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Alteration of ryanodine receptor (RyR)-mediated calcium
(Ca2�) signaling has been reported in Alzheimer disease (AD)
models. However, the molecular mechanisms underlying altered
RyR-mediated intracellular Ca2� release in AD remain to be fully
elucidated. We report here that RyR2 undergoes post-translational
modifications (phosphorylation, oxidation, and nitrosylation) in
SH-SY5Y neuroblastoma cells expressing the �-amyloid precursor
protein (�APP) harboring the familial double Swedish mutations
(APPswe). RyR2 macromolecular complex remodeling, character-
ized by depletion of the regulatory protein calstabin2, resulted in
increased cytosolic Ca2� levels and mitochondrial oxidative stress.
We also report a functional interplay between amyloid � (A�),
�-adrenergic signaling, and altered Ca2� signaling via leaky RyR2
channels. Thus, post-translational modifications of RyR occur
downstream of A� through a �2-adrenergic signaling cascade that
activates PKA. RyR2 remodeling in turn enhances �APP pro-
cessing. Importantly, pharmacological stabilization of the binding
of calstabin2 to RyR2 channels, which prevents Ca2� leakage, or
blocking the �2-adrenergic signaling cascade reduced �APP pro-
cessing and the production of A� in APPswe-expressing SH-SY5Y
cells. We conclude that targeting RyR-mediated Ca2� leakage may
be a therapeutic approach to treat AD.

Alzheimer disease (AD)5 is one of the leading neurodegen-
erative pathologies in the western countries. The two main neu-
ropathological lesions of AD are amyloid plaques, composed
mainly of amyloid � (A�) peptides, and neurofibrillary tangles,
composed of hyperphosphorylated tau (1, 2). The A� peptides,
which form the core of the amyloid plaques, are produced by
the sequential proteolytic cleavages of the � amyloid precursor
protein (�APP). �APP can be processed by two alternative
post-translational pathways: (i) an amyloidogenic route in
which �APP is cleaved by �-secretase (BACE-1) to generate a
soluble sAPP� fragment and a C-terminal fragment of 99
amino acids (C99), which is further cleaved by a presenilin (PS1
and PS2)-dependent �-secretase complex to generate A� and
AICD (APP intracellular domain) and (ii) a non-amyloidogenic
pathway in which �APP is sequentially hydrolyzed by �-secre-
tase to produce a soluble sAPP� and a C-terminal fragment of
83 amino acids (C83). C83 is further cleaved by �-secretase to
generate a p3 peptide and AICD (3, 4). The amyloid cascade
hypothesis is mainly supported by genetic studies indicating
that autosomal dominant cases of AD (familial AD) are linked
to mutations in �APP (5) and on PS1 and PS2 (6, 7), leading to
modifications of A� production.

Data are now converging to suggest an important contribu-
tion of endoplasmic reticulum (ER) Ca2� homeostasis deregu-
lation in AD pathological process (8, 9). This combines patho-
logical ER Ca2� release via the inositol 1,4,5-trisphosphate
(IP3R) (10 –12), and the ryanodine (RyR) receptors (9, 13–16).
Importantly, alteration of RyR-mediated Ca2� release likely
contributes to ER Ca2� deregulation in AD (9).
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RyR dysfunction has been reported in AD models; however, the
molecular mechanisms underlying RyR-mediated ER Ca2� leak in
AD are still not fully understood. RyR macromolecular complexes
include four RyR protomers (565 kDa each) and several regulatory
proteins including the RyR channel-stabilizing subunit calstabin.
Recent studies have revealed that RyR-mediated ER Ca2� deple-
tion is linked to post-translational modifications (hypernitrosyla-
tion, hyperphosphorylation, oxidation) of the RyR macromolecu-
lar complexes resulting in calstabin depletion and “leaky RyR
channels” (17–19).

�2-Adrenergic receptors (�2-ARs) have been implicated in the
development of AD both in humans and in AD animal models
(20–23). However, the association between �-adrenergic signal-
ing and RyR-mediated Ca2� deregulation in AD has not been
reported.

Results

Remodeling of RyR2 macromolecular complexes in SH-SY5Y
neuroblastoma cells stably expressing APPswe

We examined post-translational modifications of RyR2
channels consistent with the biochemical signature of leaky
RyR2 channels (19, 24 –28) in an in vitro AD study model. We
used human SH-SY5Y neuroblastoma cells stably expressing
pcDNA3.1 (control) or human �APP harboring the double
Swedish mutations (APPswe: APPKM670/671NL) constructs.
We previously reported that SH-SY5Y cells expressing APPswe
yield increased levels of APP C-terminal fragments (CTFs) frag-
ments (C99 and C83) and of A� peptides (13).

RyR2 was immunoprecipitated and immunoblotted for pro-
tein kinase A (PKA) phosphorylation (at residue Ser-2808),
oxidation (2,4-dinitrophenylhydrazone (DNP)), nitrosylation
(anti-Cys NO), and levels of the channel stabilizing subunit
calstabin2 (FKBP12.6) in the RyR2 macromolecular complex.
Neuronal RyR2 from control SH-SY5Y cells had no biochemi-
cal remodeling of the RyR2 macromolecular complex, whereas
APPswe-expressing cells exhibited RyR2 PKA phosphoryla-
tion, oxidation, nitrosylation, and calstabin2 depletion (Fig. 1,

A–E). RyR2 macromolecular complexes from APPswe-ex-
pressing cells also exhibited reduced levels of serine/threonine
protein phosphatase 1 (PP1) and spinophilin (Fig. 1, A, F, and G)
(24, 25). We then tested whether the Rycal S107 can prevent
depletion of calstabin2 from RyR2 (19, 26 –28). S107 had no
effect on PKA phosphorylation or oxidation/nitrosylation of
RyR2 (Fig. 1, A–D) but significantly prevented dissociation of
calstabin2 from RyR2 channels (Fig. 1, A and E). S107 did not
restore PP1 and spinophilin levels in RyR2 complexes (Fig. 1, A,
F, and G). PKA phosphorylation of RyR2 occurs downstream of
�2-AR activation (24, 25). In addition, we already reported that
PKA, H2O2, and Noc-12 (NO-donor) individually caused a
�2-fold and, in combination, caused an �4-fold decrease in the
binding affinity of calstabin2 to neuronal RyR2 (19). Because
the �2-AR has been reported to trigger AD-related biochemical
and anatomical alterations (20 –23), we examined the effects of
�2-AR blockade on RyR2 post-translational modifications and
remodeling. The selective �2-AR antagonist ICI118–551 (ICI)
prevented RyR2 PKA phosphorylation, oxidation, nitrosylation,
and depletion of calstabin2 (Fig. 1, A–E) without affecting PP1 and
spinophilin levels on RyR2 complex (Fig. 1, A, F, and G).

