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Abstract

In this paper, we investigate two types of nonlocal soliton equations with the parity-time (PT)
symmetry, namely, a two dimensional nonlocal nonlinear Schrédinger (NLS) equation and a
coupled nonlocal Klein-Gordon equation. Solitons and periodic line waves as exact solutions
of these two nonlocal equations are derived by employing the Hirota’s bilinear method. Like
the nonlocal NLS equation, these solutions may have singularities. However, by suitable
constraints of parameters, nonsingular breather solutions are generated. Besides, by taking
a long wave limit of these obtained soliton solutions, rogue wave solutions and semi-rational
solutions are derived. For the two dimensional NLS equation, rogue wave solutions are line
rogue waves, which arise from a constant background with a line profile and then disappear
into the same background. The semi-rational solutions shows intriguing dynamical behav-
iours: line rogue wave and line breather arise from a constant background together and then
disappear into the constant background again uniformly. For the coupled nonlocal Klein-
Gordon equation, rogue waves are localized in both space and time, semi-rational solutions
are composed of rogue waves, breathers and periodic line waves. These solutions are dem-
onstrated analytically to exist for special classes of nonlocal equations relevant to optical
waveguides.

Introduction

Since Bender and Boettcher [1] showed that in the spectrum of the Hamiltonian, large
amounts of non-Herimitan Hamiltons with Parity-time-symmetry (PT-symmetry) possess
real and positive spectrum, the PT-symmetry has been an interesting topic in quantum
mechanics and has significant impact. In general, a non-Hermitian Hamiltonian H = 0,, +
V(x) is called PT-symmetric if V(x) holds for V(x) = V*(—x). If set V(x, t) = p(x, )p*(—x, t) in
the Hamiltonian H above, then the Schrédinger equation ip; = Hp is PT-symmetric. In recent
years, many works on PT-symmetry have been presented [2-6]. PT-symmetry has been widely
applied to many areas of physics, such as optics [4, 7, 8], such as Bose-Einstein condensates
[9], such as quantum chromodynamics [10], and so on.
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In [11], Ablowitz and Musslimani introduced the nonlocal nonlinear Schrédinger equation
in<xa t) + qxx(x7 t) + Qq(xa t)q*(_xv t)Q(xv t) =0 (1)

and got its explicit solutions by inverse scattering. Quite a lot of work were done after that for
this equation and other equations [12-33]. Following the works of Ablowitz [11, 13] and
Fokas [12], we propose a two dimensional nonlocal nonlinear Schrédinger (NLS) equation

i, +u, +u, —2u,+2uV=0,V=u(xyt)u(-x,—yt), (2)

and a coupled nonlocal Klein-Gordon equation

u, (%, 8) + u(x,8) — fu(x, £) + [eu(x, t)u (—x,t) — 2v(x, t)]u(x, t) = 0, -

V”(X, t) - Vxx(x7 t) + [eu(x, t)u*(fxv t)]xx =0,

here * means complex conjugation. For the two dimensional nonlocal NLS equation given by
(2), this equation satisfies two dimensional fully PT symmetry condition V(x, y, t) = V*(-x, -,
1), where g is a complex function of x, y, t. Obviously, if select V = u(x, y, t)u*(x, y, t) in eq (2),
the two dimensional nonlocal NLS equation reduces to a (2 + 1)-dimensional nonlinear Schré-
dinger equation in the Heisenberg ferromagnetic spin chain [34-40]. For the coupled nonlocal
Klein-Gordon equation given by (3), although this equation is not invariant under u(x, ) —
u(—x, —t), it has a conserved density u(x, f)u*(—x, t), which is invariant under spacial reversion
together with complex conjugation as that for the nonlocal nonlinear Schrédinger equation
(NLS), here u, v are functions of x, t. Corresponding to the nonlocal, the travelling wave trans-
formation of the non-differentiable type of local equation is observed in [41-43].

