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Abstract 

Background:  The knowledge of drug metabolite structures is essential at the early stage of drug discovery to under-
stand the potential liabilities and risks connected with biotransformation. The determination of the site of a mol-
ecule at which a particular metabolic reaction occurs could be used as a starting point for metabolite identification. 
The prediction of the site of metabolism does not always correspond to the particular atom that is modified by the 
enzyme but rather is often associated with a group of atoms. To overcome this problem, we propose to operate with 
the term “reacting atom”, corresponding to a single atom in the substrate that is modified during the biotransforma-
tion reaction. The prediction of the reacting atom(s) in a molecule for the major classes of biotransformation reactions 
is necessary to generate drug metabolites.

Results:  Substrates of the major human cytochromes P450 and UDP-glucuronosyltransferases from the Biovia 
Metabolite database were divided into nine groups according to their reaction classes, which are aliphatic and aro-
matic hydroxylation, N- and O-glucuronidation, N-, S- and C-oxidation, and N- and O-dealkylation. Each training set 
consists of positive and negative examples of structures with one labelled atom. In the positive examples, the labelled 
atom is the reacting atom of a particular reaction that changed adjacency. Negative examples represent non-reacting 
atoms of a particular reaction. We used Labelled Multilevel Neighbourhoods of Atoms descriptors for the designation 
of reacting atoms. A Bayesian-like algorithm was applied to estimate the structure–activity relationships. The average 
invariant accuracy of prediction obtained in leave-one-out and 20-fold cross-validation procedures for five human iso-
forms of cytochrome P450 and all isoforms of UDP-glucuronosyltransferase varies from 0.86 to 0.99 (0.96 on average).

Conclusions:  We report that reacting atoms may be predicted with reasonable accuracy for the major classes of 
metabolic reactions—aliphatic and aromatic hydroxylation, N- and O-glucuronidation, N-, S- and C-oxidation, and N- 
and O-dealkylation. The proposed method is implemented as a freely available web service at http://www.way2drug.
com/RA and may be used for the prediction of the most probable biotransformation reaction(s) and the appropriate 
reacting atoms in drug-like compounds.
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Background
Biotransformation is the biochemical modification of 
xenobiotics by living organisms that includes the involve-
ment of specialized enzymatic systems. In the case of 
the biotransformation of active pharmaceutical ingre-
dients, it is called “drug metabolism”. Drug metabolism 
influences the pharmacokinetics and therapeutic action 
of drug molecules [1] and may lead to the production of 
metabolites with significantly modified pharmacological 
and toxicological profiles, sometimes resulted to adverse 
effects of drugs. The pharmaceutical industry applies var-
ious in vitro and in vivo approaches at different stages of 
drug R&D to study the interactions of active pharmaceu-
tical ingredients with drug-metabolizing enzymes, the 
metabolic fate of active pharmaceutical ingredients, and 
the structures and properties of potential metabolites. In 
contrast to “wet” experiments, computational (in silico) 
prediction of xenobiotic metabolites can be applied to 
virtual (not yet synthesized) compounds, enabling the 
optimization of the drug discovery process and generat-
ing a priori knowledge of metabolites that may be used 
for the creation of prodrugs. In silico methods may be 
applied in combination with various in vitro and in vivo 
models to optimize the metabolic stability and, in paral-
lel, the target activity of compound series [2].

The site of metabolism (SOM) refers to the site of a 
molecule where a metabolic reaction occurs [3]. In many 
cases, SOMs are determined as atoms in a molecule that 
are modified by enzymes (mostly by P450s) [4]. In some 
works [5], the term SOM describes not only a single atom 
but also a group of atoms. There are various approaches 
to the prediction of SOMs for different CYPs. For exam-
ple, MetaSite [6] is based on the combination of molecu-
lar interaction fields and molecular orbital calculations 
for the prediction of SOMs for various drug-metaboliz-
ing enzymes. The IDSite approach [7] is another example, 
which uses an induced-fit docking approach in combi-
nation with a quantum chemical model. SMARTCyp 
and RS-WebPredictor are two combined approaches 
for SOM prediction. SMARTCyp [8] uses a set of pre-
calculated activation energies for molecular fragments 
in combination with topological descriptors, and RS-
WebPredictor [9] uses pre-trained SVM models based 
on topological and quantum chemical descriptors and 
SMARTCyp reactivities. Tyzack et  al. [10] showed that 
probabilistic classifiers implemented using randomly 
selected sub-classifiers on an ensemble basis with 2D 
topological circular fingerprints as descriptors can 
give reasonable SOM predictive performance. All the 
methods mentioned above are applicable for the site of 
metabolism prediction but do not estimate the structure 
of the metabolites. In some cases, for metabolic trans-
formations catalysed by cytochromes P450, it is difficult 

to construct the structures of the metabolites based only 
on knowledge of the SOMs. The prediction of the SOM 
for aromatic and double-bonded carbons may imply 
the formation of different metabolites such as epoxides, 
alcohols, diols, and ketones. [11], while the prediction of 
the SOM for nitrogen atoms may imply the formation of 
N-oxides or dealkylated products [12].