We further performed several tests to ascertain that RyR2
post-translational remodeling occurs through �2-AR in our
study model. Indeed, SH-SY5Y cells express both �1- and
�2-AR but not �3-AR (29). APPswe cells were treated using
increasing concentrations of the �2-AR antagonist ICI (Fig. 2, A
and B), the PKA inhibitor (H-89) (Fig. 2, C and D), or the �1-AR
antagonist CGP 20712A (Fig. 2, E and F). We show that com-
plete blockade of RyR2 phosphorylation and calstabin2 disso-
ciation from RyR2 was obtained with ICI at 10 nM, 0.1 �M, and
1 �M (Fig. 2, A and B). Accordingly, we also observed a dose-
dependent blockade of RyR2 post-translational remodeling in
APPswe cells with H-89 with a maximal effect at 1 �M and 5 �M

(Fig. 2, C and D). Importantly, treatment of APPswe cells with
the �1-AR antagonist CGP 20712A up to 1 �M did not modify
either RyR2 phosphorylation or calstabin2 binding to RyR2
(Fig. 2, E and F). Although H-89 does not behave as a fully

Figure 1. Remodeling of RyR2 macromolecular complex in SH-SY5Y neuroblastoma cell line stably expressing APPswe. A, representative SDS-PAGE
analyses and quantification of RyR2 immunoprecipitated from the human SH-SY5Y neuroblastoma cell line stably expressing APPswe or mock vector used as
control (Control). RyR2 was immunoprecipitated and immunoblotted for RyR2-pS2808 (RyR2 PKA phosphorylation site), S-nitrosylation (CysNO) and oxidation
(DNP) as well as components of the RyR2 channel complex including: protein phosphatase 1 (PP1) and its anchoring protein spinophilin and calstabin2. Cells
were treated with either S107 (10 �M, for 12 h) or ICI118 –551 (ICI) (1 �M, for 12 h). APPswe�ICI treatment was conducted in the same set of experiments as the
control, APPswe, and APPswe�S107 but was run on a separate membrane. B–G, graphs represent the mean � S.E. obtained from three independent
experiments. *, p � 0.05 calculated versus control using one-way ANOVA and Bonferroni post-test. A.U., arbitrary units.
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specific inhibitor of PKA (30), it supports our view that RyR2
post-translational remodeling in APPswe-expressing cells
occurs specifically and in a dose-dependent manner through
�2-AR activation (Fig. 2, A–F).

A� causes the biochemical signature of leaky RyR2 channels

We then sought to determine the potential influence of A� or
other APP metabolites on the RyR2 macromolecular complex
remodeling. We used an A� preparation containing soluble A�

Figure 2. Remodeling of the RyR2 macromolecular complex in the SH-SY5Y neuroblastoma cell line stably expressing APPswe and in SH-SY5Y control cells.
Representative SDS-PAGE analyses and quantification of RyR2 immunoprecipitated from the human SH-SY5Y neuroblastoma cell line stably expressing APPswe
treated with different doses of ICI118–551 (ICI) (1 nM, 10 nM, 100 nM, and 1000 nM, for 12 h) (A), H-89 (1 nM, 1000 nM, and 5000 nM, for 12 h) (C), and CGP 20217A (1 nM,
10 nM, 100 nM, and 1000 nM, for 12 h) (E), and from SH-SY5Y control cells treated with different doses of Isoproterenol (1 nM, 10 nM, and 1000 nM, for 1 h) (G). RyR2 was
immunoprecipitated and immunoblotted for RyR2-pS2808 (RyR2 PKA phosphorylation site) and for calstabin2. Graphs B, D, F, and H represent the mean � S.E.
obtained from three independent experiments. *, p � 0.05 calculated versus control using one-way ANOVA and Bonferroni post-test. A.U., arbitrary units.

RyR post-translational modifications enhance A� production
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oligomers (considered as the most toxic forms of A�) (Fig. 3I
and Ref. 31) and found that exposure of control human
SH-SY5Y neuroblastoma cells to A� (1–5 nM, 30 – 60 min)
resulted in RyR2 PKA phosphorylation, oxidation, nitrosyla-
tion, and depletion of calstabin2 from the RyR2 macromolecu-
lar complex (Fig. 3, A–E). However, in contrast to SH-SY5Y-
APPswe cells, the amounts of PP1 and spinophilin in the RyR2
complex were unaffected by acute treatment with A� (Fig. 3, A,
F, and G). Pretreatment with S107 reduced A�-induced calsta-
bin2 depletion from the RyR2 macromolecular complex (Fig. 3,
A and E). We also show that treatment of SH-SY5Y control cells
with increasing concentrations of the �-AR agonist isoprotere-
nol induces RyR2 phosphorylation associated with a dissocia-
tion of calstabin2 from RyR2 (Fig. 2, G and H). ICI inhibited

A�-inducedRyR2remodeling, thuspreventingRyR2PKAphos-
phorylation, oxidation, nitrosylation, and calstabin2 depletion
(Fig. 3, A–E). Neither S107 nor ICI affected PP1 and spinophilin
levels in the RyR2 complex. Acute A� exposure increased
cAMP levels (14.2 � 0.2 versus 8.0 � 0.3 pmol/mg), which was
inhibited by ICI (7.9 � 0.1 pmol/mg) (Fig. 3H), suggesting that
A� acts upstream of �2-AR signaling. These data and those of
Fig. 1 demonstrate that RyR2 remodeling is likely linked to A�
(Figs. 1 and 3, A and H) and to �2-AR activation (Fig. 2, A–H).
Because our A� preparation contains monomeric and low
molecular weight oligomeric forms of A�, we cannot attribute
the observed effects to a specific A� species. We could detect
only a moderate elevation of cAMP levels in APPswe model
(�20% increase over control cells considered as 100%, n � 3;

RyR post-translational modifications enhance A� production
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data not shown), but data were obtained at only one time point.
Thus, other experiments will be necessary to unravel time-
dependent modulation of cAMP production in the APPswe
model.

We also used a pharmacological approach to modulate APP
metabolism by using �-secretase (LY288672, 30 �M) or �-secre-
tase (ELND006, 5 �M) inhibitors and investigate the potential
implication of other �APP metabolites in RyR2 remodeling.

Although inhibition of �-secretase reduces C99 fragment
production and enhances the level of C83 fragment, �-secretase
inhibition enhances the levels of both C99 and C83 fragments
(Fig. 3, J and K). As expected, �- and �-secretase inhibitors fully
block intracellular and extracellular A� production (Fig.
3, L–O). Interestingly, blocking �-secretase or �-secretase
reduces RyR2 PKA phosphorylation, oxidation, nitrosylation,
and calstabin2 depletion in APPswe-expressing cells (Fig. 3,
P–T).

A�-mediated remodeling of RyR2 channel increases cytosolic
Ca2� and mitochondrial ROS in SH-SY5Y neuroblastoma cells

We previously reported that SH-SY5Y cells expressing
APPswe display increased cytosolic Ca2� due to increased Ca2�

release from the ER via IP3R and RyR and enhanced Ca2� entry
via voltage-dependent and voltage-independent plasma mem-
brane Ca2� channels (13). We now report that SH-SY5Y cells
expressing APPswe exhibit increased basal cytosolic Ca2� sig-
nals compared with control cells (Fig. 4, A and B). Accordingly,
exogenous A� treatment of SH-SY5Y cells for 12 h (an experi-
mental condition mimicking APPswe cells chronically overpro-
ducing A�) also results in elevated basal [Ca2�]cyt (Fig. 4, C and
D). As previously reported (35), acute application of A� to
human neuroblastoma SH-SY5Y cells induced a slow rise of
[Ca2�]cyt (Fig. 4, E and F). Interestingly, A�-induced Ca2� ele-
vation was prevented by S107, ICI, or ryanodine pretreatment
(�F/F0 � 1.95 � 0.16 (n � 57), 0.63 � 0.08 (n � 31), 0.28 � 0.08
(n � 44), 0.63 � 0.09 (n � 23) in A�, A��S107-, A��ICI-, and
A��ryanodine-treated cells, respectively) (Fig. 4, E and F). Our

finding is in accordance with data showing that preincubation
with inhibitory ryanodine virtually eliminated the generation of
Ca2� signals elicited by oligomeric A� in primary hippocampal
neurons (36).

