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Abstract

Heat stress decreases milk yield and deleteriously alters milk composition. Reduced feed

intake partially explains some of the consequences of heat stress, but metabolic changes in

the mammary tissue and liver associated with milk synthesis have not been thoroughly eval-

uated. In the current study, changes of protein abundance in the mammary tissue and liver

between heat-stressed cows with ad libitum intake and pair-fed thermal neutral cows were

investigated using the iTRAQ proteomic approach. Most of the differentially expressed pro-

teins from mammary tissue and liver between heat-stressed and pair-fed cows were

involved in Gene Ontology category of protein metabolic process. Pathway analysis indi-

cated that differentially expressed proteins in the mammary tissue were related to pyruvate,

glyoxylate and dicarboxylate metabolism pathways, while those in the liver participated in

oxidative phosphorylation and antigen processing and presentation pathways. Several heat

shock proteins directly interact with each other and were considered as central “hubs” in the

protein interaction network. These findings provide new insights to understand the turnover

of protein biosynthesis pathways within hepatic and mammary tissue that likely contribute to

changes in milk composition from heat-stressed cows.

Introduction

Heat stress detrimentally affects a variety of economically important production traits and

thus results in enormous economic losses on the global dairy industry. During heat stress,

dairy cows experience a series of physiological and behavioral responses that are presumably

survival strategies employed to ensure successful adaptation to a heat load. In addition to over-

all milk yield, milk fat and protein content are annually decreased during the hot summer

months [1–4], and we have also reported that heat stress has direct effects on milk yield and

milk protein content [5].
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Milk synthesis and secretion are considered system processes incredibly sensitive to both

physiological and environmental factors. Decreased milk yield and changes in milk compo-

nent content were traditionally thought to result from decreased nutrient intake [3], but recent

experiments are utilizing a pair-feeding model which demonstrates that inadequate feed intake

only accounts for about 50% of the decrease in milk synthesis among heat stressed cows [6–8].

Thus, changes in postabsorptive metabolism and nutrient partitioning may contribute to dis-

cordant changes in mammary protein synthesizing capacity in heat-stressed cows. In addition,

recent reports indicate that heat stress decreases the expression of major milk protein genes,

increases the expression of several chaperone genes, induces apoptosis and interferes with

cytoskeletal and cell transport function in mammary epithelial cells among heat stressed cows

[9–11]. Milk production is reliant on the normal structure and function of mammary epithelial

cells that synthesize and secrete milk [12–13] and these heatstress studies indicate that changes

in overall and milk component synthesis in heat-stressed cows are partially caused by changes

in specific regulation of milk synthesis, rather than just a general reduction in milk activity.

From a milk protein perspective, the proportion of whey is increased and casein fractions are

decreased in heat-stressed compared to pair-fed cows [6].

The liver and mammary tissue have complementary and coordinated metabolic roles dur-

ing lactation [14]. For example, hepatic derived glucose (rates of which are sensitive to lac-

tational needs) is taken up by the mammary tissue and used for multiple milk synthesizing

processes; most notably lactose production, the primary osmorugulator of milk volume [15–

16]. Further, amino acids, triglycerides and ketones are exported from the liver and are key

precursors for milk synthesis [6,17–19]. Moreover, circulating heat shock proteins (HSP) and

AMP-activated protein kinase were increased in heat-stressed cows [20–21]. As well, several

variables associated with systemic energy and protein metabolism are affected by heat stress

[8,22–23]. However, few experiments have focused on proteomic changes in the liver or mam-

mary tissue, which could partially explain the negative effects of heat stress on productivity.

Thus, we hypothesized that the endogenous protein profiles in the mammary tissue and

liver of lactating dairy cows are altered by heat stress independent of reduced feed intake.

Study objectives were to investigate heat-stressed induced changes in mammary tissue and

liver proteins by iTRAQ approach. Results of this study may provide novel information to

explore the molecular mechanism of protein biosynthesis in the liver and mammary tissue

contributed to milk components of dairy cows independent of reduced feed intake under the

heat stress.

