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Chimeric antigen receptor (CAR)-modified T cell therapy is a rapidly emerging

immunotherapeutic approach that is revolutionizing cancer treatment. The impressive

clinical results obtained with CAR-T cell therapy in patients with acute lymphoblastic

leukemia and lymphoma have fueled the development of CAR-T cells targeting other

malignancies, including multiple myeloma (MM). The field of CAR-T cell therapy for MM is

still in its infancy, but remains promising. To date, most studies have been performed with

B cell maturation antigen (BCMA)-targeted CARs, for which high response rates have

been obtained in early-phase clinical trials. However, responses are usually temporary,

and relapses have frequently been observed. One of the major reasons for relapse is the

loss or downregulation of BCMA expression following CAR-T therapy. This has fostered

a search for alternative target antigens that are expressed on the MM cell surface. In this

review, we provide an overview of myeloma target antigens other than BCMA that are

currently being evaluated in pre-clinical and clinical studies.

Keywords: chimeric antigen receptor-modified T cells, immunotherapy, multiple myeloma, B cell maturation

antigen, CD19, CD138, CD38, SLAMF7/CS1

INTRODUCTION

Multiple myeloma (MM) is a malignant neoplasm of plasma cells that accumulates in the
bone marrow, leading to bone destruction, and marrow failure. With an incidence of five
cases/100,000 individuals/year in Western countries, MM accounts for 1% of all cancers and
for ∼10% of all hematological malignancies (1). MM arises from a pre-malignant asymptomatic
proliferation of plasma cells (monoclonal gammopathy of unknown significance and smoldering
MM). These can further evolve into symptomatic MMwith end-organ damage, which is associated
with significant morbidity (2). Despite the availability of various therapeutic agents, including
proteasome inhibitors (e.g., bortezomib), immunomodulatory drugs (e.g., lenalidomide), and
monoclonal antibodies (e.g., daratumumab and elotuzumab), the disease remains incurable (3).

Cellular engineering has provided various opportunities to redirect the immune system against
malignant cells. For example, adoptive transfer of chimeric antigen receptor (CAR)-engineered T
cells is an emerging therapeutic strategy that has already shown unprecedented results in CD19-
expressing hematological malignancies (4–7). These results have spurred new interest in the further
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development of this technology. The majority of CAR-T cell
approaches have been applied to αβ T cells or occasionally
natural killer (NK) cells (8), γδ T cells (9), or NK/T cells (10),
as the effector cells of choice (Figure 1). The concept behind this
therapy is that CAR-engineered immune cells and their effector
functions are redirected against malignant cells bearing the
antigen of interest, irrespective of the patients’ human leukocyte
antigen (HLA) genetics.

Chimeric antigen receptors comprise (i) an ectodomain
binding directly a tumor-specific molecule on the cell surface,
(ii) an extracellular hinge/spacer and a transmembrane domain
spanning the membrane, and (iii) an endodomain providing T
cell signaling (Figure 1). The ectodomain is generally derived
from the antigen binding regions of a monoclonal antibody
(12). The endodomain is composed of the CD3ζ signaling chain,
providing an activation signal termed signal 1. Second- and
third-generation CARs have additional costimulatory molecule
domains, e.g., CD28, OX40, or 4-1BB (signal 2). Fourth-
generation CARs, also known as T cells redirected for universal
cytokine-mediated killing, express additional molecules to
enhance CAR-T cell efficacy, such as inducible interleukin
(IL)-12 (13).

To date, two CD19-specific CAR-T cell products (Kymriah
and Yescarta) have been approved by the US Food and Drug
Administration and the European Medicines Agency. Although
the use of CAR-T cells in the treatment of MM is still confined to
a handful of antigens and early-phase clinical trials, CAR-T cell
therapy holds the potential to fulfill the unmet medical needs of
patients with relapsed/refractory MM.

In multiple myeloma, B-cell maturation antigen (BCMA) is
a commonly used target antigen in CAR-T cell clinical trials
(14–16). BCMA, also known as tumor necrosis factor receptor
superfamily member 17, is highly expressed onmalignant plasma
cells (17, 18). No expression of BCMA has been observed in
normal cells/tissues, except for healthy, differentiated B cells
where it is usually expressed at low level. BCMA appears to be
a vital in promoting MM cell survival, proliferation, and drug
resistance (19, 20) and can be used to monitor the disease course
and predict patient outcomes (21).

Table 1 summarizes the clinical outcome of all hitherto
published clinical trials of BCMA-targeting CAR-T cell therapies
in MM (22–27). BCMA CAR-T cell therapy produces objective
response rates of up to 88% (Table 1). Nevertheless, the
therapeutic effect is often temporary and relapses are commonly
being reported. As shown in Table 1, the median progression-
free survival of BCMA CAR-T cell therapy is in the range of 12
months. Downregulation or loss of BCMA expression is likely an
important mechanism underlying these relapses (28, 29). Hence,
alternatives for BCMA are now under intensive investigation in
the field of CAR-T cell therapy for MM (16, 30). The goal of this
review is to outline the different target antigens other than BCMA
that are currently being evaluated. In the first part, summarized
in Table 2, an overview is given of non-BCMA CAR-T cell trials
for which (preliminary) results have already been published in
Web of Science-listed papers. In the second part, we will focus
on alternative target antigens that have entered into CAR-T cell
clinical trials. In the third and final part, we will briefly touch

upon new antigens that are undergoing pre-clinical evaluation
for use in CAR-T cell therapy for MM (schematically depicted
in Figure 1).