The authors of SMARTCyp proposed to use the most 
common P450-catalyzed reactions to estimate which 
metabolite could be formed in the case of SOM predic-
tion for various atoms and groups [11]. MetaPrint2D-
React [13] provides associations of probable SOMs with 
the appropriate reactions. Zheng et  al. [14] considered 
SOMs for six particular classes of P450-catalyzed reac-
tions. A set of local quantum chemical properties were 
calculated with semi-empirical methods to represent the 
reactivity profile of a potential SOM. Quantum chemical 
calculations and feature selection procedure requires sig-
nificant computational time.

As mentioned above, the term “SOM” sometimes 
means not a single atom but rather a group of atoms. 
In this work, we consider the particular reaction classes 
and introduce the term “reacting atom” that corresponds 
to a single atom. “Reacting atoms” is a term used in the 
representation of chemical reactions in computer pro-
grams—it is an atom that is present in both a reactant 
and a product and that changed adjacency [15].

For SOM determination the machine learning 
approaches should take into account the underlying 
mechanisms of enzymes’ action. But not always such 
information is available and results of SOM prediction can 
be interpreted correctly for understanding of structure of 
reactions products. For example, in many cases, research-
ers prefer to consider the carbon of the leaving group adja-
cent to the nitrogen as the SOM for N-dealkylation. This 
assumption is based on the hydrogen atom abstraction 
mechanism but does not take into account other possible 
one-electron transfer mechanisms of the N-dealkylation 
reaction [16]. We consider the nitrogen as the “reacting 
atom” in the case of the N-dealkylation reaction. Another 
problem with the uncertainty of the detection of the site 
of a molecule that is attacked by cytochromes P450 is 
associated with the mechanism of aromatic hydroxyla-
tion, which can be realized by the formation of an epoxide 
intermediate or by the “NIH shift”. Therefore, the direct 
determination of the SOM for the creation of training sets 
in machine learning approaches is problematic, and the 
interpretation of the predicted results is ambiguous.

The purpose of our study is to investigate the possibil-
ity of identifying the reacting atoms for the major classes 
of biotransformation reactions mediated by five human 
isoforms of cytochrome P450 and by all isoforms of the 
UDP-glucuronosyltransferase family.
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In our approach we do not try to model or to mimic 
the hypothetical process of formation of intermediate 
compounds performed by P450. We use only the known 
information of the structures of the substrate and metab-
olite of the reactions for the creation of training sets to 
predict the reacting atoms of nine classes of reactions. 
We consider the classes of reactions of aliphatic and 
aromatic hydroxylation, N-, S- and C-oxidation, N- and 
O-dealkylation which, according to the Biovia Metabo-
lite database [17], cover approximately 70% of all reac-
tions catalysed by five major P450 isoenzymes (CYP1A2, 
CYP3A4, CYP2D6, CYP2C9, CYP2C19). In addition, we 
consider the N- and O-glucuronidation reactions, which 
cover almost all reactions that are catalysed by the UDP-
glucuronosyltransferase family.

Using the term “reacting atom” and considering it 
as the site of a molecule of a substrate to which a par-
ticular structural fragment is added (or from which it is 
removed) allows one to identify the metabolite struc-
tures by the reacting atom prediction. Structural frag-
ments that are added to the reactive atoms include 
hydroxyl (hydroxylation reactions), carbonyl or carboxyl 
(C-oxidation reactions), hydroxyl or oxo-group (N- and 
S-oxidation reactions), and glucuronyl (glucuronidation 
reactions) groups. In the case of dealkylation reactions, 
we considered the alkyl group as the fragment that is 
removed from the reacting atom represented by oxygen 
or by nitrogen.

