointing out that precipitation is regularly favourable in semiarid grassland
growth. The same conclusion was achieved by Sala et al. [75], which presented a positive
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relationship between precipitation and pasture grasslands growth because of the soil
moisture’s positive role in biomass production.

Multiple works have demonstrated transparent relationships between climate and VIs
response [8,76]. Our results agree with [9], who showed a negative relationship between
temperature and NDVI. In line with Liu et al. [68], we also found a positive correlation
between precipitation and VIs in the semiarid area pasture grasslands.

Cross-correlation results allowed to expose the seasonal behaviour of the VIs over
time. Simultaneously, we also observed that there was a lagged response between VIs
and climate variables. In line with this idea, most studies indicate an (up to) 3 months
lagged relationship between VIs response and climate variable effect [67]. The range of the
period appears to be related to the studied area’s specific characteristics, such as climate,
topography, and soil type, affecting VI lagged response [77,78].

The VIs seasonal behaviour also plays a crucial role in the VIs dynamics [79]; therefore,
we obtained different strengths in the relationship between VIs and climate over the year.
As Helman et al. [80] reported, NDVI showed a better response to grassland vegetation
during wet seasons due to the herbaceous vegetation’s growth in the Mediterranean climate.
This effect might explain the higher correlation found in P3 and P5 phases, coincident
with the Mediterranean weather’s wet seasons. The same idea might be suggested to the
differences between ZMA and ZAV, being ZMA wetter than ZAV.

We achieved better precipitation correlations when the year was divided into phases,
although they were not as high as the temperature. This fact is consistent with [81]
work suggesting that Mediterranean precipitation is characterised by a complex seasonal
variability pattern, with large and unpredictable rainfall fluctuations from one year to the
other, hindering the relationship between precipitation and VIs.

Once the year is divided into phases, our results highlight a variable lag’s usefulness
depending on the year’s season to characterise the vegetation–climate system. This result
agrees with Zhang et al., study [33] that supports the idea of a variable ` along the time. In
their case, ` varied from 0 to 90 days depending on the season and the climate variable.

In line with this idea, [62] suggested that the season of the year and the type of
vegetation cover are critical in the ` estimation. Even more, other authors indicate that
local conditions are crucial in the estimation of `. Suzuki et al. [71] revealed that the NDVI
lagged response changed inside the same study area. In the northern, NDVI varied because
of the warmth variations. On the other hand, in the southern, NDVI varied due to the
inter-annual wetness fluctuations instead of warmth changes.

From another point of view, several authors reported that ` depends on the observed
time scale. Cui and Shi [7] found a 30-day NDVI lagged response to precipitation. Mean-
while, Wang et al. [6] suggested that the bi-weekly lag was the most correlated. As we
stated before, it is essential to note that these relationships were found in these local condi-
tions and the proposed phases. If the analysis is applied to a broader area, the relationships
might not be statistically significant as the conditions could differ in space and time [82].

We already emphasised the incredible complexity of the vegetation–climate system in
the previous analysis. Ecological systems present nonlinear dynamics, combining chaotic
and periodic cycles, whose equations controlling the systems are unknown [83,84]. Thus,
the nonlinear analysis provides complementary information about the system. In our
work, we detected a dimensionality increase in MSAVI RPs. More detailed soil information
was introduced through L in the MSAVI series; thus, a higher embedding dimension was
expected. This result agrees with previous literature findings [85,86], which relate dimen-
sionality increases to complexity increases. In this line, Marwan et al. [87] demonstrated
the usefulness of RPs to describe nonlinear behaviours in high-dimensional systems, such
as VI time-series.

In MSAVI RPs, we found white stripes in the RPs pattern. These structures are related
to atypical values and an interruption in the vegetation pattern [42]. We believe that this
behaviour is due to an extreme climatic event that increased soil moisture; consequently,
VI series values atypically increased, being detected in the MSAVI RPs.
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Diagonal-wise profiles of the CRPs revealed the maximum lag in each zone, and it
is expected to vary between zones, seasons, and vegetation cover. Several lags have been
reported in the literature. Cao et al. [77] reported a twenty-day lag in precipitation and
temperature in Xinjiang’s arid area (China). In contrast, Richard and Poccard [88] reported
a maximum lag of three months in South Africa.

Other authors refer to seasons as the most crucial factor in the variation of maximum
lag. As reported by Zhao et al. [89], precipitation showed a 1–2 month lag in spring,
whereas maximum lag is reduced to 1 month in the Autumn season. They also revealed
that temperature showed the same lag as precipitation in the spring; however, maximum
lag might be increased up to 3 months in autumn. This result is in concordance with the
recurrence profile results, where the temperature did not show an evident maximum lag in
the first 50 days.

The CRQA analysis allowed us to quantify the different dynamics of the VIs and
climate variables. The DET value has been utilised to indicate climate stability [45] or
detecting bioclimatic transitions [40]. The MSAVI time-series showed a higher value of
DET in comparison to NDVI. Our results suggest that MSAVI allowed us to characterise
the semiarid grasslands better. We speculate that soil moisture is being detected by the
MSAVI index, allowing us to improve the NDVI results in ZMA. The same phenomena
happened in the VI-PCP CRPs, where MSAVI achieved a higher DET value than NDVI
in ZMA. Our results agree with Marwan et al. [87] that found a higher DET in a humid
grassland area than a dry grassland.