S107, ICI, and ryanodine did not completely reverse the rise
in [Ca2�]cyt. This may indicate that, in addition to leaky RyR2,
there are other components that contribute to the A�-induced
rise in [Ca2�]cyt. Possibilities include: 1) intracellular Ca2�

release via the IP3Rs and 2) Ca2� entry through the plasma
membrane as previously reported (13). Accordingly, A�-medi-
ated Ca2� elevation is lower in nominally Ca2�-free extracellu-
lar medium, and this elevation is completely reversed by ryan-
odine (data not shown).

We also analyzed basal [Ca2�]cyt in APPswe cells untreated
or treated with S107 or ICI (Fig. 4, A and B). We show that S107
or blocking �2-adrenergic signaling by ICI significantly reduce
basal [Ca2�]cyt in APPswe-expressing cells (Fig. 4, A and B).

It is known that IP3Rs are activated by Ins(1,4,5)P3, a meta-
bolic product of GPCR activity, and that the activation of these
channels is amplified by Ca2�-induced Ca2� release, a regener-
ative mechanism by which Ca2� enhances its own release from
IP3Rs and RyRs (37). Accordingly, it was already reported that
exacerbated IP3R-evoked Ca2� signals in the PS1M146V- and the
3�Tg-AD-derived neurons occur through increased Ca2�-in-
duced Ca2� release through the RyR (15). We show herein that
increased inositol 1,4,5-trisphosphate-mediated cytosolic Ca2�

signal (carbachol stimulation) in APPswe (Fig. 4, G–J) contrib-
uted to RyR-mediated Ca2� release/leak. Thus, stabilization of
calstabin2 on RyR2 channels by S107 or blockade of RyR2 phos-
phorylation by ICI (Fig. 4, G0-J), both, lowers carbachol-medi-
ated cytosolic Ca2� signals as revealed by reduced peak values
and the area under the curve reflecting integrated Ca2�

response (Fig. 4, G–J). Similar results were obtained using cyto-
solic aequorin probe providing “calibrated” measurements of
[Ca2�]cyt (38) (supplemental Fig. S1). All over, these data dem-
onstrate that cytosolic Ca2� increase in APPswe cells and in

Figure 3. A� caused the biochemical signature of leaky RyR2 channels. A, representative SDS-PAGE analyses and quantification of RyR2 immunoprecipi-
tated from the wild-type human SH-SY5Y neuroblastoma cell line treated with oligomeric A� (1–5 nM, 30 – 60 min) alone or in combination with either S107 (10
�M, for 12 h) or ICI118 –551 (ICI) (1 �M, for 12 h). RyR2 was immunoprecipitated and immunoblotted for RyR2-pS2808 (RyR2 PKA phosphorylation site),
S-nitrosylation (CysNO), and oxidation (DNP) as well as components of the RyR2 channel complex as in Fig. 1. B–G, graphs represent the mean � S.E. obtained
from three independent experiments. *, p � 0.05 calculated versus SH-SY5Y untreated cells used as control (Control) using one-way ANOVA and Bonferroni
post-test. H, A� treatment (1–5 nM) for 12 h caused a rise in intracellular [cAMP] (pmol/mg of total proteins) in the SH-SY5Y neuroblastoma cell line that was not
reduced by S107 (10 �M, for 12 h) and reduced by ICI (1 �M, for 12 h) (n � 5 for each condition). Data are the mean � S.E. *, p � 0.05 calculated versus Control
using one-way ANOVA and Bonferroni post-test. I, a representative Tris-Tricine gel showing oligomeric A� preparations obtained from conditioned media of
CHO cells stably transfected with hAPP695 cDNA harboring London mutation (APPLDN: APPV642I). Conditioned media of CHO cells stably transfected with
pcDNA4 empty vector were used as control. *, nonspecific band. J, representative SDS-PAGE and Tris-Tricine gels showing the modulation of �APP metabolism
in SH-SY5Y cells expressing APPswe treated for 12 h with �-secretase inhibitor (inh; LY288672, 30 �M, for 12 h; Ref. 32) or �-secretase inhibitor (ELND006, 5 �M,
for 12 h; Refs. 33 and 34) or with DMSO (control for �-secretase inhibitor) or vehicle (control for �-secretase inhibitor) and revealed on total extracts. �APP was
detected using the APP N-terminal antibody. �-CTF (C99) was detected using the 6E10 antibody. �- and �-CTFs (C83 and C99, respectively) were detected using
the APP C-terminal antibody. Actin was used as loading control. K, graph represents the mean � S.E. of APP, C99, and C83 obtained from 5– 8 independent
experiments as shown in J. *, p � 0.05 calculated versus controls (DMSO or vehicle) using one-way ANOVA and Tukey’s multiple comparisons test. L, represen-
tative Tris-Tricine gel showing total intracellular A� in the SH-SY5Y neuroblastoma cell line stably expressing APPswe, control (DMSO), or treated for 12 h with
�- or �-secretase inhibitors as in J. Actin was used as loading control. M, the graph represents the mean � S.E. obtained from 3 independent experiments. *, p �
0.01 calculated versus DMSO treated SH-SY5Y APPswe cells using one-way ANOVA and Tukey’s multiple comparisons test. N and O, ELISA of A�40 (N) and of
A�42 (O) done on cell culture media (50 �l) of human SH-SY5Y neuroblastoma cell line stably expressing APPswe treated as described in J. DMSO-treated cells
were used as control. A� was quantified using A�40 or A�42 standard curves. The graph represents the mean � S.E. from three experiments and is expressed
in pg/mg protein. *, p � 0.01 calculated versus DMSO treated SH-SY5Y APPswe cells using one-way ANOVA and Tukey’s multiple comparisons test. P,
representative SDS-PAGE analyses and quantification of RyR2 immunoprecipitated from the human SH-SY5Y neuroblastoma cell line stably expressing mock
vector used as control (Control) or APPswe treated as described in J. RyR2 was immunoprecipitated and immunoblotted for RyR2-pS2808 (RyR2 PKA phos-
phorylation site), S-nitrosylation (CysNO), and oxidation (DNP) as well as calstabin2. Q–T, the graphs represent the mean � S.E. obtained from three indepen-
dent experiments. *, p � 0.05 calculated versus control; #, p � 0.05 calculated versus DMSO or vehicle using one-way ANOVA and Bonferroni post-test. A.U.,
arbitrary units.
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A�-treated cells is largely contributed by RyR-mediated Ca2�

release.
Next we found that both endogenous production (i.e.