Materials and methods

Animals and experimental treatments

All animal care and procedures were approved by the Animal Care Advisory Committee of the

Chinese Academy of Agricultural Sciences. Four multiparous Chinese Holstein cows (101±10

DIM, 574±36 kg BW, 38±2 kg milk/d, 2nd parity) were individually housed in environmental

chambers at Changping Research Station (Beijing, China), fed a TMR twice daily at 0500 and

1700 h, and orts were recorded daily before the morning feeding. Cows were milked twice

daily at 0500 and 1700 h and milk yields were recorded at each milking. The TMR containing

alfalfa hay, extruded-soybean, whole corn silage, steam-flaked corn, bean pulp, rapeseed meal

and feeding corn meal was formulated to meet the predicted requirements (NRC, 2001) of

energy, protein, minerals, and vitamins (S1 Table).

Cows were acclimated for 9 days with ad libitum access to feed and water in thermal neutral

conditions of 20˚C, 55% humidity, and 12 h light and dark cycles (temperature-humidity

index (THI) = 65). Cows were then randomly assigned into a two-treatment crossover design
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study. The study was comprised of 2 experimental periods with each of 9 days and a 30 days

thermal neutral washout period. During the period of heat stress induction, the two heat-

stressed cows were individually housed in a climatic chamber and were fed ad libitum with the

temperatures ranging from 32 to 36˚C, with 55% humidity, and 12 h light and dark cycles

(temperature-humidity index (THI) = 65). Between 0600 and 1800 h, the temperature was

kept at 36˚C, and between 1800 and 0600 h, the temperature was kept at 32˚C. The other two

pair-fed cows were also individually housed in a climatic chamber under thermal neutral con-

ditions (as above) but were fed to match the feed intake of the heat-stressed cows. Dry matter

intake (DMI) was measured for each cow once daily [5]. And all data of THI and DMI were

statistically analyzed utilizing SAS version 9.3 (SAS Institute Inc., Cary, NC) with mixed

model.

Sample collection and protein preparation

Milk samples from individual cows were collected in the morning and evening milking

throughout the experimental periods. Daily milk samples from each cow were pooled. Brono-

pol tablet (D&F Control System, San Ramon, CA) was added and stored at 4˚C until analysis

using a Milk Oscan Minor machine (MilkoScan Type 78110, Foss Electric, Hillerød, Den-

mark). Mammary and liver tissue needle biopsies were collected from individual cows on the

last day of each environmental period as described in previous studies [24–25]. Samples were

washed with precooled PBS at 4˚C, cut into 4–5 slices (approximately 100 mg each slice) and

stored in liquid nitrogen. Unexpectedly, a liver sample could not be harvested from one of the

cows due to technical issues and therefore liver and mammary tissues from only 3 cows were

used for the proteomic analysis for each group (pair-fed and heat-stressed).

About 100 mg of mammary or liver tissue samples were placed in a tube and mixed with

1mL lysis buffer (4% SDS and 0.1 M DTT in 0.1 M TrisHCl, pH 7.6), and then mixed with

quartz sand at room temperature [26]. Samples were homogenized with 65.0 Hz in a MP Fas-

tPrep for 3 min. After samples were incubated for 20 min at 95˚C, homogenates were soni-

cated for 2 min at 200W and then centrifuged at 16 000 × g for 30 min to obtain the

supernatant. Protein concentrations were determined by a bicinchoninic acid assay (Pierce,

Rockford, IL, USA). Samples were then stored at -80˚C [27].

Protein digestion

One hundred micrograms of the protein sample was mixed with dithiothreitol solution at a

final concentration of 100 mM and then incubated for 5 min at 95˚C. Two hundred mL of 8 M

urea and 150 mM Tris-HCl, pH 8.0 were added after the samples had cooled to room tempera-

ture. The mixtures were transferred to an ultrafiltration filter (10-kDa cutoff, Sartorius, Ger-

many) and centrifuged at 14 000 × g for 15 min. Subsequently, 100 μL of iodoacetamide

solution (50 mM iodoacetamide in 8 M urea and 150 mM Tris-HCl, pH 8.0) was added and

incubated for 30 min at room temperature in the dark. Then 100 μL dissolution buffer

(Applied Biosystems, Foster City, CA, USA) was added, mixed and centrifuged at 14 000 × g

for 10 min and this step was repeated twice. Finally, 20 μL trypsin solution (2 μg trypsin in

20 μL dissolution buffer) was added, mixed and incubated for 16–18 h at 37˚C. The digested

peptides were collected into a new tube by centrifugation at 14 000 × g for 10 min.

iTRAQ labeling

Digested peptides from mammary and liver were labeled with iTRAQ reagents based on the

manufacturer instructions (Applied Biosystems, USA). Mammary and liver samples from con-

trol cows were labeled with reagent 115, 117 and 119, and heat-stressed cows labeled with
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reagent 116, 118 and 121. The mixtures were incubated for 1 h at room temperature to per-

form labeling reaction.