PUBLISHED CLINICAL TRIALS

CD138
CD138 or syndecan 1, a member of the syndecan family of type
I transmembrane proteoglycans, is highly expressed on the MM
cell surface and is directly involved in disease progression (38).
The latter works through binding to a proliferation-inducing
ligand (APRIL), a survival factor (39), and cell proliferation-
inducing growth factors (40). Interestingly, the expression of
CD138 on MM cells of patients in relapse or with progressive
disease is more pronounced than that on MM cells of newly
diagnosed patients (38). Previous pre-clinical studies with NK
cells expressing an anti-CD138 CAR showed potent anti-
myeloma activity both in vitro and in vivo (41). Therefore, CD138
is a very attractive target for anti-MM therapy.

As shown in Table 2, one report recorded the use of anti-
CD138 CAR-T cells in a patient with refractory MM with
extramedullary involvement. Here, the administration of 1.5 ×

108 CAR-T cells led to partial response (PR) (31). A pilot clinical
trial (ClinicalTrials.gov identifier, NCT01886976) reported the
results of five patients with refractory and relapsed MM, pre-
treated with chemotherapy and stem cell transplantation, who
received an average dose of 0.756 × 107 cells/kg of autologous
CD138 CAR-T cells (Table 2) (32). All patients underwent a
bone marrow examination, demonstrating CD138 expression
in aspirates, and by biopsy. The CAR gene was continuously
observed in the patients’ blood for at least 4 weeks, and high
levels of CAR-T cells were detected in the bone marrow at the
first 2 months. Stable disease (SD) was achieved in four patients,
ranging from 3 to 7 months, whereas the fifth patient progressed,
even though CAR-T cells could be detected in the bone marrow
for 90 days.

Although promising, CD138-targeted CARs should still be
used with caution owing to the broad expression of CD138 in
human tissues, including epithelial cells. For example, treatment
with BT062, an antibody-drug conjugate directed against CD138,
resulted in skin and/or mucosal toxicity (42). Nevertheless, pre-
clinical work by Sun et al. has shown that CD138 CAR-T cells
are safe and lack activity against normal epithelial cells (43).
Like BCMA, CD138 can be shed from the MM cell surface, a
possible escape route disrupting the effector functions of CD138-
targeted immune cells (44). This underlines the importance
of combining CD138 CAR-T cells with other CAR target
antigens. Based on a search of the ClinicalTrials.gov registry
using the search terms “multiple myeloma” and “chimeric
antigen receptor” or “CAR” (final date of search May 1,
2019), numerous studies of CD138-targeted CAR-T cell therapy
in combination with other CARs are ongoing or planned
(NCT03196414, NCT03473496, NCT03271632). Apart from the
above-mentioned NCT01886976 trial, only one other study could
be identified in which CD138 CAR-T cells were used as stand-
alone therapy (NCT03672318).
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FIGURE 1 | Chimeric antigen receptor (CAR)-T cells from multiple myeloma (MM) patients are usually manufactured from autologous T cells collected through

leukapheresis or venipuncture (step 1). Apart from autologous cells, allogeneic cells or cell lines have been used as starting material (11). Natural killer (NK) cells, γδ T

cells, and NK/T cells have been used as alternative lymphocyte subsets for CAR-T manufacturing. In a next step, the cells are expanded ex vivo (step 2) and loaded

(step 3) with a lentiviral or retroviral vector carrying the CAR gene. CAR loading can also be accomplished by non-viral methods, including messenger RNA (mRNA)

electroporation or using the Sleeping-Beauty (SB) DNA transposon system. The CAR-loaded T cells are administered by intravenous infusion (step 4) to the patient,

who has usually received prior lympodepleting chemotherapy (such as cyclophosphamide or fludarabine). The different MM antigens that can serve as targets for

CAR-T cell-based immunotherapy are schematically depicted, including their stage of clinical development (published clinical trials, ongoing clinical trials, pre-clinical

studies). The insert shows the common structure of a second-generation CAR construct. The extracellular part of a CAR is composed of the antigen-recognition

domain from a monoclonal antibody (usually with the VH and VL chains in single-chain variable fragment [scFv] format), and an extracellular spacer. The

transmembrane (TM) and intracellular domains are the other CAR constituting parts. The latter contains a costimulatory (CO+) domain (e.g., 4-1BB or CD28), and the

CD3ζ chain of the T-cell receptor.

CD19
Most myeloma cells resemble fully differentiated plasma cells and
are CD19-negative. There is, however, a small subset of CD19-
positive myeloma cells that are more pre-mature and have drug-
resistant and disease-promoting qualities (45, 46). Targeting

these MM stem cell-like cells could be of interest. In general, low
expression of CD19 appears to be more common on MM cells
than previously thought, correlating with poor survival (47, 48).

Garfall et al. conducted a pilot clinical trial (NCT02135406)
of CD19 CAR-T cell therapy (CTL019) involving 10MM patients
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TABLE 1 | Published clinical results of multiple myeloma CAR-T cell clinical trials

targeting BCMA.