APPswe cells) and exogenous application of A� (i.e. treatment
of wild-type SH-SY5Y cells with A� for 12 h) resulted in
increased mitochondrial reactive oxygen species (ROS) pro-
duction (Fig. 4, K and L). Interestingly, mitochondrial ROS pro-
duction stimulated by chronic A� production in SH-SY5Y-
APPswe cells was partially inhibited by both ICI and S107 (Fig.
4M). We also show that acute application of A� enhanced
MitoSOX fluorescence until reaching a steady state plateau

(Fig. 4N). Bar graphs show the mean plateau value of �F/F �
S.E. obtained in each experimental condition and reveal a
significant decrease of MitoSOX fluorescence intensity in
A��ICI cells versus A� alone and A��S107 (Fig. 4O). S107
pretreatment reduced A�-mediated ROS production (plateau
phase of representative data in Fig. 4O), but this reduction was
not statistically significant. These data reveal that A� may con-
tribute to mitochondrial ROS elevation that is significantly
reversed by ICI and to a lesser extent with S107 (Fig. 4, N and
O). These data may indicate that mitochondrial ROS elevation
in APPswe likely results from both �-adrenergic and RyR-me-

RyR post-translational modifications enhance A� production
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diated Ca2� leak. In A�-treated cells, mitochondrial ROS ele-
vation likely occurs in a �-adrenergic-dependent manner and is
only partially due to RyR-mediated ER Ca2� leak.

Pharmacological inhibition of RyR2 leak reduces �APP
metabolism and the production of A� in APPswe-expressing
SH-SY5Y cells

Next, we determined whether S107-mediated inhibition of
RyR2 leak could affect �APP processing and A� production in
SH-SY5Y cells expressing APPswe. Interestingly, the levels of
C83 and C99 were reduced by S107 treatment (1–5 �M) (Fig.
5A, D, E, F, H, and I). As the control, we used dantrolene to
block RyR-mediated Ca2� release (Fig. 5, B, D, and E). C99
undergoes cleavage by �-secretase to yield A�40 and A�42 pep-
tides and AICD (39). AICD is also produced from C83 fragment
upon �-secretase cleavage (39). S107 treatment reduced the
level of AICD (Fig. 5, F and K) and of total intracellular A� (Fig.
5, F and J). Interestingly, the total amount of secreted A�42, but
not of A�40, was also significantly reduced by S107 treatment
in SH-5Y5Y cells expressing APPswe (Fig. 5L). Thus, S107
treatment reduces �-secretase-mediated AICD production in
an APPswe-expressing cells membrane preparation, similar to
�-secretase inhibition (Fig. 6, A and B).

We also evaluated whether S107 affects �APP trafficking
(localization). This was performed using immunofluorescence
and confocal imaging with antibodies recognizing specific cel-
lular compartments involved in �APP trafficking. The cellular
localization of �APP was assessed using Pearson’s correlation
and Mander’s Overlap coefficients (Fig. 6, H–I). We show that
S107 did not alter �APP localization in early endosome (EEA1)
(Fig. 6, C, H, and I), ER (SERCA2b) (Fig. 6, D, H, and I), recycling
endosomes (CD71) (Fig. 6, E, H, and I), late endosomal and
lysosomal membranes (CD63) (Fig. 6, F, H, and I), and the
trans-Golgi network (TGN46) (Fig. 6, G, H, and I).

Blockade of �2- but not �1-adrenergic signaling reduces
�APP metabolism in APPswe-expressing SH-SY5Y cells

As with S107 treatment, blockade of �2-AR with ICI reduced
the production of the C99 fragment in APPswe-expressing
SH-SY5Y cells (Fig. 7, A and B), whereas the blockade of �1-AR

with CGP did not (Fig. 7, C and D). The effect of ICI and S107 on
C99 production was not additive (Fig. 7, E and F). In accordance
with ICI data, inhibition of PKA by H-89 reduced [Ca2�]cyt
(supplemental Fig. S1), and C99 production (Fig. 7, G and H).
Thus, RyR2 channel remodeling occurring downstream of
�2-adrenergic signaling contributes to regulation of �APP
processing.

Discussion

We show herein that RyR post-translational remodeling
accounts for exacerbated RyR2-mediated Ca2� release in an in
vitro AD study model. Enhanced neuronal RyR2-mediated
ER Ca2� leak is linked to pathophysiological post-translatio-
nal modifications in the macromolecular RyR complex (17).
Interestingly, post-translational modifications of RyR2 were
reported in cerebral ischemia (18), where endogenous RyRs
undergo S-nitrosylation and S-gluthathionylation processes
that resulted in high activity channels and ultimately lead to
cortical neuronal death (18). Recently, Liu et al. (19) described
the contribution of RyR2 post-translational remodeling to
stress-related memory impairments.

We report that RyR2 undergoes PKA phosphorylation, oxi-
dation, and nitrosylation in SH-SY5Y-overexpressing APPswe.
Remodeled RyR2 macromolecular complex is depleted of cal-
stabin2 and of both PP1 and its anchoring protein spinophilin.
The equilibrium of phosphorylation and dephosphorylation of
the channel is generally regarded as an important regulatory
mechanism of RyR. Importantly, the amount of spinophilin (a
postsynaptic marker) is decreased in the AD brain (40, 41). We
report a depletion of PP1 and spinophilin in SH-SY5Y-overex-
pressing APPswe mutation producing chronically A� but not
upon acute treatment of wild type SH-SY5Y with oligomeric
A�. This may suggest that spinophilin depletion contributes to
PKA phosphorylation of RyR2 by reducing the targeting of the
phosphatase PP1 to the channel likely at advanced AD stages.
We focused in this study on RyR2 and its associated regulatory
protein calstabin2. We cannot exclude the possibility that RyR1
and RyR3 may also play a role in AD pathology.

Post-translational modifications of RyRs in AD patients have
not been reported yet. However, AD brains manifest excessive