Reverse phase high performance liquid chromatography separation

The labeled peptides were separated by an Agilent 1100 HPLC (Agilent Technologies, Paulo

Alto, CA USA). The chromatography column (2.0 × 50 mm, 5 μm, XBridge BEH 300 C18,

Waters, Ireland) was equilibrated by solution A consisted of ammonia water (pH 10.0). The

peptides were separated with solution B consisted of 100% acetonitrile (pH 10.0) as follow: 0 to

5% (v/v) for 2 min, 5 to 35% (v/v) for 58 min, 35 to 50% (v/v) for 10 min, 50 to 90% (v/v) for 4

min, and 90% (v/v) for 2 min at a flow rate of 500 μL/min. One fraction was collected every 2

min. A total of 40 sub-fractions were collected and pooled into 20 fractions. Samples were

desalted on the C18 solid phase extraction column.

Mass spectrometry analysis

Peptides fractions were further separated and analyzed by a Thermo Fisher EASY-nLC 1000

system coupled with a Q-Exactive (Thermo Fisher Scientific, San Jose, CA, USA). Capillary

column was equilibrated with 95% (v/v) solution C consisted of 0.1% (v/v) formic acid in

MilliQ water, and then samples were loaded onto the trap column (2 cm × 100 μm, 5 μm) by

an autosampler. The labeled peptides were separated on the reverse-phase column (100

mm × 75 μm, 3 μm) with solution D consisted of 0.1% (v/v) formic acid and 90% (v/v) acetoni-

trile in MilliQ water at a flow rate of 300 nL/min. The segmented gradient was run from 2% to

5% (v/v) for 2 min, from 5% to 35% (v/v) for 42 min, from 35% to 90% (v/v) for 3 min and

then 90% (v/v) solution D for 3 min.

Q-Exactive (Thermo Fisher Scientific) was used to perform peptide analysis in positive ion

mode with a selected precursor ions range of 300–1800 m/z. For the survey scan, resolving

power was set to 70 000 at m/z 200. The top 12 most abundant precursor ions with charge� 2

were selected by each survey scan cycle and fragmented by higher-energy collisional dissocia-

tion with normalized collision energy of 30 eV. For the MS/MS scans, resolving power was set

to 17,500 at m/z 200. Capillary column temperature was set at 270˚C, automatic gain control

target value at 3E6 and dynamic exclusion at 30 s. The underfill ratio was determined at 0.1%

[28].

Protein identification and quantification

Raw files were processed in MaxQuant 1.5.2.8 and then used to search an in-house uniprot

database of bovine with 32246 entries (06–2015). The searching parameters were monoisoto-

pic mass, trypsin as the enzyme and allowing up to two missed cleavages. Fragment and pep-

tide mass tolerance were set at 0.1 Da and 20 ppm, respectively. Oxidation of methionine and

acetylation of protein N-term were specified as variable modifications. Carbamidomethylation

of cysteine, iTRAQ-labeled N-terminus and iTRAQ-labeled lysine were defined as fixed modi-

fications. Protein and peptide identifications were based on 99% confidence as determined by

a false discovery rate of no more than 1%.

Relative quantification of the identified proteins was performed by MaxQuant software.

Relative peak intensities of released iTRAQ reporter ions were used to calculate the relative

ratios of identified peptides. The weighted ratios of uniquely identified peptides from the spe-

cific protein were used to calculate the relative quantification of the individual proteins. Final

ratios of the individual proteins were normalized based on the median average quantification

ratio for all labeled samples. Protein identification was accepted at least two unique peptides

that were used to the further analysis. Quantified proteins were analyzed by independent T-
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test, and their fold changes were calculated. Differentially expressed proteins were those with

P< 0.05 and fold change > 1.2 between groups [29].