The objective here is to demonstrate typical dynamics of breathers and rogue waves, inten-
sively studied topics recently, which can be derived analytically for the two dimensional nonlo-
cal NLS eq (2) and the coupled nonlocal Klein-Gordon eq (3) by employing the Hirota bilinear
method [44]. Note that the Hirota bilinear method is an efficient and popular method to solve
soliton equations [45-51]. In addition, the necessary conditions for the existence of solitary
solutions of nonlinear partial differential equations are derived in [52, 53]. Breathers are pul-
sating modes and rogue waves are unexpectedly large amplitude displacements from a tranquil
background [54]. Rogue waves were first observed in the oceans [54], but are now being pur-
sued in optics and other fields as well [55-60]. In addition to the NLS equation, a variety of
nonlinear soliton equations including nonlocal systems satisfied PT symmetry have been veri-
fied possessing rogue wave solutions [14, 15, 61-74]. Two recent articles [75] have provided a
good review on the rogue waves from the physical view. Besides, as nonlinear wave interac-
tions are important in the formation of different wave structures in physical systems, a good
motivation of this paper is to derive different types of mixed solutions consisting of rogue
waves, breathers and periodic line waves for the two dimensional nonlocal NLS eq (2) and the
coupled nonlocal Klein-Gordon eq (3).

The outline of the paper is organized as follows. In Sect, three solutions of the two dimen-
sional nonlocal NLS eq (2), namely, line breathers, rogue waves, semi-rational solutions con-
sisting of line breather and rogue wave, are derived by employing the bilinear transformation
method and taking a long wave limit, and their typical dynamics are analyzed and illustrated.
In Sect, typical dynamics of several solutions for the coupled nonlocal Klein-Gordon eq (3),
including rogue waves, breathers and mixed solution consisting of rogue waves, breathers,
periodic line waves, are discussed. The Sect. contains a summary and discussion.
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Solutions of the two dimensional nonlocal NLS equation

The two dimensional nonlocal NLS equation is translated into the bilinear form
(iD, + D+ D> —2D,D,)g - f =0,
(D;+D; = 2D.D,)f - f = 2[gg" (=x, =y, 1) = f*],
through the variable transformation

u=eit, (5)

f

Here f, g are functions with respect to three variables x, y and ¢, and satisfy the condition
f*(xay7t) :f(—x»—)’,t>> (6)

the asterisk denotes complex conjugation, and the operator D is the Hirota’s bilinear differen-
tial operator [44] defined by

P(D,,D,,D,,)F(x,y,t-") - G(x,y,t, )

= P(9,- 0y, 8)/ - ay"at =0y, )F(x,p,t,- ')G(X/,y/, t/v o ')‘x’:x,y’:y,t':t’

where P is a polynomial of D, D, Dy, - - -
By the Hirota’s bilinear method with the perturbation expansion [44], and take fand g be
the forms of

(N) N
f= > e muAg+> mny),
k=1

1=0,1 k<j

(N) N
g= > e muAy + Y wln +id,)),
k=1

1=0,1 i<j
then (5) produces the N-soliton solutions of the two dimensional nonlocal NLS equation. Here

— . 0
n szx—l—lQ]-y—Fth-i-nj,

e
I

j Vj(Pj_Qj) 4_(Pj_Qj)27

(P4 P, — Q — Q)" — 2cos(¢ — ) — 2 (8)
—(P,+ P, — Q — Q)" — 2cos(¢; + ¢,) + 2

cos (¢1) =1- % (Pj - Qj)Za sin (¢J) = _%Vj(Pj - Q]) \/ 4 - (l)j - Qj)Qa

where P;, Q; are freely real parameters, and y; = 1. The natation %, _ ¢ indicates summation

over all possible combinations of p; =0, 1, 4, =0, 1, ..., uxy =0, 1; the Z}N<k summation is over
all possible combinations of the N elements with the specific condition j < k.