Our method requires only structural formula of chemi-
cal compound and based on the analysis of “structure–
reacting atom” relationships using a Bayesian approach 
and Labelled Multilevel Neighbourhoods of Atoms 
(LMNA) descriptors [18, 19]. It also does not take into 
account the spatial and stereochemical features of mol-
ecules of substrate and products.

Results and discussion
Identification of reacting atoms
We have selected biotransformations from the Biovia 
Metabolite database [17] that are catalysed by human 
CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 
and by all human UDP-glucuronosyltransferase iso-
forms and belong to nine reaction classes (aliphatic and 
aromatic hydroxylation, N- and O-glucuronidation, N-, 
S- and C-oxidation, and N- and O-dealkylation). These 
five cytochromes of P450s and UDP-glucuronosyltrans-
ferases metabolize the majority of drugs [20].

The reacting atoms were automatically identified in 
each substrate structure from the selected biotransfor-
mations. For automatically identification of reacting 
atoms, we are using APGL [21] and python-igraph [22] 
libraries. At first, all subisomorphisms between the sub-
strate and product are found. Then algorithm check if the 

graph difference of the substrate and product structures 
is connected. If it is, then atoms with changed number 
of neighbor in isomorphic embedding are looking for. 
Examples of reacting atoms are shown in Table  1 (cir-
cled). Oxidation reactions are catalysed by cytochromes 
P450 and are mostly realized via heteroatom oxidation 
(N and S-oxidation) or carbon hydroxylation (aliphatic or 
aromatic hydroxylation). By aliphatic hydroxylation reac-
tion, we mean a hydroxylation of the carbon atom that is 
not included in the aromatic rings. In the case of C-oxi-
dation reactions, we consider the formation of carbonyl 
or carboxyl groups. N- and O-glucuronidation is cata-
lysed by UDP-glucuronosyltransferases.

Training sets
The training sets were created by the generation of posi-
tive and negative examples represented by the structure 
with one labelled atom (SoLA) for each substrate from 
the selected set [18]. If a SoLA represents a chemi-
cal structure where a labelled atom is a known reacting 
atom, then this SoLA is considered a positive example. 
Otherwise, it is considered a negative example.

For example (Fig. 1), 21 heavy (non-hydrogen) atoms of 
amitriptyline were labelled: one nitrogen and 20 carbon 
atoms. The interaction of amitriptyline with CYP2D6 
leads to the appearance of two metabolites. Thus, 
SoLAs with the labelled substrate atoms No. 1 and 2 for 
C-hydroxylation and No 19 for N-dealkylation in the 
appropriate positions are considered to be positive exam-
ples in the appropriate training sets. In Fig. 1, all SoLAs 
represented as “circles” and numbers in the lower string 
indicate atoms that were labelled. SoLAs represent-
ing positive examples are shown as black circles, while 
those representing negative examples are shown as white 
circles.

Our training sets include substrates that are catalysed 
by five major cytochromes P450 and UDP-glucurono-
syltransferases involved in drug metabolism via aliphatic 
hydroxylation, aromatic hydroxylation, N- and O-glu-
curonidation, N-oxidation, S-oxidation, C-oxidation, 
N-dealkylation and O-dealkylation reactions. We cre-
ated separate training sets for each of the transformation 
types and for each of the reaction classes. We have used 
4755 reactions of 3472 compounds. The total numbers of 
substrates, positive examples and two types of negative 
examples in the training sets are shown in the Table  2. 
The negative examples of the first type are the SoLAs, 
where labelled atom can be any heavy atom; the nega-
tive examples of the second type are the SoLAs, where 
labelled atom can be only the same chemical element as 
labelled atom in the positive examples. For instance, for 
S-oxidation the negative examples will be the SoLAs, 
where only sulphur atoms are labelled. The first type of 
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preparing training set is more universal, but the second 
one better reflects the predictive power of the method.

The results of the training procedure and validation 
by LOO-CV for SAR models based on different training 
sets are also presented in Table 2. The invariant accuracy 
of prediction (IAP) criterion, similar to AUC (the area 
under the ROC curve) [23, 24], was used for the estima-
tion of the accuracy of the created method. 20-fold cross-
validation was also performed, and the same IAP values 
were obtained; therefore, they are not shown in Table 2.

As one may see from Table  2, the best accuracy is 
achieved for heteroatoms, which are easily distinguisha-
ble from the other atom types. However, the carbons that 
are the reacting atoms of aliphatic and aromatic hydroxy-
lation are also predicted with reasonable accuracy, which 
suggests that one may use the method for the determina-
tion of reacting atoms. The accuracy of the reacting atom 
prediction for C-oxidation is lower than that in the other 
cases. This can be explained by the fact that the potential 
reacting atoms for C-oxidation and aliphatic hydroxyla-
tion could be the same if this atom is an aliphatic carbon 
atom without connected hydroxyl- or oxo-groups.