Western blot analysis

Each sample was mixed with 5× sample loading buffer and boiled at 95˚C for 8 min, and was

separated on a 10% SDS-PAGE gel, then transferred onto nitrocellulose membranes using 200

mA of constant current. Membranes were then incubated with primary antibodies specific

(HSP 90α/β, Santa Cruz Biotechnology, SC-59578, Achlya Ambisexualis Origin, Monoclonal,

USA) for target proteins for 2 h at room temperature. Subsequently, membranes were washed

three times with TBST. Then membranes were incubated with secondary antibody (Anti-

Mouse produced in rabbit, SAB3701212, Sigma) for 2 h at room temperature followed by the

same wash step. Membranes were visualized with ECL Western Blotting Substrate. β-Actin

was used as an internal reference protein to normalize protein expression. The images were

scanned with a GS-800 Calibrated Densitometer (Bio-Rad, Hercules, CA, USA), and the lanes

were analyzed with Image J software.

Data analysis

Functional analysis of the identified proteins from mammary and liver was performed by

DAVID Bioinformatics Resources (http://david.abcc.ncifcrf.gov/home.jsp). Differential

expressed proteins were imported into the online Search Tool for the Retrieval of Interacting

Genes/Proteins (STRING) software (http://string-db.org) to predict protein interactions [30].

Quantified proteins were processed using Cluster 3.0 software to investigate the hierarchical

clustering of the identified proteins. Java TreeView was used for data visualization.

Results

DMI and milk composition

Although DMI was similar between pair-fed and heat-stressed cows (by experimental design),

milk yield was significantly decreased in heat-stressed cows comparative with pair-fed cows.

Milk protein content was different between two groups (Table 1), while milk fat content was

not different between two groups.

Statistical analysis of identified proteins

A total of 2,789 proteins in mammary tissue and 2,781 proteins in liver were identified through

peptide identification. These identified proteins from mammary tissue and liver were also

quantified by the iTRAQ proteomic approach listed in S2 and S3 Tables. 80 proteins in mam-

mary tissue and 200 proteins in liver were differed in abundance between heat-stressed and

pair-fed thermal neutral control cows, respectively. In mammary tissue, several proteins were

different including chitinase-3-like protein 1 and lysosomal protective protein that were signif-

icantly increased, while cytoplasmic malate dehydrogenase and signal recognition particle 19

kDa protein were decreased in heat-stressed cows compared with pair-fed control cows. In

liver, several proteins belonging to the heat shock protein family were increased, while several

subunits of NADH dehydrogenase complex were decreased in heat-stressed cows compared

with pair-fed control cows.

Western blot of HSP 90α/β in liver and mammary gland showed differences between treat-

ment groups (S1 Fig), which were consistent with proteomic results.
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Cluster analysis

To gain insights into biological differences between heat-stressed and pair-fed cows, proteins

which were quantified differentially from mammary tissue and liver were subjected to hierar-

chical clustering by Cluster 3.0 software (bonsai.hgc.jp/~mdehoon/software/cluster/software.

htm). Hierarchical clustering analysis revealed that protein profiles could be used to accurately

classify mammary tissue and liver samples from heat-stressed and pair-fed cows (Fig 1). For

mammary tissue, cluster 1 including 36 proteins was significantly decreased and cluster 2

including 44 proteins was significantly increased in heat-stressed compared to control cows.

For liver tissue, cluster 1 including 64 proteins was significantly decreased and cluster 2 includ-

ing 136 proteins was significantly increased in heat-tressed compared to control cows.

Functional and pathway analysis of the differentially expressed proteins

Based on the annotated functions, differentially expressed proteins from the mammary tissue

and liver were categorized into biological processes, cellular components, and molecular func-

tions (Figs 2 and 3, respectively). We found that most of the differentially expressed proteins

from the mammary tissue and liver between heat-stressed and pair-fed cows were located in

the intracellular, cytoplasm and organelles that were involved in protein metabolic processes.

For molecular function, most of the differentially expressed proteins in mammary tissue were

associated with catalytic activity, while most differentially expressed proteins in liver were

associated with protein binding.

Further, we found that several signaling pathways were altered by heat stress. Pyruvate

metabolism, and glyoxylate and dicarboxylate metabolism pathways were significantly differ-

ent in the mammary tissue, while antigen processing and presentation, and oxidative phos-

phorylation pathways were significantly different in the liver (Table 2).