Remark 1. The constraint (P; - Qj)2 < 4 must hold for Q; to be real and |cos(¢;)|, [sin(¢;)| <
1.
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Following earlier works [14, 15, 76, 77] in the literature, a family of periodic solutions
termed nth-order breathers can typically derived by taking parameters constraint

N = QH,P]-H! = _Pj7 Q]ur,, = _Qja HE‘H = ’1]*0 (9)
For example, taking parameters in (7)
N:27P1:_P2:P7Q1:_szQaﬂg:WTOZfa (10)

the first-order breather solution can also be expressed in terms of hyperbolic and trigonomet-
ric functions as

u= ezi’%, (11)
where
f,= VMcosh® + cos(Px+Qy),
&= VM[cos?¢ cosh® + sin?¢sinh © + i cos ¢ sin ¢( cosh® — sinh @)] (12)
Tcos(Px + Qy)(cose + i sing),
and

. 1 s .1 2
exp(i9) = 1-5(P— Q) — iz (P— Q1 - (P - Q"

4 2
M= g @ Py (-0,

©=Q(t—t), exp(Qt) = \/Mexp ().

This solution for parameter choices

,¢=0 (13)

Wl

1
P=-.Q=
2,Q

is shown in Fig 1. As can be seen, solution |u| given by (11) is the first-order line breather in
the (x, y)-plane, which arises from the constant background possing profiles of parallel lines,
and then decays back to the constant background again at larger time. The line breather is
periodic in both x and y directions, and the period is 3 along x direction, while it is % along y
direction. The line breather has the characters: appearing from nowhere and disappear without
a trace, which indicates that line rogue waves may exist in the two dimensional nonlocal NLS
equation. Below, we consider rogue waves in two dimensional nonlocal NLS eq (2).

To generate rogue wave solutions of the two dimensional NLS equation, one can take a
long wave limit of f, and g, i.e., take

E=in,Q=AP,P—0 (14)

in eq (12), A is an arbitrary real parameter, and A # 1. Then the first-order rogue wave solution
of two dimensional nonlocal NLS eq (2) can be expressed in rational functions as

(4it +1)(L — 1)
(x4 M)’ +4(h— 1) + i (A —1)°

u= ¢€"1-

I (15)
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Fig 1. Time evolution of first-order breather solution. Time evolution of first-order breather solution |u| (11) of two dimensional nonlocal NLS eq (2) in (x, y) plane
with parameters (13).

https://doi.org/10.1371/journal.pone.0192281.9g001

This rational solution has a line profile with a varying height (see Fig 2), and is different

(2 + 1)-dimensional line solitons. Since the later maintains a perfect profile without any decay
during their propagation in the (x, y)-plane. Besides, when t — 00, this solution |#| uniform
approaches to the constant background 1; but in the intermediate time, |u| attains maximum
amplitude 3 (i.e., three times the constant background amplitude) at the center of the line
wave (x + Ay = 0) at t = 0. Hence this line wave describes the phenomenon: line waves appear
from nowhere and disappear without a trace, and they are defined as line rogue waves [50, 51].
It is noted that the orientation of this line rogue wave is almost arbitrary as the parameter A
can be an arbitrary real parameters except 1. In particular, when one takes A = 0 in the above
line rogue wave, hence the solution u is independent of y. In this case, the two dimensional
nonlocal NLS equation reduces to the one dimensional NLS equation, and this rogue wave of
the two dimensional NLS equation reduces to the Peregrine rogue wave of the one dimen-
sional NLS equation.