Evaluation set
Drugs are usually inactivated by CYPs, but certain drugs 
are transformed to active substances. In these cases, the 
metabolites exhibit pharmacological activity and affinity 
to the target receptors of the pharmaceutical. The forma-
tion of active metabolites from the bioactivation of phar-
macologically active drug substances is one of the issues 
of drug metabolism, and this is distinct from the case of 
prodrugs. For external validation, we used an evaluation 
set of 22 drugs that are transformed to active metabolites 
by various isoforms of cytochromes P450. The phenom-
enon of the changing of the therapeutic activity during 
the biotransformation is very important and often stud-
ied during the drug discovery process. The external eval-
uation set includes drugs belonging to various chemical 
classes from the publication of Obach [25].

These 22 compounds undergo reactions catalysed by 
five major P450 isoforms including aliphatic hydroxyla-
tion, aromatic hydroxylation, N-oxidation, C-oxidation, 
N-dealkylation and O-dealkylation. For example, for the 
clomiphene molecule (see Fig. 2) the aromatic hydroxyla-
tion at the para position of one of the phenyl rings cata-
lysed by CYP2D6 (reacting atom is carbon No. 29) with 
the formation of 4-hydroxyclomiphene is known. Clomi-
phene also undergoes N-dealkylation (reacting atom is 
nitrogen No. 9) to form N-desethylclomiphene.

Because the publication of Obach [25] contains not all 
observed bioactivation reactions but only those with the 

Table 1  Examples of reacting atoms of the different types 
of biotransformation classes

№ Structure and name of substrate Structure of metabolite Reaction class 

1 

 
Metoprolol  

Aliphatic 
hydroxylation 

2 

 
Triamterene 

 

Aromatic 
hydroxylation 

3 

 
Roflumilast 

 

N-oxidation 

4 

 
Promethazine  

S-oxidation 

5 

 
Losartan 

 

C-oxidation 

6 

 
Metoprolol 

 

N-dealkylation 

7 

 

 
Metoprolol 

 

O-dealkylation 

8 

 
Losartan 

 
 

N-glucuronidation 

9 

 
Losartan  

O-glucuronidation 
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formation of active metabolites, we enriched the evalua-
tion set with the reactions presented in the Biovia Metab-
olite database [17] for these 22 compounds. The reactions 
from the Metabolite database were observed in both 
in  vivo and in  vitro experimental studies and catalysed 
by the five major P450 isoforms and by UDP-glucuron-
osyltransferases (we consider O- and N-glucuronidation 
reactions).

573 SoLAs were generated from the all compound 
structures presented in the evaluation set. The number of 
positive SoLAs depends on the reaction class and varies 
from four (in the case of C-oxidation) to 83 (in the case 
of “All reactions”). All these SoLAs, which are generated 
from the evaluation set, were excluded from the training 

sets, and then predictions were made for each of them. 
Training sets with the negative examples of the first type 
were used. The prediction results for every compound 
are presented in the Additional file 1.

We have also compared the prediction results obtained 
by our method with the prediction results provided 
by the MetaPrint2D-React (a web application/model 
“HUMAN”). To do this we prepared new training set 
“Hydroxylation” that consists of aliphatic and aromatic 
hydroxylation reaction together.

The prediction accuracy for the evaluation set is shown 
in Table  3, which contains four metrics for the estima-
tion of the accuracy. Top-1, Top-2, Top-3 are metrics by 
which a molecule is considered to be correctly predicted 

Fig. 1  Schematic representation of SoLAs generated for amitriptyline. Black circles show positive examples of structures with known reacting atoms 
in case of a C-hydroxylation and b N-dealkylation reactions catalysed by CYP2D6. The number in the upper string indicates the atom number, which 
was labelled in the appropriate SoLA



Page 6 of 9Rudik et al. J Cheminform  (2016) 8:68 

if any experimental reacting atom is ranked as first, first 
or second, or first, second or third, respectively [26].

As one may see from Tables 2 and 3, the results of the 
internal and external validations show high accuracy in 
finding the reacting atoms for the considered biotrans-
formation reactions.