Protein interaction analysis of the differentially identified proteins

Protein-protein interactions of the differentially expressed proteins from the mammary tissue

and liver were predicted by STRING software. In the mammary tissue, it was predicted that

acyl carrier protein interacted with cytochrome c, cytoplasmic malate dehydrogenase (MDH1)

and mitochondrial malate dehydrogenase (MDH2). In the liver, several HSPs including heat

Table 1. THI and effects of pair-fed or heat stress on feed intake, milk yield and milk compositions.

Items Treatment SEM P value

PF4 HS5 Trt1 Day T×D2 Per×Trt3

THI 64.6 82.4 0.34 < .0001 0.6662 0.5899 0.9623

DMI, Kg 10.1 10.2 0.94 0.8922 < .0001 1.0000 0.6542

Milk yield, Kg/d 25.9 21.5 1.22 0.0372 < .0001 0.5158 0.0774

Protein, % 2.68 2.57 0.021 0.0149 0.0003 0.4408 0.4278

Fat, % 4.28 4.13 0.291 0.6557 0.0223 0.9315 0.1889

Lactose, % 4.79 4.66 0.102 0.3055 0.0016 0.5469 0.1135

Milk solid not fat, % 8.03 7.77 0.098 0.0765 0.0002 0.0035 0.8140

1Treatment.
2Treatment by day interaction.
3Period by treatment interaction.
4Pair-fed thermoneutral.
5Heat stress.

https://doi.org/10.1371/journal.pone.0209182.t001
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shock cognate 71 kDa protein, HSP 90-beta and HSP 90-alpha were directly interacted with

each other and served as central “hubs” in the protein interaction networks with more rela-

tionships than other proteins. They also directly interacted with non-HSPs, such as hypoxia

up-regulated protein 1, T-complex protein 1 subunit epsilon and stress-induced-phosphopro-

tein 1. These non-HSPs also interacted with other proteins, such as histone deacetylase 1 and

complement component C7. Interaction networks of the differentially expressed proteins

from the mammary tissue and liver are shown in Fig 4A and 4B, respectively.

Discussion

In this study, changes in the abundance of proteins in mammary and hepatic tissue resulting

from heat stress were investigated using the iTRAQ proteomic approach. Over 2,700 proteins

were identified in each tissue, 80 and 200 proteins were differentially expressed in the mam-

mary tissue and liver, respectively, in response to the heat stress. Most notably there was a dra-

matic increase in HSPs in the liver in response to heat stress and then were considered as

central “hubs” in the interaction networks that were independent of the feed intake reduction

seen in heat-stressed cows.

Fig 1. Hierarchical clustering of differentially expressed proteins in mammary gland (A) and liver (B) between heat-stressed

and pair-fed cows. The bar color represents a logarithmic scale from -3.0–3.0. HS mean heat stress; PF mean pair-fed.

https://doi.org/10.1371/journal.pone.0209182.g001
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Several previous studies have indicated that milk yield and milk protein content were

decreased in heat-stressed compared to control cows [6,8]. In our study, the experimental

design ensured the DMI was similar between heat-stressed and pair-fed cows, and milk yield

was also decreased in heat-stressed cows [5]. Regarding the milk components, Bernabucci

et al. (2010) found that contents of α- and β-casein in bovine milk were decreased, and κ-

casein was not different in summer milk when compared with spring milk [31]. Later, they

found that casein fractions have the lowest values in the summer and the greatest values in the

winter, while the milk whey was greater in summer than in the winter and spring [2]. More

recently, decrease in casein concentration and αs2-casein number, while increase in milk whey

was observed in milk from heat-stressed cows compared with pair-fed control cows [6]. Simi-

larly, in mammary epithelial cells exposed to heat stress in vitro, caseins mRNA was decreased

compared to controls [11,32–33]. In our study, casein fractions (αS1-, αS2-, β- and κ-casein)

and major milk whey in mammary tissue were not significantly different between heat-stressed

and pair-fed cows that were partly similar to the results of the above-mentioned studies in

vivo. Although individual milk proteins in mammary gland were not statistically different, the

total milk protein content was affected by heat-stress in our study. This phenomenon may

indicate lower biosynthesis of milk protein in mammary gland from heat-stressed cows. Sev-

eral proteins, such as chitinase-3-like protein 1 (CHI3L1) and lysosomal protective protein,

were increased in mammary tissue from heat-stressed cows compared with pair-fed control