A B C
‘5 _18‘\‘
0 o s 0 5
X y X y
D E
3 3
2 _2
=1 =1 ‘ =
18 5 -18 ' ‘ 5
0 0 0 0
10 5 5 10 5
X y X y X y

Fig 2. Time evolution of rogue waves in two dimensional nonlocal NLS equation. Time evolution of rogue waves (15) in two dimensional nonlocal NLS eq (2) in
(x, y) plane with parameters A = 3.

https://doi.org/10.1371/journal.pone.0192281.9002
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We have discussed the breather solutions and rogue wave solutions respectively, below we
derive a subclass of semi-rational solutions consisting of rogue waves and breathers. The sim-
plest semi-rational solutions composed of one-breather and a fundamental line rogue wave
can be generated from the fourth-order soliton. Indeed, taking parameters in (7)

N=4,Q =1P,,Q, =M\P, =P, =in,n) =in, (16)

and then taking the limit as P; — 0, P, — 0, functions fand g of semi-rational solution u can
be presented as

0,0,+a,+ (a,a,,+a,0,+a,0 +0 0,+a,)e" + (a;ay,+a,0,+a,0,

+0, 0,4 a,,)e" + (ay, a,5 Ay + g, 43 4y, + Ay a,5 0, + ay, 0y, ays + as, 0y, dyy+

Ay, 0,0, + a0, 0, +ay a,, 0, +a,, 0,0, + a,, a,,)eBt

0, +0b)(0,+0b,) +a,+(a,a,+a,0,+0b,)+a, (0, +b)+ (0, +b)(0,+Db,) -
+ay,)en T 4 (a, g, + ay; (0, + by) + ay, (0, + b)) + (0, + b)) (0, + b,)

+a,,)eB1% 4 (A, 0,4 gy + Agy gy Ay, + Ay, Ay5 (0, + by) + ag, ay, ags + ay, 4y, Ay,

+ay a, (0, +b,) +aya,, (0, +b)+aya, (0, +b)+a, (0, +b)(0,+b,)

+ay, am)eﬂ‘s‘*—'u-*-iw:;*—i@’
where
. . 1
0, =ix+ily —2(& —1)t,a, = _1(7‘1 -1, - 1),
by =ik —1),b, = i(hy — 1),a, = e

0 = (P[_Q/)(A’s_l) (521’2,62374)7

4_(P£_QZ)2_2

(18)

and 7, ¢p and e** are given by (8). Further, taking parameters constraints
hy ==k, Py =—P;,Q = —Q;,n" =n, (19)

thus mixed solution composed of a fundamental line rogue wave and one line breather is
generated. As can be seen in Fig 3, this solution approaches to the constant background as

|| >> 0. When a line rogue wave and one line breather arise arise from the constant back-
ground, the region of their intersection acquires higher amplitude first (see the panel at

t = -2). Then the line breather rises to higher amplitudes in the intersection region, and the
line rogue immerse into the line breather (see the panel at t = 0). At larger time, the breather
decays back to the constant background with higher speed than the line rogue wave, and the
line rogue wave surround by the breather appear on the constant background (see the panels
att =1, 2). It is noticed that for all times, the maximum amplitudes of the line rogue wave do
not exceed 3 (i.e., three times the constant background). As discussed that the maximum
amplitude of the fundamental line rogue wave is three time the constant background ampli-
tude, thus this interaction between the line rogue wave and the line breather does not generate
very high peaks.
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Fig 3. Time evolution of mixed solution |u| of the two dimensional nonlocal NLS equation. Time evolution of mixed solution |u| of the two dimensional nonlocal
NLS eq (2) in (x, y) plane with parameters A, = 2,A, = 2,P, =3,P, = —1,Q, = —2,Q, = 2,1} = 0,1} = 0.

https://doi.org/10.1371/journal.pone.0192281.g003

Solutions of the coupled nonlocal Klein-Gordon equation

To using the Hirota bilinear method for constructing soliton solutions of the Eq (3), we con-
sider a transformation different from that considered by Tajiri [78, 79]. Here we allow for non-

zero asymptotic condition (u,v) — (v/2,£+ €) asx, t — oo, and look for solution in the form
u:\/ﬁgr,v:gﬁﬂ(bgf)m, (20)

where f, g are functions with respect to three variables x, y and ¢, and satisfy the condition

f*(_xa t) :f(xv t)' (21)