As can be seen from the data in the Table 3, the esti-
mates of prediction accuracy for Metaprint2D-React 
and for our method are comparable. Both meth-
ods require just only 2D structure of a molecule. The 

Metaprint2D-React method can predict the reacting 
atoms for more biotransformation reactions, then our 
method, but our method uses more specific names of 
reactions and may be used together with the preliminary 
prediction of biotransformation reactions.

Web service for prediction of reacting atoms
The proposed method is realized in software that is freely 
available as a web service at http://www.way2drug.com/
RA. It provides the prediction of the reacting atoms of 

Table 2  Characteristics of the training sets for prediction of reacting atoms and results of LOO cross-validation

Reaction classes Substrates Positive 
examples

Negative examples,  
1st type

IAP, LOO CV,  
1st type

Negative examples,  
2nd type

IAP, LOO CV, 
2nd type

Aliphatic hydroxylation 392 508 8575 0.91 6607 0.89

Aromatic hydroxylation 299 430 5890 0.92 4510 0.89

Hydroxylation 604 938 13,572 0.89 10,485 0.85

C-oxidation 69 69 1406 0.86 1062 0.85

N-oxidation 115 121 2405 0.99 241 0.78

S-oxidation 93 96 1947 0.99 7 0.99

N-glucuronidation 320 330 5611 0.99 509 0.86

O-glucuronidation 2264 2555 48,387 0.99 5645 0.93

N-dealkylation 401 422 8681 0.99 689 0.92

O-dealkylation 280 305 6095 0.99 675 0.85

Total 3472 4755 68,615 16,828

Fig. 2  Biotransformation of clomiphene

http://www.way2drug.com/RA
http://www.way2drug.com/RA
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aliphatic and aromatic hydroxylation, N- and O-glucuro-
nidation, N-, S- and C-oxidation, and N- and O-dealkyla-
tion reactions.

The chemical structure could be uploaded using one of 
three different modes: drawing in Marvin [27], input as 
SMILES strings [28] or uploaded as a file in MDL (Bio-
via) Molfile format [29]. The prediction results display 
the structure with the numbered atoms and a table with 
the probable spectrum of the biotransformation reaction. 
This spectrum is calculated by PASS software [30] based 
on the SAR analysis of the training set containing more 
than 3500 substrates of cytochromes P450 and UDP-glu-
curonosyltransferases. The average accuracy of predic-
tion in the LOO cross-validation (IAP) is 0.86. A detailed 
description of the training sets can be found at http://
www.way2drug.com/ra/definition.php.

By clicking on the reaction name, the user receives 
a table with the prediction of the reacting atoms of the 
selected reaction class. This table includes the atoms 
and their ranks according to the probability of being the 
reacting atoms of the selected reaction class. A drop-
down menu with the top-metric is provided to the user. 
The atoms that correspond to the selected menu item are 
highlighted on the structure. An example of a prediction 
for Metoprolol is shown in Fig. 3.

The prediction results can be saved as *.sdf or *.pdf 
files. Web Server uses a MySQL server to store data, 
PHP and HTML code to implement the main interface. 
A Python script is used to produce independent sub-
processes for generation input to the prediction program 
and data processing.

Conclusions
Through interaction with different CYPs and with UDP-
glucuronosyltransferases, xenobiotics may be trans-
formed into metabolites by different reaction classes. 
We considered nine classes of reactions—aliphatic and 
aromatic hydroxylation, N- and O-glucuronidation, N-, 

S- and C-oxidation, and N- and O-dealkylation, for pre-
dicting the reacting atoms in the substrate.

In our approach, we use only the structures of the sub-
strates for the prediction of the reacting atoms.

The leave-one-out training procedure and predic-
tion for the external validation set, containing 22 drugs 
from Obach’s publication [25] and enriched by addi-
tional information from the Biovia Metabolite database, 
shows high accuracy (approximately 0.95 on average) 
for the prediction of the reacting atoms for each class of 
reaction.

The accuracy of the reacting atom prediction in the 
training procedure was higher (approximately 0.99) for 
the reaction classes involving heteroatoms (approxi-
mately 0.99). However, for the C-hydroxylation (aliphatic 
and aromatic) and C-oxidation reactions, the accuracy 
was also reasonable (approximately 0.89).