CAR-T cell product (ref.) n = ORR (n =) median PFS (95% CI)

bb2121 (22) 33 85% (28) 11.8 months (6.2–n.e.)$

CART-BCMA Upenn (23) 25 48% (12) 2.0 months (ND)

NCI CAR BCMA-T (24)# 10 20% (2) 1.5 months (ND)

NCI CAR BCMA-T (25)* 16 81% (13) 7.25 months (ND)

LCAR-B38M (26) 17 88% (15) 12.2 months (ND)

LCAR-B38M (27) 57 88% (50) 15.0 months (11.0–n.e.)

Only fully published clinical studies were included (last search: May 1, 2019). (ref.),

bibliography reference; n =, number of patients; ORR, objective response rate, defined

as the sum of complete responses and (very good) partial responses; PFS, progression-

free survival; 95% CI, 95% confidence interval; n.e., not estimable, ND, no data; $PFS

calculated for 30 patients treated with active doses of bb2121 only (i.e., ≥150 × 106

CAR-T cells); # lower dose cohorts (i.e., 0.3-1-3 × 106 CAR-T cells/kg), *highest dose

cohort (i.e., 9 × 106 CAR-T cells/kg).

with a progression-free survival of <1 year after their first stem
cell transplantation (Table 2) (33). Patients were treated with
a combination of high-dose melphalan, a second autologous
stem cell transplantation (ASCT), and 1–5 × 107 CTL019 cells
(administered ∼2 weeks post-ASCT). A case report was first
published for one patient with a minimal residual disease-
negative complete response (CR), persisting up to 12 months
after CTL019 infusion (47). When looking at the complete
dataset, 6 out of 10 patients experienced a very good partial
response (VGPR) at day 100 post-transplant, and an additional
two patients had a PR (33). The same group is also conducting
a phase II clinical trial (NCT02794246) in which high-risk MM
patients will receive CD19 CAR-T cells in the maintenance
setting∼60 days after first-line ASCT.

Combining CD19 and BCMA
CD19-specific CAR-T cells have also been used in combination
with BCMA-targeted CAR-T cells, both in the relapsed/refractory
setting (34) and in a newly diagnosed setting (35). Yan
et al. reported on eight patients with relapsed/refractory MM;
all patients experienced CAR-T cell-related cytokine release
syndrome (CRS) but no neurological toxicity (Table 2) (34).
Among the five patients with sufficiently long follow-up to
evaluate for clinical response, one went into CR, one into VGPR,
and two into PR (Table 2).

The same group also evaluated the safety and efficacy of
combined CD19/BCMA CAR-T cell infusion in 10 patients with
newly diagnosed MM after standard induction chemotherapy
and ASCT (35). The study, registered with ClinicalTrials.gov
under number NCT03455972, showed that CAR-T cells can be
used as post-remission therapy to deepen the clinical response;
of the four patients who were only in PR after transplantation,
three went into VGPR following CAR-T cell administration and
one obtained a CR. Toxicities, which included CRS in all patients,
were mild and manageable.

Several other groups are also currently conducting clinical
studies of the combination of CD19 and BCMA-targeted CAR-T
cells (NCT03549442, NCT03706547, NCT03767725). The study

by Garfall at University of Pennsylvania (NCT03549442) involves
a randomization between BCMA CAR-T cells alone vs. the
combination of BCMA CAR-T cells and CD19 CAR-T cells. The
randomization phase of this trial aims to assess the value of
BCMA ± CD19 CAR-T cell infusions as consolidation therapy
in high-risk MM patients responding to frontline treatment. The
combination of CD19 CAR-modified cells together with CD138
CAR-engineered immune effector cells is being evaluated in a
pre-clinical context (49). Clinical trials of the latter combination
are being awaited.

Natural Killer Group 2, Member D
(NKG2D) Ligands
The activating cell surface receptor NKG2D is commonly
found on effector lymphocytes, including NK cells, CD8+

T cells, NK/T cells, and γδ T cells. Its ligands include
major histocompatibility complex class I polypeptide-related
sequence A/B and UL16 binding protein 1–6 (50). Under
physiological conditions, tissues do not express NKG2D ligands
on their surface. In contrast, neoplastic transformation will
induce the upregulation of NKG2D ligands, including that in
MM (51, 52).

Baumeister et al. constructed a CAR that targets multiple
NKG2D ligands and performed a first-in human phase 1 clinical
trial (36). They included five patients with relapsed/refractory
progressive MM and seven patients with acute myeloid
leukemia/myelodysplastic syndrome. None of the patients
experienced CRS or neurotoxicity. NKG2D CAR-T cell
persistence was limited and no objective clinical responses were
observed (Table 2).

It is unclear whether or not this treatment failure was due
to the fact that no lymphodepleting chemotherapy was used
prior to CAR-T cell infusion (Table 2). Indeed, lymphodepletion
appears to be important for CAR-T cell engraftment, and
for clinical efficacy (53, 54). The fact that a first-generation
CAR construct (i.e., without intracellular costimulatory domain)
was used, may also have contributed to the lack of response.
Another possible explanation for the absence of clinical
activity may be the cell type that was used for CAR-T
cell therapy. Pre-clinical work by the group of Leivas et al.
revealed that only NKG2D CAR-transduced NK cells, but not
T cells, are capable of killing MM cells and halting MM
growth (55).