Figure 4. A�-mediated treatment elevates basal cytosolic [Ca2�] and mitochondrial ROS in human neuroblastoma cells. A, representative pseudo-
colored images (projection of Z-stacks) of basal [Ca2�]cyt in human SH-SY5Y neuroblastoma cell line stably expressing APPswe or mock vector used as control
measured using Fluo-4, AM probe. The scale bar represents 20 �m. B, the scatter plot represents calibrated [Ca2�]cyt (nM) obtained in control cells (n � 84) and
in APPswe-expressing cells untreated (n � 42) or treated with S107 (1 �M, for 12 h) (n � 46) or with ICI (10 �M, for 12 h) (n � 47). *, p � 0.05; ***, p � 0.001,
calculated using one-way ANOVA and Tukey’s multiple comparisons test. C, representative pseudo-colored images (projection of Z-stacks) of basal [Ca2�]cyt
measured using Fluo-4, AM in the human SH-SY5Y neuroblastoma cell line treated with A� (1–5 nM) for 12 h. The scale bar represents 20 �m. D, the scatter plot
represents calibrated [Ca2�]cyt (nM) obtained in the control (n � 83) or A�-treated cells (n � 34). ***, p � 0.001 calculated versus control using the t test. E, acute
A� application caused a rise in [Ca2�]cyt in the SH-SY5Y neuroblastoma cell line (WT) (n � 42) that was partially inhibited by either S107 (10 �M) (n � 31), ICI (1
�M) (n � 44), or ryanodine (10 �M) (n � 23) pretreatment. F, the graph shows the mean � S.E. of �F/F0 of Fluo-4 fluorescence in the plateau phase. *, p � 0.001
calculated versus control (wo A�); #, p � 0.001 calculated versus A�-treated cells using one way ANOVA and Tukey’s multiple comparisons test. G, representative
pseudo-colored images (focal plane) of the Fluo-4 signal before (10 s, basal) and after carbachol stimulation (500 �M) (50 s, peak) measured using Fluo-4 AM
probe in SH-SY5Y neuroblastoma cell line stably expressing APPswe non-treated cells (NT) (n � 28) or treated for 12 h with either S107 (1 �M) (n � 14) or ICI (10
�M) (n � 13). The color scale is shown where the black/blue and the yellow/red represent low and high Fluo-4 fluorescence respectively. H, normalized curves
showing carbachol (CCh)-mediated Ca2� responses, presented as the mean �F/F0 � S.E. I, scatter plots represent the mean of peak values presented as mean
�F/F0 � S.E. for non-treated (NT) SH-SY5Y APPswe (n � 28) or cells treated for 12 h with S107 (1 �M, n � 14) or ICI (10 �M, n � 13). J, scatter plots represent the
mean area under the curve (AUC) � S.E. units of the normalized Ca2� response for cells as in J. I and J: *, p � 0,05; **, p � 0,01 analyzed by one-way ANOVA and
Dunnett’s post- test versus APPswe NT. K–M, the graphs represent MitoSOX red dye -fold change in control (n � 228) and APPswe cells (n � 144) (K) and in
control (n � 6) and A�-treated (n � 6) cells (N), and in SH-SY5Y APPswe non-treated (n � 293) and treated with S107 (n � 382) or ICI (n � 136) (M). ***, p � 0.001
analyzed by Student’s t test (K and L) and one-way ANOVA and Dunnett’s post-test versus APPswe NT (M). N and O, acute A� treatment caused a rise in
mitochondrial ROS production, as detected by MitoSOX red dye, in the SH-SY5Y neuroblastoma cell line (n � 293 for A� treated cells) that was not inhibited by
S107 (n � 382) and reduced by ICI (n � 136). The graph shows the mean � S.E. The graph shows �F/F of MitoSox fluorescence in the plateau phase normalized
to the basal level before A� stimulation. *, p � 0.05 using one-way ANOVA and Dunnett’s post-test versus A�.
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Figure 5. Pharmacologic inhibition of RyR2 leak reduced �APP metabolism and the production of CTFs and of A� in SH-SY5Y APPswe model. A,
representative Tris-Tricine and SDS-PAGE analyses of full-length �APP, C83, and C99 levels (revealed as described in Fig. 2J) in SH-SY5Y cells expressing
pcDNA3.1 or APPswe non-treated (0) or treated with S107 (0.1, 1, or 5 �M for 12 h). B, representative Tris-Tricine and SDS-PAGE analyses of full-length �APP and
its CTF (C99 and C83) in SH-SY5Y cells expressing APPswe non-treated (Control) or treated with dantrolene (50 �M) or S107 (1 �M) for 12 h. C–E, graphs show the
mean � S.E. obtained from control (n � 11), S107 (0.1, 1, or 5 �M, n � 5, 3, and 9, respectively), and dantrolene (n � 5). *, p � 0.05; **, p � 0.01, versus non-treated
cells analyzed by one-way ANOVA and Dunnett’s post-test versus APPswe control cells. F, representative Tris-Tricine and SDS-PAGE analyses of full-length
�APP, C83 and C99, A�, and AICD levels in SH-SY5Y cells expressing APPswe non-treated (Control) or treated with S107 (1 �M) for the indicated times (4, 8, 16,
and 24 h). �APP was detected using APP N-terminal antibody. C99 and A� were detected using 6E10 antibody. C83 and C99 and AICD were detected using APP
C-terminal antibody. A and E, actin was used as loading control. G-K, graphs show the mean � S.E. obtained from seven different experiments. *, p � 0.05; **,
p � 0.01; ***, p � 0.001 versus controls at the same time of analysis using two-way ANOVA and the Bonferroni post-test. L, ELISA analyses of extracellular A�40
and A�42 in APPswe cells treated with S107 (1 �M, for 4 h) and presented as % versus APPswe control cells. **, p � 0.01 using t test, from 8 experiments. NT,
non-treated cells.
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generation of reactive nitrogen and ROS, contributing to neu-
ronal cell injury and death via a series of redox reactions (40,
42– 44). cAMP levels are also significantly elevated in CSF from
patients with Alzheimer dementia (45). In addition, PKA acti-
vation has been shown to contribute to the regulation of �APP
processing, to A�-mediated cell death in vitro and in vivo, and
to oxidative stress (46 –50). Interestingly, A� stimulates PKA

activity and PKA-dependent signaling pathways by activating
�-ARs (51–53). Blocking �2-adrenergic signaling diminishes
A� production and delays functional decline in AD (47, 48, 54).
Accordingly, activation of �2-ARs enhances �-secretase activ-
ity and accelerates A� plaques formation (20, 22), a process that
can be blocked by the specific �2-AR antagonist (22). More-
over, it was reported that A�42 peptide binds to the N terminus

Figure 6. Pharmacologic inhibition of RyR2 leak reduced �-secretase activity and does not alter �APP intracellular localization. A, cell-free AICD
production from recombinant C100 peptide performed at 37 °C or 4 °C in the presence of membrane fractions isolated from APPswe cells treated with S107 (1
�M, for 12 h) or with �-secretase inhibitor (inih; 5 �M, for 12 h). C100 and AICD were detected using APP C-terminal antibody. NT, non-treated cells. B, graph
shows the mean � S.E. obtained from seven different experiments. *, p � 0.05; **, p � 0.01 versus APPswe non-treated cells using one-way ANOVA and
Dunnett’s post-test versus APPswe NT. C–G, double-labeling immunofluorescence of SH-SY5Y cells expressing APPswe non-treated or treated with S107 (1 �M)
for 12 h using antibodies against C-terminal (C-ter) APP antibody (green signal) and EEA1 (C), Ca2�-ATPase of the endoplasmic reticulum (SERCA2b) (D), the
recycling endosome marker transferrin receptor (CD71) (E), lysosome membrane and late endosome membrane (CD63) (F), and the trans-Golgi network marker
(TGN46) (G). Green and red signals are depicted in white to have better contrast visualization. Merge and magnified overlay images show green and red signals
co-localization (depicted as yellow signals). The scale bar represents 10 �m. H and I, the graphs show Pearson’s correlation coefficient (H) and Mander’s Overlap
Coefficient (I). M1 corresponds to the green signal overlapping with the red signal. M2 corresponds to the red signal overlapping with the green signal. Analyses
were performed in at least four different fields in each condition obtained from three independent experiments. H and I, differences are statistically
non-significant.
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of �2-ARs, enhancing PKA-dependent AMPA receptor hyper-
activity (55). Consistent with these observations, we show that
acute application of A� to SH-SY5Y neuroblastoma cells
increases cAMP levels and oxidative stress contributing to
RyR2 remodeling that can be improved by treatment with
�2-AR antagonist ICI. On the other hand, we show that both
�2-AR antagonist ICI and PKA inhibitor H-89 reduce ER Ca2�

release and �APP processing. This supports a positive feedback
loop where A� activates �2-AR signaling cascade leading to
RyR2 remodeling and ER Ca2� leak that, in turn, amplifies
�APP processing and A� production (Fig. 8). We show that the
increase of A� levels is linked to �2-AR signaling cascade. How-

ever, we cannot exclude the possibility that other Gs-coupled
receptors in PKA/cAMP pathway may also play a role in AD. It
has previously been demonstrated that isoproterenol, a �-adre-
nergic agonist, increases mitochondrial ROS production in car-
diomyocytes in a concentration- and cAMP-PKA-dependent
manner (56). Mitochondrial ROS production could contribute
to RyR2 oxidation. RyR2 leak may in turn increase mitochon-
drial ROS production (57). This seems to be the scenario in
SH-SY5Y-expressing APPswe cells, as both Ca2� and ROS ele-
vation was reversed by S107 and ICI. The situation in acute
A�-treated cells seems different as mitochondrial ROS eleva-
tion was reversed by the �2-AR antagonist and was only slightly

Figure 7. Blockade of �2- but not of �1-adrenergic, cascade reduced �APP metabolism in SH-SY5Y APPswe cells. A and C, representative Tris-Tricine and
SDS-PAGE analyses of full-length �APP and C99 levels (determined as described in Fig. 5A) in SH-SY5Y cells expressing APPswe non-treated (NT) or treated with
ICI (10 nM, 1 �M, or 10 �M) (A) or with CGP 20712A (10 nM or 10 �M) (C) for 12 h. B and D, graphs show the mean � S.E. for ICI (B) and CGP (D) treatments,
respectively, obtained from six different experiments. *, p � 0.05; **, p � 0.01 analyzed by one-way ANOVA and Dunnett’s post-test versus APPswe NT. E and
G, representative Tris-Tricine and SDS-PAGE analyses of full-length �APP and C99 levels in SH-SY5Y cells expressing APPswe non-treated (NT), treated for 12 h
with ICI (1 �M or 10 �M) (E) or H-89 (5 �M or 15 �M) (G) alone or in combination with S107 1 �M for 12 h. F and H, graphs show the mean � S.E. obtained from
five different experiments. *, p � 0.05; **, p � 0.01, analyzed using one-way ANOVA and Dunnett’s post-test versus APPswe NT.
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contributed by leaky RyR channels (positive feedback loop in
Fig. 8).

A growing body of literature supports the clinical relevance
of the locus coeruleus (LC), norepinephrine, and noradrenergic
receptors in AD as the LC widespread projections terminate in
areas important for learning and memory such as the hip-
pocampus and the cortex. Neuronal cell death in the LC and
other brain stem nuclei is a well defined characteristic of AD
pathology (58). It has been proposed that the downstream con-
sequences of LC degeneration are decreased levels of norepi-
nephrine in terminal regions (59) and a compensatory up-reg-
ulation of adrenergic receptors (60). A synthesis of evidence
suggests that LC destruction may contribute to reduced A�
clearance (58, 61, 62). These studies support our data showing
that activation of the �-AR cascade occurs in a cell model of AD
and that this contributes to enhanced A� production at least in
part through PKA-mediated RyR remodeling and Ca2� leak
(Fig. 8).

Targeting of �2-adrenergic signaling to reverse/prevent AD
pathology remains a controversial therapeutic track. Genetic
knockdown or pharmacologic blockade of �2-AR elicits bene-
ficial effects on taupathies (63) as well as in Tg2576 transgenic
mice (64). Conversely, other studies have reported that admin-
istration of a �2-AR antagonist exacerbates neuropathology
and cognitive deficits in a mouse model of AD (65) and that
pharmacological stimulation of �2-AR improves cognitive
function and restores synaptic density in a mouse model of
Down syndrome (66). Recently it has also been reported that an
enriched environment activates �2-ARs and protects against
A�-induced reduction in LTP and prevents hippocampal dys-
function by A� oligomers (67). PKA activation under adrener-
gic stimulation is important for learning and memory consoli-

dation. It appears, however, that A�-mediated activation of this
cascade may be detrimental.

Increased [Ca2�]cyt was observed by different laboratories in
various AD models (68 –72). Importantly, elevated basal Ca2�

has also been reported in peripheral blood mononuclear cells of
AD patients (73). Our results contradict a previous study show-
ing that transient expression of FAD APP mutations does not
directly perturb intracellular Ca2� homeostasis (74). The level
and nature of �APP metabolites (i.e. in our model stably
expressing �APP and the former study transiently expressing
FAD APP mutants; Ref. 74) could explain such discrepancies.
Altered RyR-mediated ER Ca2� increase has also been observed
in non-APP models such as PS1 and PS2 mutant mice and cell
models (15, 75–78). However, post-translational remodeling of
RyRs has not been reported in PS1/2 models. Nevertheless,
co-immunoprecipitation has revealed a physical interaction
between PS1–2 and RyR2 (79 – 81). Other recent studies dem-
onstrated that the interaction of RyR with PS1 and PS2 N-ter-
minal fragments strongly increased both mean currents and
open probability of single RyR channels in a Ca2�-dependent
manner (82, 83). Other groups demonstrated the molecular
interaction of PS2 and sorcin (a modulator of RyR channel)
(84).

These studies provide evidence that PS may also play an
important role in the regulation of RyR channel activity. How-
ever, the question remains whether this regulation occurs only
under physiological conditions or may also occur under patho-
logical conditions, namely in cells expressing the mutated
forms of PS1–2. Also unclear is whether �-AR-mediated RyR
post-translational remodeling occurs in non-APP models, such
as PS1 and PS2 mutant mice and cell models.

It has been reported that Ca2� plays a role in the production
of A� peptides (for review, see Ref. 9). Our data show that inhib-
iting RyR-mediated Ca2� leak either with S107 or upstream
by blocking �2-adrenergic signaling pathway reduces �APP
metabolism and A� production. In support of these findings
the RyR active drug dantrolene has been shown to reduce the
extent of �APP phosphorylation likely through CdK5 and/or
GSK3� Ca2�-dependent activation (13, 85). RyR-mediated
Ca2� leaks may also enhance �- and �-secretase activities
through direct interaction with these enzymes (86, 87) or by a
stabilized �-secretase complex (86, 87). Accordingly, we show
that pharmacological blockade of Ca2� leak by S107 reduces
�-secretase activity. These data led us to conclude that RyR
post-translational remodeling amplifies AD pathogenesis
through increased �-secretase-mediated �APP processing. The
findings in the present study demonstrate that A� activates
both �-adrenergic and oxidative stress. This leads to post-
translational remodeling of RyR2 by PKA phosphorylation, oxi-
dation, and nitrosylation and depletion of regulatory proteins
calstabin2, PP1, and spinophilin. Data from this study and oth-
ers (13, 36, 88, 89) are in agreement with a vicious cycle in which
leaky RyR2 channels promote A� production and A� enhances
RyR2 leak (Fig. 8). These data demonstrate that RyR channels
could be envisioned as relevant candidates for a novel therapeu-
tic approach for AD.