Obviously, u = V2,v = g + € is a constant solution of the Eq (3), and under the transforma-
tion (20), the Eq (3) is cast into the following bilinear form

(D;+D))g-f =0,

o R (22)
(D; = D))f -f = 2€[gg"(—=x,t) = f°].
We now solve the bilinear Eq (22) by taking f and ¢ the forms of
) ) N
f= Z exp (Z:uk:ujAkj + ZMMkL
1=0.1 k<j k=1
(23)

(N) N
§= Z €xp (Z:uk:ujAkj + Zﬂk(’ﬂ +igy)),
=1

1=0,1 i<j

then (20) produces the N-soliton solutions of the coupled nonlocal Klein-Gordon equation.
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Here
M, =iPx+Qt+n,
) 2o, md) + (B P) (@ -0 2 (24)
exp (4, = - = = )
" 2ecos (¢, + &) + (P + P + (@ + Q)" +2¢
with
~ € — P? ~ \/2€_Pj2pj 25
Q, =P, cos(o;) = - L, sin( j):—e , (25)
or

Q = /B e, cos(d) = ~1,sin(3) =0, Go)

where P; is an freely real parameters, and 11}9 is an complex parameter.

Remark 2. The constraint —P]? + 4€ > 0 must hold for and fij to be real and
|cos(q§j)|, |sin($j)| < 1, thus hereafter we only discuss € = 1.

In particular, when one takes P; = +2 in (26), the corresponding solutions are independent
of t, thus they are periodic line waves which are localized in t direction, and the period is 7#

along x direction, see Fig 4. A family of periodic solutions termed nth-order breathers can typi-
cally derived by taking parameters constraint in (23) and (25)

N=2nP,, =-P,n, =n" (27)
For example, taking parameters in (23)
N:2aP1:_P2:P717[2):}79160:5a (28)

the first-order breather solution can also be expressed in terms of hyperbolic and trigonomet-
ric functions as

B

u= ﬁ%,v =+ = 2(logf,)... (29)
C
‘ 1.4 = mnmm
_ [ ul 103 y
-6 0.6
27 0.2-
—Wm -15
0 19~10 5 10
5 30 5 5o 10
X t X t X

Fig 4. Three types of solutions for the coupled nonlocal Klein-Gordon equation. Three types of solutions for the coupled nonlocal Klein-Gordon eq (3). (a)Periodic
line waves solution with parameters N =1, P; = 2, 11§ = 0, € = 1. (b)Breather solution given by (29) with parameters (31). (c)A mixed solution consisting of a breather
and periodic line waves with parameter (33) and p, =1,p, = —3,7{ = 0,15 = 0.

https://doi.org/10.1371/journal.pone.0192281.9004
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VM cosh © + cos(Px),

o
|

8, = VM[cos2pcosh® + sin2¢psinh® + icos ¢ sinp(cosh® — sinhO)]

—|—cos(Px)(c05(25 +i sing%) ,

(30)
A A A p? P? [2¢ — P?
O= Qt—t) exp(id) =(1——)+i—1/=—>—
€ € p?
~ 2e N =
M = m, exp(Q t()) = Mexp(f)
This solution for parameter choices
P= 1 E=0 (31)
=5.¢=

is shown in Fig 4(b). The corresponding solution is periodic in x direction and localized in ¢
direction, the period is 47.

Besides the breather solutions, a subclass of mixed solution consisting of periodic line
waves and breather can also be generated from (23) by taking parameters

N=2n+1,P,, =-P,n,. =n" (32)

1 jtn
in (25) and P,,,,; = %2, 1p,,,1 is defined in (26). For instance, taking parameters in (23)
N=3,P, = —Pl,r]g = 17’1‘0,P3 =2,n, = 2x + r]g,ef5:s =1, (33)

the corresponding solution is shown in Fig 4(c). It is seen that this solution is composed of a
breather and periodic line waves. The period of the breather is 2% and the periodic line waves
is 1.