Immunoglobulin Light Chains
Because impaired humoral immunity (i.e., B-cell depletion
and profound hypogammaglobulinemia) is a well-known
consequence of CD19-directed CAR-T cell therapy and CAR
persistence, a more selective construct, sparing some B cells
and hence partially preserving humoral immunity, may have
improved applications. Mature B cells express either κ or λ

light chains, but not both; thus, one of the two subsets can be
targeted, leaving the other subset alone. Hence, this concept
could be used to kill monoclonal MM cells expressing a certain
type of light chain but not normal B cells expressing the
reciprocal type of light chain. However, it should be noted that
plasma cells generally do not express immunoglobulins on
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TABLE 2 | Published results of multiple myeloma CAR-T cell clinical trials targeting antigens other than BCMA.

n = (ref.) Antigen Signaling

domains

Cell

source/type

Transfer

method

Conditioning T-cell

dosage

Therapy-related side

effects

Clinical effects

n = 1 (31) CD138 ND Autologous

T cells

ND CP/Flu 1.5 × 108 • CRS gr. 2 (1) • PR (1)

n = 5 (32) CD138 4-1BB/CD3ζ Autologous

T cells

Lentiviral PCD, CP or

VAD

0.756 ×

107/kg

• Infusion-related fever (4) • SD > 3m (4)

• Nausea and vomiting (3) • ↓ circulating PCL cells (1)

• ↑ Liver function tests (1)

• Possible TLS (1)

n = 10 (33) CD19 4-1BB/CD3ζ Autologous

T cells

Lentiviral HDM + ASCT 1–5 × 107 • Hypogammaglobulinemia (1) • CR (1)

• Autologous GvHD (1) • VGPR (6/10) at d100

post-ASCT

• Mucositis (1) • PR (2/10) at d100

post-ASCT

n = 5/8 (34) CD19 +

BCMA

OX40/CD28 Autologous

or allogeneic

T cells

Lentiviral CP/Flu 1 × 107/kg • CRS gr. 1–2 (7), gr.≥3 (1) • sCR (1/5)

• Prolonged cytopenias (5/5) • VGPR (1/5)

• Coagulopathy (5) • PR (2/5)

• ↑ Liver function tests (4) • SD (1/5)

• Pulmonary edema (3)

• Pleural effusion and

ascites (1)

n = 10 (35) CD19 +

BCMA

OX40/CD28 Autologous

T cells

Lentiviral Bu-CP +

ASCT

1 × 107/kg • CRS gr. 1–2 (10) • CR (7/10)

• Coagulopathy (7) • VGPR (3/10)

• ↑ Troponin levels (4)

• Atrial flutter (1)

n = 5 (36) NKG2D

ligands

CD3ζ Autologous

T cells

Retroviral None 1–3 ×106−7 • None • None

n = 7 (37) κLC CD28/CD3ζ Autologous

T cells

Retroviral CP (4) 0.92–1.9 ×

108/m²

• Lymphopenia gr. 3 (1) • SD 6 wk−24m (4)

or none (3)

Only fully published clinical studies were included (last search: May 1, 2019). n=, number of patients; (ref.), bibliography reference; ASCT, autologous stem cell transplantation; BCMA,

B cell maturation antigen; Bu, busulphan; CP, cyclophosphamide; CRS, cytokine release syndrome; d, days; Flu, fludarabine; GvHD, graft-vs.-host disease; HDM, high-dose melphalan;

κLC, kappa light chain; m, months; ND, no data; NKG2D, natural killer group 2, member D; PCD, pomalidomide-cyclophosphamide-dexamethasone; PCL, plasma cell leukemia; PR,

partial response; (s)CR, (stringent) complete response; SD, stable disease; TLS, tumor lysis syndrome; VAD, vincristine-doxorubicin-dexamethasone; VGPR, very good partial response;

wk, weeks.

their surface, but secrete them into the bloodstream. Cases of
MM-propagating cells expressing surface immunoglobulins have
nevertheless been reported (56). Another possible drawback is
that most patients who are candidates for CAR-T cell therapy
already have B cell depletion at baseline due to previous
therapies, making the evaluation of selective light chain
therapy difficult.

Ramos et al. created the κ.CAR, a CAR construct specific
for the κ light chain (37). In a phase 1 trial (NCT00881920),
seven patients with MM and nine patients with non-Hodgkin
lymphoma were included. These patients had heterogeneous
prior therapy histories and salvage chemotherapies. In the
seven patients with MM, no objective responses were observed
(Table 2). One patient maintained stable minimal residual
disease for 17 months; another patient maintained SD for 2
years, and two other patients exhibited transient SD (Table 2).
CAR-T cell infusion was repeated in one patient after 1.5 years
(after conventional therapy), which again led to transient SD.
In the other three patients, no response to CAR-T cell therapy
was documented. No severe CRS was observed, and no other
complications were described (37).

ONGOING CLINICAL TRIALS

CD38
CD38 has been shown to be a promising target for the treatment
of MM, considering the established clinical efficacy of anti-CD38
monoclonal antibodies, i.e., daratumumab (57). Unfortunately,
CD38 is not only highly expressed on myeloma cells but
also expressed at an intermediate level on hematopoietic cells,
creating a real risk for on-target, off-tumor toxicity (58). For
example, daratumumab has been shown to deplete NK cells,
known to express CD38, in MM patients (57).