Figure 8. Scheme showing the cascade linking A�, �2-adrenergic signal-
ing, and leaky RyR2 channels in SH-SY5Y cells expressing APPswe. �APP
processing occurs within intracellular organelles and in the plasma mem-
brane (PM), thus producing A� inside intracellular organelles and in the extra-
cellular media. A�-mediated �2-AR activation leads to RyR2 phosphorylation
and calstabin2 dissociation, thereby enhancing RyR2-Ca2� leak. RyR2-Ca2�

leak promotes Ca2� entry into mitochondria (97) and mitochondrial ROS pro-
duction. Mitochondrial ROS production leads to RyR2 oxidation and nitrosy-
lation. Post-translational RyR2 remodeling (phosphorylation, oxidation, and
nitrosylation) and calstabin2 dissociation enhances RyR2-Ca2� leak. Blocking
�2-adrenergic signaling or RyR2 channel leak reduces �APP processing and
A� production. AC, adenylate cyclase.
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Experimental procedures

SH-SY5Y APPswe model and treatments

Human SH-SY5Y neuroblastoma cells (CRL-2266, ATCC)
were cultured following the manufacturer’s instructions. SH-
SY5Y cells stably expressing empty pcDNA3.1 vector (Control)
or pcDNA3.1 bearing APPswe cDNA were generated as already
described (13) and maintained in the presence of Geneticin
(400 �g, Gibco). In this study we used polyclonal stable cells.

Cells were treated overnight for 12 h with �- or �-secretase
inhibitors. �-Secretase inhibitor ELND006 was used at a 5 �M

final concentration and vehicle (methylcellulose/polysorbate
80, Sigma) was used as control (33, 34). �-Secretase inhibitor
(Eli Lilly inhibitor LY288672 (32), synthesized, and kindly pro-
vided by Elan Pharmaceuticals) was used at 30 �M final concen-
tration prepared in DMSO. In some experiments vehicle or
DMSO were used as controls because no difference was
observed between these two treatments. Cells were treated with
various concentrations of: S107 (a benzothiazepine derivative)
(19, 26, 28) (0.1, 1, 5, or 10 �M) for the indicated times (4, 8, 12,
16, or 24 h); H-89 2HCl (Sigma) (1 nM, 1 �M, 5 �M, or 15 �M), a
PKA inhibitor; ICI 118,551, hydrochloride ((�)-1-[2,3-(di-
hydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)
amino]-2-butanol hydrochloride) (Sigma) (1 nM, 10 nM, 100 nM,
1 �M, or 10 �M), a highly selective �2-adrenoreceptor antago-
nist; CGP, 20712A, ((�)-2-hydroxy-5-[2-[[2-hydroxy-3-[4-
[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy]
propyl] amino]ethoxy]-benzamide methanesulfonate salt), a
highly selective and potent �1-adrenoreceptor antagonist
(Sigma) (1 nM, 10 nM, 100 nM, 1 �M, or 10 �M); isoproterenol
hydrochloride ((	)-isoprenaline hydrochloride, (	)-N-isopro-
pyl-L-noradrenaline hydrochloride, (R)-3,4-dihydroxy-�-
(isopropylaminomethyl)benzyl alcohol hydrochloride), a �-ad-
renergic agonist (Sigma) (1 nM, 10 nM, 100 nM, or 1 �M). ICI,
CGP, and H-89 were applied for 12 h. Isoproterenol was applied
for 1 h.

Mock-transfected or APP695LDN-expressing CHO cells
(individualized clones) were obtained by stable transfection of
pcDNA4 empty vector (Control) and hAPP695 cDNA harbor-
ing London mutation (APPLDN: APPV642I) and subcloned in
pcDNA4 vector. Cells were maintained in DMEM containing
10% FBS, sodium hypoxanthine-thymidine supplement, and
300 �M proline (31).

A� preparation

Mock-transfected or APP695LDN CHO cells were grown in
150-mm-diameter dishes until reaching 80% confluence, then
washed with PBS and allowed to secrete for 24 h into 15 ml of
Neurobasal medium (Invitrogen). Secretions were centrifuged
(1000 � g for 10 min) and then concentrated into Amicon
Ultra-15 3000 filters (4000 � g for 30 min). One-milliliter ali-
quots of A� preparation concentrates were stored at 	80 °C
until use. A� preparations were controlled on Tris-Tricine gels
as already described (see the representative blot in Fig. 2I, and
Ref. 31). This A� preparation yields both monomeric and olig-
omeric A� species but has the advantage of being a “natural”
source of A� produced through sequential cleavage of �APP.

A�40 and A�42 peptide measurements

Detection of A�40 and A�42 peptides secreted in cell media
were measured by an ELISA kit (NOVEXTM, ThermoFisher
Scientific, France) using human C-terminal A� antibodies.

Biochemical analyses of RyR2 channel remodeling

RyR2 was immunoprecipitated from cell lysates with an
RyR2-specific antibody (2 �g) in 0.5 ml of a modified radioim-
mune precipitation assay buffer (50 mM Tris-HCl, pH 7.2, 0.9%
NaCl, 5.0 mM NaF, 1.0 mM Na3VO4, 1% Triton X-100, and pro-
tease inhibitors) overnight at 4 °C. The RyR2-specific antibody
is an affinity-purified polyclonal rabbit antibody custom-made
by Yenzym Antibodies (San Francisco, CA) using the peptide
CKPEFNNHKDYAQEK corresponding to amino acids 1367–
1380 of mouse RyR2 with a cysteine residue added to the N
terminus. The immune complexes were incubated with protein
A-Sepharose beads (Sigma) at 4 °C for 1 h, and the beads were
washed three times with radioimmune precipitation assay
buffer. The immunoprecipitates were size-fractionated on
SDS-PAGE gels (6% for RyR, 15% for calstabin) and transferred
onto nitrocellulose membranes for 2 h at 200 mA. Immunob-
lots were developed using the following primary antibodies:
anti-RyR2 (Affinity Bioreagents, 1:2000), anti-phospho-RyR-
Ser(P)-2808 (1:5000; Ref 90), anti-calstabin (FKBP12 C-19,
1:1000, Santa Cruz Biotechnology, Inc., Santa Cruz, CA), anti-
Cys-NO (1:1,000, Sigma), anti-PP1 (Santa Cruz Biotechnology,
1:2500), and anti-Spinophilin (Abcam, 1:500). To determine
channel oxidation, the carbonyl groups in the protein side
chains were derivatized to DNP by reaction with 2,4-dinitro-
phenylhydrazine. The DNP signal associated with RyR was
determined using a specific anti-DNP antibody according to
the manufacturer’s instructions (Millipore, Billerica, MA). We
did not explore other RyR2 phosphorylation sites responsive to
other kinases (i.e. Ca2�/calmodulin-dependent kinase (CaM-
KII)). All immunoblots were developed with the Odyssey sys-
tem (LI-COR Biosciences, Lincoln, NE) using IR-labeled
anti-mouse and anti-rabbit IgG (1:10,000 dilution) second-
ary antibodies.