To generate rogue wave solutions of the coupled nonlocal Klein-Gordon equation, we take

a long wave limit ofo and g, in (30), i.e., take

t=in,e=1,P—0 (34)

in equation (30), then the first-order rogue wave solution can be expressed in rational func-
tions as

24/2it

= 2[1 —
“ \/_[ xX+2+1

I,
4x* -2 +1) G5)

2 (x2+1241)

The square of the short wave amplitude |u|* has four critical points, namely,
Al = (1’ 0)7A2 = (_L 0)7A‘3 = (07 1>7A4 = (07 _1)

Based on the analysis of critical points for rogue wave solutions (35), there are four-petaled
rogue wave (i.e., two global maximum points A;, A,, and two global minimum points A3, A,)
in the coupled nonlocal Klein-Gordon equation. The maximum value of |A| is 2 at points A
and A,, while the the minimum value of |A| is 0 at the points A; and A4. This fundamental
rogue wave is illustrated in Fig 5(a).
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A B

Fig 5. Four types of solutions for the coupled nonlocal Klein-Gordon eq (3). (a) Fundamental rogue wave solution |u| given by (35). (b) A mixed solution
consisting of a rogue wave and periodic line waves with parameters (36). (c) A mixed solution consisting of a rogue wave and one breather with parameter
P, =1.P, =—1 4§ =2m 1} = 2n. (e) A mixed solution consisting of a rogue wave, one breather and periodic line waves with parameters

P3 :§7P4 = 7%11’5 = 277]2 = 7[,772 = 717'12 =0.

https://doi.org/10.1371/journal.pone.0192281.g005

Nonlinear wave interactions lead to several interesting dynamics in physical systems. Par-
ticularly, they are important in the formation of different wave structures. To show intriguing
dynamical behaviour in the coupled nonlocal Klein-Gordon equation, we investigate three
types of mixed solutions consisting of rogue waves, breather and periodic line waves.

Type 1. A mixture of rogue wave and periodic line waves We first consider the simplest
semi-rational solutions, which are composed of a fundamental rogue wave and periodic line
waves. Indeed, taking parameter choices in (23)

N=3,e=1n=n)=inP,=2,1,=0,P,P, — 0, (36)
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~

o>

then functions f and ¢ can be expressed as

f

(9192 + &12) + (élél + alZ + &1302 + &ZSél + &12&23)eﬁ3 )

where
0, = ix—l—y,éQ =ix—y,a,=—1a,;=ay,=-2b = _I;Q = iv2, (38)

and 7}, ¢, are given by (24) and (26). This solution describes an fundamental rogue wave on a
background of periodic line waves, see Fig 5(b). Note that the maximum value of solution |u] is
2, which is the same with the maximum value of fundamental rogue wave solution |u| given by
(35). Thus this interaction between the fundamental rogue wave and the periodic line waves
does not generate higher peaks. That is different from the interaction between rogue waves
and periodic line waves in the NLS equation, which can generate much higher peaks [12].

Type 2. A mixture of rogue wave and breather Another type of mixed solution is com-
posed of a fundamental rogue wave and one breather, which can be generated from four-soli-
ton solutions. Indeed, taking parameters in (23)

N =4,n) =in,ny = in,P, = —P,, 1’ = n3’, (39)

and then taking the limit as P; — 0, P, — 0, functions f and ¢ of semi-rational solutions u and
v can be presented as

01 92 + &12 + (&14 &24 + &14 92 + &24 01 + 01 92 + &12)6,:,4 + (&13 &23 + &13 02 + azs 01
+01 02 + "112)6,?3 + (&24 [113 &23 + a34 &13 &24 + &34 &13 92 + &34 &14 &23 + &34 &14 &24—’_