This potential of on-target, off-tumor toxicity can be a
stumbling block to clinical implementation of CD38-directed
CAR-T cell therapies. One of the strategies to circumvent this

problem, involves the use of CARs with single chain variable
fragments (scFvs) of lower affinity, generated through “light-
chain exchange technology.” These low-affinity CD38 CAR-T
cells are able to kill CD38high MM cells, while having no effect on
the viability of CD38low healthy cells, as validated both in vitro
and in vivo (59). A similar effect has been observed with CARs
based on a CD38 nanobody instead of a scFv derived from a
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CD38 monoclonal antibody. Such CD38 nanobody-based CAR-
T cells displayed potent cytotoxicity toward MM cells but only
limited toxicity toward CD38-expressing normal hematopoietic
cells (60).

Alternatively, researchers are also looking at selectively
increasing the intensity of CD38 expression on the targeted
tumor cells in order to maximize tumor-specific cytotoxicity and
minimize on-target, off-tumor toxicity. CD38 can be upregulated
on tumor cells by all-trans retinoic acid (61), or by the histone
deacetylase inhibitor panobinostat (62). The combination of all-
trans retinoic acid and CD38 CAR-T cell therapy has already
been shown to be effective in a model of acute myeloid
leukemia (61, 63).

Another strategy to control off-tumor effects is building CARs
with a safety mechanism. Drent et al. produced a CD38 CAR
based on the tetracycline-controlled Tet-on/off technology. CAR
gene expression can be activated by the administration of low
doses of the tetracycline doxycycline (64). The off-tumor effects
produced by these CAR-T cells can be stopped within 24 h after
doxycycline withdrawal. CAR expression can re-emerge upon
rechallenge with doxycycline.

CD38 serves as the target antigen in several CAR-T cell
clinical trials (65). In one study, CD38 CAR-T cells are
used as monotherapy in patients with relapsed/refractory MM
(NCT03464916). All other clinical trials are exploring potential
combinations of CD38 CAR-T cells with other target antigens;
with CD19 (NCT03125577), with BCMA (NCT03767751), with
BCMA, CD138, or CD56 (NCT03473496, NCT03271632), and
with BCMA and NY-ESO-1 (NCT03638206). Our group is
currently investigating the possibility to simultaneously load
lymphocytes with three different CARs, including CD38, CD19
and BCMA, by means of mRNA electroporation.

Signaling Lymphocytic Activation (SLAM)
Family Member 7 (SLAMF7)/CS1
SLAMF7, also known as CS1, is a member of the SLAM family of
transmembrane receptors. First identified as a NK cell receptor,
SLAMF7 also controls different functions of other immune cells,
including subsets of CD4 and CD8T cells, as well as B cells
(66, 67). Moreover, SLAMF7 has been shown to be vital for
phagocytosis of hematopoietic malignant cells by macrophages
(68). No indications, however, have been found for SLAMF7
expression on other healthy cells and tissues. Because SLAMF7
is a robust marker of malignant plasma cells, it could be an
interesting target for CAR-T cell therapy. Indeed, SLAMF7
expression has been observed on plasma cells of pre-malignant
MM stages (i.e., MGUS and smoldering myeloma) and in newly
diagnosed MM. SLAMF7 expression is further retained, even
after several lines of therapy (69, 70).

A CAR construct was derived from the anti-SLAMF7 antibody
elotuzumab and transduced into T cells from healthy donors
and patients with MM (71). The generated CAR-T cells could
efficiently kill MM tumor cell lines and primary MM cells. Like
CD38, SLAMF7 is expressed on normal lymphocytes, including
activated T cells, entailing a risk of CAR-T cell fratricide (71, 72).
Indeed, it was confirmed that SLAMF7 CAR-T cells also killed

healthy lymphocytes, but only those with high expression of
SLAMF7. Lymphocytes with low expression of SLAMF7 were
spared. This is very interesting considering that SLAMF7 CAR-
T cells adopted a SLAMF7low phenotype while in culture, ruling
out problems due to CAR-T cell fratricide. Another strategy
to decrease the risk of CAR-T cell fratricide involves the use
of the transcription activator-like effector nuclease (TALEN)
gene-editing technology during CAR-T cell manufacturing (72).
Such TALEN-edited CAR-T cells no longer express endogenous
SLAMF7 and are thus resistant to SLAMF7-driven CAR-T
cell fratricide.

Currently, ongoing research focuses on identifying the
optimal costimulatory moiety for the SLAMF7 CAR construct
(i.e., 4-1BB or CD28) (71), the optimal lymphocyte source
(i.e., autologous or allogeneic) (73), and the optimal cell type
(i.e., T cells or NK cells) (8, 74). Pre-clinical work is also
investigating whether dual SLAMF7/BCMA CAR-engineered
T cells are superior to CAR-T cells expressing a single CAR
molecule (75). In addition, SLAMF7 CAR-T cells are being tested
in combination with other myeloma drugs, such as lenalidomide
(76) and daratumumab (77).