Regarding LT, both VIs obtained low values compared to the periodic series [40]. This
fact might indicate that vegetation may be predicted in the short term due to the incredible
complexity of ecological systems, as reported by Beckage et al. [90].

Now, let us discuss the values of ENTR, which refer to the disorder of the system.
Standard values obtained by Zhao et al. [40] noted that stochastic systems tend to obtain
lower ENTR values (0.2) in comparison with those of periodic systems (2.20). We speculate
that the high value of ENTR in the MSAVI case (see Table 8) is the consequence of the high
number of precipitations in ZMA. Marwan et al. [87] sustained this fact, suggesting that
wet grassland areas tend to obtain higher ENTR values than dry grassland areas.

The LAM and TT are related to the vertical structures created in the RPs and CRPs.
LAM refers to the chaos transitions and represents the number of laminar states [91].
MSAVI presents a higher value than NDVI, indicating that values are trapped during
specific periods, decreasing time-series dispersion, and supporting the idea of higher
predictability and determinism of the MSAVI index. TT represents the average length of
vertical structures and indicates how long the state will be trapped, while MSAVI showed
a higher TT value than NDVI. We believe that this fact is the consequence of the behaviour
of each time series. MSAVI is less dispersed, and then it is expected to be trapped in
similar states much longer than NDVI. The same principle might be applied to temperature
and precipitation. Temperature is seasonal and did not dramatically change between two
consecutive measures. In contrast, precipitation is erratic, and it is not equally distributed
over time [81], especially in the Mediterranean climate.

Overall, our results highlight the incredible complexity of the grassland system. We
observed that the time scale is a critical component in the analysis of the VIs series. At
the same time, we prove that RPs, CRPs and CRQA are a promising analysis that could
provide complementary information about the system dynamics that the linear methods
could not describe.

5. Conclusions

The VIs time series has an exciting potential to assess the grassland’s response to
environmental factors, especially to climate variables. The relationships between VIs and
the climate variables studied here depend on the years’ time and the climate variable.
The vegetation–climate complexity suggests that each area presents its features and local
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climate conditions. Thus, correlation analysis between VIs and climate variables should
not be restricted to year seasons.

We applied the cross-correlation method to characterise the vegetation–climate sys-
tem’s complexity, concluding that temperature is the most decisive driver factor in this
case. However, it is essential to note that precipitation showed a stable positive trend along
the phases suggesting that precipitation events are beneficial in arid-semiarid grassland
growth, regardless of the years’ time. Even though it is challenging to study due to its
irregular temporal distribution, precipitation showed a significant positive correlation in
phase 3 at the end of the spring. This correlation increased when MSAVI was used.

The RP, CRPs and RQA were applied to VIs time series to measure the complexity of
the dynamics in the grassland–climate system. Both indices showed differences between
each zone. However, we detected a characteristic dynamic that points out short-term
predictability and high-dimensionality of the MSAVI time-series. Moreover, this analysis
allowed us to differentiate the precipitation regime that affected MSAVI dynamics. This
fact is shown in the CRPs, pointing out a better grassland characterisation in the wet zone
(ZMA) by MSAVI, likely due to the influence of soil water availability.

Overall, the addition of bare soil influence and non-photosynthetic vegetation resid-
uals was beneficial to VIs sensitivity in semiarid pastures. However, further research is
needed in different areas and distinct types of pastures.
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Appendix A

In this work, RQA formulas were obtained from Marwan et al. [43]; for further details,
it is recommended to revise the work mentioned above. The first step to obtaining RQA
measures is the calculation of RP histogram (P) from the total number of diagonal lines,
of length (l), and the total number of vertical lines of length (v). The following formulas
define these histograms:

P(l) = ∑N
i,j=1

(
1− Ri−1,j−1(ε)

)(
1− Ri+1,j+1(ε)

)
∏l−1

k=0 Ri+k,j+k(ε), (A1)

P(v) = ∑N
i,j=1

(
1− Ri,j

)(
1− Ri,j+v

)
∏v−1

k=0 Ri,j+k (A2)

DET is the proportion of recurrent points assembling diagonal structures of all recur-
rence points. It represents the system’s predictability (100% to purely deterministic systems
and 0% to random stochastic series). DET is calculated by:

DET =
∑N

l=lmin
lP(l)

∑N
i,j Ri,j

, (A3)

Where lmin is the minimal length to consider a diagonal line, in this case, as suggested
by (Webber and Zbilut, 1994), it was established as 2.

LT is the average time passed when two trajectories are close to each other, and it is
calculated by the following Equation (4):

LT =
∑N

l=lmin
lP(l)

∑N
l=lmin

P(l)
, (A4)

ENT points out the probability to find the same trajectory of length l in the whole RP.
The consequent formula is applied (5):

ENTR = −∑N
l=lmin

p(l)lnp(l) (A5)

Analogous to the definition of determinism (DET) in Equation (3), LAM represents
the number of vertical structures forming the vertical structures. It represents an overall
measure of the signal stability, and the following equation calculates it:

LAM =
∑N

v=vmin
vP(v)

∑N
v=1 vP(v)

, (A6)

where vmin is the minimal length to count a vertical line, in this case, as proposed by
Marwan et al. [43], it was set as 2.

The following formula computes the average length of vertical structures (TT):

TT =
∑N

v=vmin v P(v)

∑N
v=vmin P(v)

(A7)
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