Fig 2. Differentially expressed proteins from mammary gland between heat-stressed and pair-fed control cows grouped into

biological process (A), cellular component (B) and molecular function (C) based on David bioinformatics resources.

https://doi.org/10.1371/journal.pone.0209182.g002
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cows in this study. CHI3L1 is a minor milk protein in mammary secretions that mediates

mammary tissue remodeling and differentiation [34–35]. More recently, Wall et al. (2013)

found expression level of CHI3L1 mRNA was significantly lower in four-times daily milking

than two-times daily milking during unilateral frequent milking (first 21 day of lactation), that

corresponded to up- and down-regulation of milk yield in paired udder halves, respectively.

CHI3L1 mRNA level negatively correlated with milk yield and related to the response of the

mammary tissue to the changes in unilateral frequent milking were implicated [36]. In other

studies, CHI3L1 has been reported to regulate oxidant injury, antibacterial response and

inflammasome activation that was considered as a strong inducer of several signaling pathways

including mitogen-activated protein kinase and phosphotidylinositol-3-kinase pathways [37–

38]. Thus, we suggested that the increase in CHI3L1 may negatively associated with lactogen-

esis in the mammary gland and resulted in decrease in milk yield from heat-stressed cows. As

a result, we found that significantly decreased milk yieldin heat-stressed cows, compared to

Fig 3. Differentially expressed proteins from liver between heat-stressed and pair-fed control cows grouped into biological

process (A), cellular component (B) and molecular function (C) based on David bioinformatics resources.

https://doi.org/10.1371/journal.pone.0209182.g003

Table 2. Pathway analysis of differential expressed proteins from mammary gland and liver between heat-stressed and pair-fed cows.

Tissues Pathway Name Count Hits P Value Fold Enrichment

Mammary gland Pyruvate metabolism 3 37 0.011 17.41

Glyoxylate and dicarboxylate metabolism 2 11 0.048 39.05

Liver Oxidative phosphorylation 7 130 0.004 4.51

Antigen processing and presentation 4 67 0.043 5.00

https://doi.org/10.1371/journal.pone.0209182.t002
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pair-fed cows. As discussed previously, we suggested that several proteins increased in the

mammary tissue of heat-stressed cows may contribute to increase the immune function and

protecting against mammary cells damage. Unfortunately, we could not detect the changes in

Fig 4. Protein interaction network of the differential proteins from mammary gland (A) and liver (B) predicted with

STRING software. Each node presents a protein; line colors present the types of evidence: pink lines from experimental

study, the blue lines from databases, and the yellow lines from abstracts of articles published in PubMed.

https://doi.org/10.1371/journal.pone.0209182.g004
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milk proteome response to heat stress as a complementary, and if necessary, further studies

should be performed.

Cows exposed to heat stress have negative energy balance [7,39] and several researchers

indicated that loss of body weight and plane of postabsorptive nutrition in heat-stressed cows

were related to the negative energy balance [39–40]. To respond to heat stress, cows have a

coordinated change in energy supply and utilization by multiple tissues. More recently, differ-

ences in metabolites in the serum between spring and hot summer cows were identified by

integrated metabolomic and lipidomic approaches that were involved in energy and amino

acids metabolic pathways [41]. Regarding the changes in mammary proteome, decreased cyto-

solic and mitochondrial malate dehydrogenase (MDH1 and MDH2) were identified in heat-

stressed cows. They function as key enzymes in the tricarboxylic acid cycle (TCA) for energy

metabolism through aerobic respiration. Interestingly, the TCA cycle is considered as a hub

for the biosynthesis of lipids, proteins and nucleic acids, as their precursors originate from