To the best of our knowledge, three SLAMF7/CS1-based
CAR-T cell products have entered the clinical trial pipeline.
One study will use autologous, memory-enriched T cells
lentivirally transduced to express a SLAMF7/CS1 CAR construct
(NCT03710421). This CAR construct contains a truncated EGFR
(EGFRt) molecule, permitting depletion of the CAR-T cells in
case of severe side effects by administration of the anti-EGFR
monoclonal antibody cetuximab (78). The European Union
(EU), through the Horizon2020 program, is supporting a phase
I/II clinical trial of SLAMF7 CAR-T cell therapy in MM, known
as the CARAMBA project (for more details, see https://www.
caramba-cart.eu/). These CAR-T cells are also equipped with
the EGFRt safety switch, but the particularity about this product
is the non-viral, Sleeping Beauty transposon-based method to
transfer the CAR gene into the T cells. Finally, an “off-the-
shelf ” SLAMF7/CS1-directed CAR-T cell product for MM has
recently been approved for clinical trial use. The product, also
called UCARTCS1, contains healthy, allogeneic T cells loaded
with a SLAMF7/CS1 CAR. TALEN technology is used prior to
CAR gene transfer to disrupt the endogenous TCR and SLAMF7
expression in order to prevent alloreactivity and fratricide,
respectively (73).

CD44v6
CD44, the major hyaluronan receptor, is expressed on
hematological cancer cells and is thought to play a role in
cancer initiation (79). Unfortunately, CD44 is also expressed
on the surface of healthy cells. However, the expression of
the CD44v6 isoform is more restricted and can frequently be
detected on advanced, high-risk MM cells (80). Casucci et al.
created an anti-CD44v6 CAR for the treatment of acute myeloid
leukemia and MM (81). T cells activated with CD3/CD28
beads, IL-7, and IL-15 were transduced with the CD44v6
CAR, and displayed potent cytotoxic effects against MM. No
effects were observed against normal hematopoietic stem cells
and CD44v6low keratinocytes; however, CD44v6 CAR-T cells
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did cause a reversible decrease in monocyte count. This side
effect can be beneficial, since monocytes are the main cause
of CRS (82). Nevertheless, to minimize the risk of toxicity,
safety switches under the form of suicide genes (i.e., thymidine
kinase gene, or inducible caspase 9 gene) were incorporated
(81). The same group also incorporated an extracellular spacer
from the nerve-growth-factor receptor (NGFR) into the CD44v6
CAR construct. Using anti-NGFR immunomagnetic beads, the
CAR-T cell product could be highly enriched for CD44v6 CAR-
expressing T cells. This method opens up the possibility to purify
T cells expressing the CAR and to omit the non-transduced cells
(83). The EURE-CART project, supported by the EU Horizon
2020 program, involves a phase I/IIa clinical trial to determine
the safety and efficacy of CD44v6 CAR-T cell therapy in patients
with acute myeloid leukemia and MM (for more details, see
https://www.eure-cart.eu/) (84).

CD56
CD56 expression is found on a broad range of cells, including NK
cells and other immune effector cells (85–87). Although it is not
expressed on healthy plasma cells, CD56 is frequently expressed
on MM cells (88). Lorvotuzumab mertansine, an antibody-drug
conjugate against CD56, has recently been tested in a dose-
escalation phase 1 clinical trial of 37 patients with relapsed MM
(89). Treatment was well-tolerated, and some early signs of anti-
MM activity were observed, strengthening further investigations
of CD56 as a target in MM. One report described a CD56-
directed CAR-T cell therapy with potent antimyeloma activity
(90). However, no further results were published. The clinical
benefits and potential toxicities of targeting CD56 are not known,
but caution should be exercised owing to the broad expression
of CD56. Indeed, depletion of CD56-positive immune effectors
cells by treatment with lorvotuzumab entails a risk of infection;
infection-related deaths were observed with this antibody-drug
conjugate in a clinical trial of patients with small cell lung cancer
(87, 91). As discussed above, CD56—in combination with other
target antigens—has been adopted in two CAR-T cell clinical trial
protocols for MM (NCT03473496, NCT03271632).

G Protein-Coupled Receptor Class C
Group 5 Member D (GPRC5D)
GPRC5D, a myeloma cell surface antigen whose precise function
remains to be defined, has recently been proposed as an attractive
candidate for anti-myelomaCAR-T cell therapy (92). The antigen
is expressed on CD138-positive MM cells; it also expressed in the
hair follicle, a potentially immune-privileged site therapy limiting
the risk for on-target, off-tumor toxicity. Most interestingly,
the expression of GPRC5D is independent of BCMA. Hence,
GPRC5D-targeted CAR-T cells could potentially rescue patients
experiencing an antigen-loss relapse under BCMA-directed
CAR-T cell therapy (92). This hypothesis has been confirmed
in a murine BCMA antigen escape model (93) and has paved
the way for the MCARH109 trial, a phase I clinical trial to
evaluate GPRC5DCAR-T cell therapy in relapsed/refractoryMM
patients including those who have received prior BCMA-directed
therapies (92).

Transmembrane Activator and CAML
Interactor (TACI)
Like BCMA, TACI is a member of the tumor necrosis factor
receptor superfamily that is expressed on malignant plasma cells,
albeit usually at lower levels (94). APRIL is a naturally occurring
ligand for both BCMA and TACI; as discussed above, CD138
is required as a co-receptor for binding of APRIL to TACI
(95). APRIL-based CAR-T cells have been developed for dual
targeting of BCMA and TACI on myeloma cells (94, 96), and
clinical studies have been initiated (ClinicalTrials.gov identifier
NCT03287804). Interestingly, pre-clinical work by Lee et al. has
shown that APRIL-based CAR-T cells can kill BCMA+TACI+

as well as BCMA−TACI+ myeloma cells. This indicates that
APRIL CAR-T cell therapy can maintain tumor control in case
of BCMA downregulation, which is a well-described tumor
escape mechanism in BCMA-directed CAR-T cell studies (94).
Furthermore, it was recently shown that TACI is also expressed
on regulatory T (Treg) cells in patients withMM. As such, APRIL-
based CAR-T cells have the potential not only of targeting MM
cells directly, but also indirectly by suppressing Treg cells (97).