Immunofluorescence analysis

Cells grown on 25-mm round coverslips were fixed in para-
formaldehyde 4% solution for 10 min at room temperature.
Cells were permeabilized with Triton 0.5%, and nonspecific
binding sites were blocked for 1 h with BSA (3%). Cells were
then incubated at 4 °C overnight with primary antibodies
diluted in BSA (3%). After 3 washes, coverslips were incubated
with secondary antibodies (fluorescent Alexa Fluor antibodies,
Alexa 488- and Alexa 594-conjugated (Invitrogen; 1:1000)) at
room temperature for 1 h. Immunofluorescence images were
acquired on a Leica SP5 confocal microscope using excitation
filters 488 and 594 nm. Images were analyzed using ImageJ
software. Images were background-corrected, and the colocal-
ization of red and green staining was determined using JACoP
plugging. Pearson’s correlation coefficient and Mander’s Over-
lap Coefficient were used to evaluate the extent of colocaliza-
tion as described (91).

We used �APP C-terminal antibody (Sigma) recognizing
676 – 695 residues of �APP. Other antibodies recognizing the
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following proteins were: SERCA2b antibody (clone IID8,
Thermo Scientific Pierce Products) targeting SR Ca2�-ATPase
of the endoplasmic reticulum; EEA1 antibody (clone 14/EEA1,
BD Biosciences) targeting early endosome antigen 1; CD63
antibody (clone CLB-180, Abcam) targeting antigens of lyso-
some membrane and late endosome membrane; CD71 anti-
body (clone H68.4, Thermo Fisher Scientific) targeting trans-
ferrin receptor: TGN46 antibody (AHP500G, AbD Serotec).

Measurements of mitochondrial superoxide concentration

We used MitoSOX (Invitrogen) Red fluorogenic dye to
detect superoxide in the mitochondria of living cells (92). Cells
grown on 24-mm coverslips were loaded with 5 �M MitoSOX
red prepared in a KRB (containing 125 mM NaCl, 5 mM KCl, 1
mM Na3PO4, 1 mM MgSO4, 5.5 mM glucose, and 20 mM HEPES,
pH 7.4) supplemented with 1 mM CaCl2 (KRB/CaCl2) at 37 °C
for 30 min. After a brief wash, Z-stack images were acquired on
a SP5 confocal microscope (Leica). Dye intensity was quantified
on Z-stack projection of images after thresholding using Leica
SP5 confocal microscope and ImageJ software. Atpenin A5, a
specific potent inhibitor of mitochondrial respiratory chain
complex II, was used as the positive control (data not shown)
(93). We presented data as fluorescence intensity (-fold
increase versus respective controls in each experiment). Kinetic
measurements of MitoSOX are presented as �F/F to measure
A�-mediated MitoSOX elevations correcting for differences in
basal fluorescence or probe loading.

Cytosolic Ca2� measurements

Cells grown on 24-mm coverslips were loaded with 5 �M

Fluo-4, AM (cytosolic Ca2� probe), prepared in a KRB/CaCl2 at
37 °C for 30 min. After a brief washout, Z-stack images were
acquired on a SP5 confocal microscope (Leica). Cellular loading
of dyes was quantified on maximal projection of Z-stack images
after thresholding using ImageJ software.

We calibrated the fluorescence measurements, and the
intensities of fluorescence for each condition were trans-
lated into nanomolar concentrations of Ca2� according to
the formula,


Ca2�� � Kd�F � Fmin

Fmax � F� (Eq. 1)

where Kd for Fluo4 is 345 nM, F is the background-corrected
fluorescence intensity recorded from cells during the experi-
ment, Fmin is the Ca2�-free indicator fluorescence (deter-
mined in the ionophore (ionomycin 0.5 �M)/40 mM MnCl2
solution), and Fmax is the Ca2�-saturated indicator fluores-
cence (determined in the ionophore (ionomycin 0.5 �M)/1 mM

Ca2� rich solution) (94).
Kinetic measurement of Fluo4, AM fluorescence (Fig. 3, E, F,

H, I, and J) changes were normalized and presented as �F/F0 to
measure A�- or carbachol-mediated Ca2� elevations correct-
ing for differences in basal fluorescence or probe loading (95).

cAMP measurement

We used the cAMP direct immunoassay kit (Abcam) follow-
ing the manufacturer’s instruction.

�APP processing analysis

To detect CTFs (C99 and C83) and A� peptide, protein
extracts (40 �g) were incubated with 70% formic acid (Sigma)
and SpeedVac-evaporated for 40 min. The pellets were dissolved
in 1 M Tris, pH 10.8, 25 mM betaine and diluted in 2� Tris-Tricine
loading buffer (125 mM Tris-HCl, pH 8.45, 2% SDS, 20% glycerol,
0.001% bromphenol blue, and 5% �-mercaptoethanol). Proteins
were resolved by 16.5% Tris-Tricine SDS-PAGE and transferred
onto PVDF membranes. Membranes were boiled in PBS and incu-
bated overnight with specific antibodies.

Antibodies

A�, �-CTF (C99), and full-length �APP were detected using
6E10 antibody (Covance, Rueil-Malmaison, France), which recog-
nizes 1–16 residues of A�. �- and �-APP CTFs (C83 and C99,
respectively) were detected using the APP C-terminal antibody
(Sigma) recognizing 676–695 residues of �APP. Full-length �APP
was also detected using APP (N-terminal) antibody (22C11, Milli-
pore, S.A.S. France). �-Actin (Sigma) was used as loading control.

In vitro �-secretase assay

In vitro �-secretase activity was assessed as described (13,
96). 20 �g of each subcellular fraction were resuspended in
solubilization buffer (150 mM sodium citrate, pH 6.4, contain-
ing 3-[(3-cholamydopropyl) and dimethylammonio]-2-hy-
droxy-1-propanesulfonate 1% (v/v) supplemented with prote-
ase inhibitor mixture. All steps were performed at 4 °C.
Solubilized membranes were diluted once with sodium citrate
buffer (150 mM pH 6.4) and with reaction buffer (150 mM

sodium citrate, pH 6.4, 20 mM dithiothreitol, 0.2 mg/ml BSA, 1
mg/ml egg phosphatidylcholine and 50 �g/ml recombinant
C100-FLAG). The resulting reaction mixtures were then either
incubated with constant agitation for 16 h at 37 °C or stored at
4 °C (negative controls). Samples were then supplemented with
2� Tris-Tricine loading buffer, boiled for 5 min, and subjected
to 16.5% Tris-Tricine SDS-PAGE.

Statistical analyses

Data are expressed as the mean � S.E. Sample size for each
experiment is stated in the figure captions. Statistical analyses
were performed using one-way or two-way ANOVA and Dun-
nett’s, Bonferroni’s, or Tukey’s post-tests or t test. Minimum sta-
tistically significant differences were established at p � 0.05. Non-
statistically significant differences are not shown in the graphs.
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