TCA cycle intermediates [42]. As a result, biosynthesis of nucleic acids and protein was inhib-

ited by heat treatment [40]. However, decreas of MDH1 and MDH2 in mammary tissue of

heat-stressed cows was affected by cellular energy state and intermediates in TCA cycle, further

investigation is recommended to check subsequent regulation of milk biosynthesis. Regarding

the changes in the liver proteome, we found several proteins, such as cytochrome b-c1 complex

subunit 6, cytochrome c oxidase subunit 6C, NADH dehydrogenase [ubiquinone] 1 beta sub-

complex subunit 6, NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, and cyto-

chrome P450 1A1 and 2A1 were decreased in heat-stressed compared to control cows. Our

results were similar to the results of liver proteome of cows exposed to heat stress or cooling

conditions during the dry period reported by a previous study [43]. These proteins were

assigned into the oxidative phosphorylation pathway and it is well known that they are the

components of the electron transport complex [44]. Of these, cytochrome b-c1 complex sub-

unit 6 is an essential component for cytochrome c1 and cytochrome c complex, and reduced

cytochrome c oxidase complex activity reduces ATP production and supplying glycolysis for

ATP synthesis [45–46]. When ATP production reduced from electron transport complex are

not enough to meet the energy requirement of dairy cows, mobilizing adipose and skeletal

muscle tissues would be marked by increasing the circulation of cortisol and plasma urea

nitrogen levels [47–48]. NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6,

one of core subunits of complex I, is related to the stability and activity of complex I. Defect of

complex I was linked to oxidative stress [49]. Thus, we put forward a novel hypothesis that

decrease in these proteins may contribute to the reduction of energy production and implicat-

ing oxidative stress in liver in heat-stressed cows compared to control cows. However, the rela-

tionship between decrease in electron transport complex proteins and negative energy balance

in the heat-stressed cows needs further investigation.

Furthermore, numerous studies have demonstrated that gene expression of HSPs and

secreted proteins are increased in the conditions of heat stress [20–21,50–51]. The HSPs family

of proteins is associated with preventing protein denaturation and repairing unstable proteins

that are produced by heat stress [52–53]. Thus, HSPs play a cytoprotective role and interact

with a variety of cellular proteins [53–54]. Several previous studies found that mRNA levels of

HSP70 were increased in the initial period and then gradually decreased in mammary epithe-

lial cells exposed to acute heat stress in vitro [11,32–33]. In addition, increases in the expres-

sion of several HSPs were observed in milk cells of dairy goats exposed to heat stress [55].

Unexpectedly, we found that HSPs family was not significantly different in mammary tissue of

the cows exposed to heat stress comparative with control cows lasting 9 days. Interestingly, dif-

ferences in expression levels of HSPs were presented among specific tissue under the heat

stress, the gut and liver had been previously reported to be the tissues most sensitive to heat
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stress [56]. In our study, several HSPs were increased in the liver of heat-stressed cows and

were shown to be central “hubs” in the protein interaction networks. Expression of HSPs is

linked to the kinetics of thermotolerance acquisition, maintenance, and decay [57]. Thus, the

increased expression HSPs may involve in metabolic adaptation to thermal stress and capable

of acquired thermotolerance in the liver other than mammary tissue of heat-stressed cows. In

addition, a previous study has indicated that HSP accumulation in lipopolysaccharide-stimu-

lated human macrophages attenuated the expression of TNF-alpha mRNA and protein that

served as an inflammatory cytokine [58], and as such HSPs may serve as modulating signals

for immune and inflammatory responses [59]. As well, HSPs may facilitate antigen presenta-

tion in several cells [60]. In accordance, we have also found that several differentially abundant

proteins in liver including HSP 90-beta and HSP 90-alpha were involved in the antigen pro-

cessing and presentation by pathway analysis. As implicated in previous study, we therefore

believe that changes in liver proteins may protect against the negative aspects including

inflammatory-like condition of cows induced by heat stress.

Conclusions

In summary, iTRAQ proteomic approach was applied to investigate the liver and mammary

proteome profiles from heat-stressed and pair-fed thermal neutral cows. Our results shown

that most of the differentially expressed proteins from mammary and liver were all associated

with protein metabolic process. Regarding the mammary gland, differentially expressed pro-

teins were related to pyruvate, glyoxylate and dicarboxylate metabolism pathways. Regarding

the liver, differentially expressed proteins were associated with oxidative phosphorylation and

antigen processing and presentation pathways. In addition, several heat shock proteins had

more interaction than other proteins in the interaction network. The findings revealed the

changes in mammary and liver proteome of heat-stressed cows independent of feed intake

that may help to understand metabolic adaptation to thermal stress and further for exploring

the effects of heat stress on milk production and components.
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