Lewis Y
The Lewis Y (LeY) antigen is a carbohydrate antigen that is
overexpressed on a variety of tumor cells, including MM cells.
LeY expression is found in approximately 50% of MM cases (98).
The antigen is related to the Lewis blood group antigen system,
but not expressed on the red blood cell membrane. Overall,
LeY has limited expression in normal cells and tissues, and no
evidence of on-target, off-tumor toxicity was found with anti-LeY
CAR-T cells in pre-clinical studies (99). A phase I clinical trial
of anti-LeY CAR-T cell therapy for hematological malignancies
(including MM) was registered with ClinicalTrials.gov already in
2012 (NCT01716364), but the status of this study is unknown
and—to the best of our knowledge—no results have been
published yet.

New York Esophageal Squamous Cell
Carcinoma 1 (NY-ESO-1)
One of the main limitations of CAR-T cell therapy is that it is
only applicable to cell surface antigens, but not to intracellular
oncoproteins. Such antigens are usually expressed in the context
of HLA molecules and recognized by the T-cell receptor (TCR).
NY-ESO-1 is an example of an intracellular oncoprotein that
serves as target for TCR-engineered T cell immunotherapy
in MM (100). TCR-mimetic CARs recognizing the NY-ESO-
1/HLA complex, have been developed (101, 102). In a mouse
model of NY-ESO-1/HLA-A2+ MM, NY-ESO-1-directed CAR-
T cells were capable of delaying MM growth (102). The anti-
myeloma activity could by further improved by co-infusion of
T cells that were genetically engineered to express the NY-ESO-
1 antigen and membrane-bound IL-15. These NY-ESO-1/IL-
15+ T cells served as antigen-presenting cells and were found
to improve the persistence of NY-ESO-1 CAR-T cells with a
memory phenotype (102). One NY-ESO-1-directed CAR-T cell
clinical trial (combined with other target antigens) for MM has
been registered with ClinicalTrials.gov (NCT03638206).
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PRECLINICAL STUDIES

CD229
SLAMF3, also known as Ly9 or CD229, is another receptor
of the SLAM family. It has a homogeneous expression on
MM cells, which is stable regardless of the disease stage and
exposure to different treatments, and it plays an essential role in
the survival of MM cells (103–106). Moreover, CD19−CD138−

MM cells, which represent a quiescent, drug-resistant myeloma-
propagating cell population (107), are highly positive for CD229
(104). This implies that CD229 CAR-T cells would be able to
eradicate both the bulk of MM cells, and chemotherapy-resistant
minimal residual disease. The first CD229 CAR-T cell construct
was generated by the group of Atanackovic et al. (108). CD229
CAR-T cells demonstrated a strong cytotoxic activity against
CD229-positive myeloma cell lines, with only minor activity
against B cells and resting T cells. The most interesting finding
came from a mouse model engrafted with luciferase-expressing
U266MM cells. Whereas, mice treated with CD19 CAR-T cells
or phosphate-buffered saline still showed a clearly detectable
bioluminescence signal after 18 days, the CD229 CAR-T cells had
completely eradicated the MM cells (108). To the best of our
knowledge, a clinical trial with CD229 CAR-T cells in MM has
not yet been registered.

Integrin β7
Because finding a myeloma-specific target antigen is quite
difficult, some recent research has focused on non-cancer-
specific epitopes that become specific after post-translational
events, such as glycosylation or conformational changes. As
such, integrin β7 has been identified as a potential target for
MM by screening more than 10,000 hybridomas against MM
tumor cells (109). MMG49, a monoclonal antibody identified
from that screening assay as having the highest potential, is
able to specifically recognize cancer-specific conformation of
integrin β7 and a small fraction of CD19-positive B cells. Further
studies showed that MMG49 was directed at a configuration-
sensitive epitope of integrin β7, targeting the activated state that
is highly expressed by MM cells. In vitro, MMG49 CAR-T cells
were able to proliferate, secrete the immunostimulatory cytokines
interferon-γ and IL-2, and efficiently eradicate MM cells. There
was no indication of myeloma cells escaping therapy. Healthy
hematopoietic cells were left untouched, even when integrin
β7 was activated. After humanizing the mouse-derived scFv,
MMG49 CAR-T cells will be tested in clinical trials (109).

CD70
One of the first CARs developed for MM was directed against
the tumor necrosis factor family member CD70 (CD27L), which
plays a role in plasma cell differentiation (110). Shaffer et al.
constructed a CD70 CAR with an antigen-binding domain
derived from CD27 and fused to the intracellular domain of the
CD3ζ chain (111). In this way, the CAR-T cells were able the kill
CD70-positive MM cells and, at the same time, take advantage of
CD27/CD70 co-stimulation, leading to enhanced T cell survival.
In a murine xenograft model, CD70-specific CAR-T cells led
to sustained regression of established lymphoma. The low and

variable expression of CD70 on myeloma cells limits the use of
CD70-directed CAR-T cells in MM (112).