PR PO PRI - A il i
Ay, 0,0, + a4, 0, +ay,0,,0, +a,,0,0, + ay,a,,)es*n

"'6312)6;7“1.(“34 + (G589 +ayy (02 + Ez) +ayy (01 + 1;1) + ([)1 + 191) (02 + ?72)
A1) €150 4 (Agy @y Ggy + @y Gy Gy + Gy G5 (0, + by) + Gy, 8y, Gy + @y, 0,4y,

iy gy (0, + by) + g, 4y (0, + b)) + 85,45, (0, + b)) + a5, (0, +b,) (0, +b,)

Ao figHil g +ig3+id,
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where 91, 0,, El, b, are given by (38), and

2p? 2p? )
&1‘ = —]a &9' = - ! (] = 314)7&34 = eAM’ (41)
/ p]? -2 p]? -2 ‘

and ., ¢, (s = 3,4,5), e*# are given by (24) and (25). The corresponding solution is shown in
Fig 5(c). It is seen that this solution consists of a rogue wave and a breather. This breather is
still periodic in x direction and localized in ¢ direction, the period is | }2,—: |. It is noticed that alter-

ing the values of 11}, the location of the breather can be moved. For all the choices of 73, the
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period of this breather does not have an visible change. That is different from this type of
mixed solutions of the nonlocal NLS equation [13], as the latter has an unstable period.

Type 3. A mixture of rogue wave, breather and periodic line waves At the end of this sec-
tion, we obtain a subclass of interesting mixed solutions consisting of a rogue wave, a breather
and periodic line waves. This type of mixed solutions can be generated by taking a long wave
limit of 5-soliton solutions. Taking parameters in (23)

N:5a77?:i7fﬂ13:i7f7p4:*P37P5:2a’110:’7§07 (42)

and then taking the limit as P; — 0, P, — 0, functions fand g of semi-rational solutions u and
v are a combination of rational and exponential functions. Some interesting structures can be
observed, see Fig 5(d). It is seen that both of the periodic line waves and the breather are peri-

odic in x direction and localized in ¢ direction. The period of the breather is | f,—’; |, and the peri-

odic line waves is 2. Although there are many researches about interactions between rogue
waves and other types of nonlinear waves, but interactions between rogue waves, breathers
and periodic line wave in 1 + 1 dimensions have not been reported before. Thus this type of
semi-rational solution is a new solution.

Summary and discussion

In this paper, we proposed two types of nonlocal soliton equations under PT symmetry condi-
tions, namely, a two dimensional nonlocal NLS equation and a coupled nonlocal Klein-Gor-
don equation. By employing the Hiorta’s bilinear method, soliton and periodic line wave
solutions were derived. Although these soliton solutions may have singularities, but smooth
periodic line waves and breathers have been obtained by taking suitable choice of the parame-
ters. For the two dimensional nonlocal NLS equation, line breathers are both periodic in x and
y direction, see Fig 1. For the coupled nonlocal Klein-Gordon equation, breathers are localized
in t direction and periodic in x direction, see Fig 4(b). In particular, a subclass of mixed solu-
tion consisting of breathers and periodic line waves is also generated see Fig 4(c). By taking a
long wave limit of soliton solutions, the fundamental rogue wave solutions and semi-rational
solutions have been generated. For the two dimensional nonlocal NLS equation, rogue wave
solutions are line rogue waves, see Fig 2. The semi-rational solutions describe a line rogue
wave and a line breather arising from the constant background together and then disappearing
into the constant background again, see Fig 3. For the coupled nonlocal Klein-Gordon equa-
tion, except the rogue waves (see Fig 5(a)), semi-rational solutions describing the interactions
between rogue waves, breathers and periodic line waves have also been generated. Three types
of them are shown in Fig 5(b), 5(c) and 5(d). These nonlinear wave interactions lead to several
interesting dynamics in physical systems, particularly, they are important in the formation of
different wave structures. As there are few researches about the rogue waves of PT-symmetry
systems, our research may help to promote the understanding of rogue wave phenomenon in
PT-symmetry systems.
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