CD1d
The MHC class I-like molecule CD1d is highly expressed on pre-
malignant and early MM cells, followed by a gradual decline
in expression level with disease progression (113). The immune
cells known to respond to glycolipids presented in the context
of CD1d, are NK/T cells. Taking advantage of the intrinsic
characteristics of NK/T cells, CD19 CAR-NK/T cells are able
to target both CD19 and CD1d on MM cells, resulting in
a reinforced anti-tumor effect as compared to CD19 CAR-
T cells (10). Strengthening this therapeutic avenue is the low
cytotoxicity of the CD19 CAR-NK/T cells against monocytes, the
highest CD1d-expressing blood cells (113). Hence, NK/T cells are
interesting effector cells for CAR-based cellular immunotherapy
against CD1d-expressing malignant cells, including (early-stage)
MM. Certain drugs, such as EZH2 inhibitors and ATRA, are
known to increase CD1d expression on the MM cell surface (10),
opening up the perspective for combination therapy.

CONCLUSIONS AND
FUTURE PERSPECTIVES

While the experience with BCMA-targeted CAR-T cells has
provided robust evidence for the high therapeutic potential of
CAR-T cell therapy in MM, we must not lose sight of the fact
that responses are often temporary and that half of the patients
will have relapsed or progressed after 1 year (Table 1). One of
the main reasons for these relapses is downregulation or loss
of BCMA expression on the MM surface. The exact mechanism
for this downregulation is still unclear. Shedding of BCMA into
the bloodstream is one possibility. Moreover, it was recently
elucidated that the downregulation of BCMA can also be the
result of CAR-T cell-induced trogocytosis, a process in which the
BCMAmolecule is transferred from the tumor cell to the CAR-T
cell surface. The CAR-T cells then become BCMA-positive and
will start recognizing each other, leading to CAR-T cell fratricide
(29). Whether or not CAR-T cell therapy will revolutionize the
treatment of MM will largely depend on how we will be able
to deal with this problem of antigen escape. The answer to this
question probably lies in the identification of additional antigens
that can be targeted in combination with BCMA.

One potential strategy involves the combined infusion of
two (or more) CAR-T cell products, such as BCMA CAR-
T cells and CD19 CAR-T cells. The goal here is to eradicate
not only the bulk myeloma cells (BCMA-positive) but also
the small reservoir of myeloma “stem cells” (CD19-positive),
thereby increasing the likelihood of achieving a durable clinical
response. As discussed above, the combination of BCMA and
CD19 CAR-T cells has already proven to be highly clinically
efficacious (34, 35). Nevertheless, the results of an ongoing
randomized study comparing BCMA/CD19 CAR-T cells with
BCMA CAR-T cells alone (NCT03549442) need to be awaited in
order to draw conclusions about the potential superiority of this
combinatorial approach.
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Instead of co-administering two separate CAR-T cell
products, compound CAR-T cells are gaining increasing
attention (114). Compound CAR-T cells are T cells expressing
two (or more) different CARs (75). The idea is to target multiple
antigens at the same time in order the overcome the limitation of
loss of one particular antigen (114). Chen et al. have developed a
compound CAR-T cell co-expressing a BCMA and SLAMF7/CS1
CAR. The authors found that BCMA CAR-T cells alone left a
small population of (SLAMF7/CS1+) myeloma cells whereas the
compound CAR-T cells effectively depleted both the BCMA+

and SLAMF7/CS1+ cells (75).
The strategy proposed by Smith et al. deserves further

consideration (93). In a murine BCMA CAR-T cell model,
the authors have elegantly shown that BCMA loss-mediated
relapses can be avoided by subsequent targeting of a different
myeloma surface antigen (i.e., GPRC5D) (93). The drawback
of this approach is the need to manufacture different batches
of CAR-T cells and further increasing costs. Moreover, in a
recently published mouse model of CD19/CD22 CAR-T cell
therapy, it was shown that concomitant targeting was more
effective than the sequential approach at preventing antigen
escape (29).

The same study also indicated that the choice of costimulatory
domain might be critical for therapeutic success in combinatorial
CAR-T cell approaches (29). For example, incorporation of the
CD28 costimulatory domain in the CD19 CAR construct and 4-
1BB in the CD22 CAR construct proved to be best combination
of costimulatory domains in terms of synergistic activity. This
combination was also the most effective in case of diminished
expression of CD19 by the target cells. Although it remains
to be examined whether these results are extrapolatable to
the myeloma CAR-T cell field, the study clearly highlights the
importance of rational CAR design especially in combination
CAR-T cell therapy.

In conclusion, our knowledge of the mechanisms responsible
for relapses following BCMA-CAR-T cell therapy is rapidly
expanding. Besides tumor antigen downregulation or loss, other
contributors of relapse, such as the development of anti-CAR-
T antibodies, insufficient CAR-T cell persistence, or perhaps
even more importantly, T cell exhaustion, are important topics
of research (53). This increasing knowledge of the mechanisms
of relapse, along with the identification of novel CAR target
antigens, increases the likelihood that the full therapeutic
potential of CAR-T cell therapy for MM will be unleashed in the
near future.
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