The proposed method is freely available as a web ser-
vice at http://www.way2drug.com/RA/. On this site, a 
preliminary prediction of the reaction classes which, 
together with a combination of reacting class predictions, 
is equivalent to the prediction of the metabolite struc-
tures (because for each of the considered reactions, it is 
known which structural fragment is added to or removed 
from the reacting atom) is performed. The predicted 
structures of the metabolites can be used for the assess-
ment of pharmacological and toxicological profiles and 
in mass spectrometry for the assessment of the positions 
where chemical fragments are added to or removed from 
the substrate structures.

Methods
Each SoLA in a training set is described by a set of 
LMNA descriptors. Reaction class Tk could be one of 
eleven reaction classes (aliphatic and aromatic hydroxyla-
tion, N- and O-glucuronidation, N-, S- and C-oxidation, 
and N- and O-dealkylation reactions, “All reactions”, and 
“All CYP-mediated reactions”).

On the basis of SoLA representation by the set of m 
LMNA descriptors {D1, D2, …, Dm}, the following values 
are calculated for reaction class Tk

where P(Tk) is the a priori probability that the labelled 
atom in SoLA is a reacting atom of reaction class Tk and 
P(Tk|Di) is a conditional probability that the labelled 
atom in SoLA is a reacting atom for reaction class Tk if 

Bk =
Sk − S0k

1− SkS0k
,

Sk = Sin

[

1

m

∑

ArcSin(2P(Tk |Di)− 1)

]

,

S0k = 2P(Tk)− 1

Table 3  Prediction results for the evaluation set

Reaction classes Top-1 Top-2 Top-3 IAP

Aliphatic hydroxylation 0.83 0.92 0.92 0.95

Aromatic hydroxylation 0.64 0.91 1.00 0.94

Hydroxylation 0.82 0.94 0.94 0.93

Hydroxylation-MetaPrint2D-react 0.82 0.88 0.94 0.96

C-oxidation 1.00 1.00 1.00 1.00

N-oxidation 1.00 1.00 1.00 0.96

N-glucuronidation 1.00 1.00 1.00 0.99

O-glucuronidation 0.83 1.00 1.00 0.99

N-dealkylation 1.00 1.00 1.00 1.00

O-dealkylation 1.00 1.00 1.00 1.00

http://www.way2drug.com/ra/definition.php
http://www.way2drug.com/ra/definition.php
http://www.way2drug.com/RA/
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descriptor Di belongs to a set of LMNA descriptors of 
SoLA.

If P(Tk|Di) = 1 for all descriptors of SoLA, then Bk = 1. 
If P(Tk|Di) = 0 for all descriptors of SoLA, then Bk = −1. 
If there is no notable relationship between the descriptors 
of SoLA and the fact that the labelled atom in the SoLA is 
a reacting atom [i.e., P(Tk|Di) ≈ P(Tk)], then Bk ≈ 0.

The simplest frequency estimations of the probabilities 
P(Tk) and P(Tk|Di) are given by

where N is the total number of SoLAs in the training set; 
Nk is the number of SoLAs in which the labelled atom is 
a reacting atom of reaction class Tk; Ni is the number of 
SoLAs containing descriptor Di; and Nik is the number of 
positive SoLAs (where the labelled atom is the reacting 
atom of reaction class Tk) containing the descriptor Di.

During the training procedure, each SoLA is excluded 
from the training set, and a B value is calculated for it; so, 
the leave-one-out cross-validation (LOO CV) procedure 
is performed. Using the calculated B values for all SoLAs, 
the functions of the distribution of B values both for 

P(Tk) =
Nk

N
, P(Tk |Di) =

Nik

Ni
,

positive examples (Pt(B)) and negative examples (Pf(B)) 
are calculated.

During the prediction of the reacting atoms for a 
new compound, the set of all possible SoLAs with 
the appropriate LMNA descriptors is generated. The 
result is created on the basis of the prediction results 
of all SoLAs generated for the compound. Each SoLA 
relates to one appropriate potential reacting atom. The 
probabilities Pt and Pf are calculated for each SoLA of 
a new compound. Pt is the probability that a labelled 
atom in SoLA is a reacting atom of the appropriate 
reaction class, and Pf is the probability that a labelled 
atom in SoLA is not a reacting atom of the appropri-
ate reaction class. The deltaP value is calculated as 
deltaP = Pt − Pf.

Mathematically, the IAP value equals the probabil-
ity that the estimation deltaP has the higher value for a 
randomly selected positive example (SoLAs in which the 
labelled atom is a reacting atom, deltaP+) than for a ran-
domly selected negative example (SoLAs in which the 
labelled atom is not a reacting atom, deltaP−):

IAP = Probability
{

deltaP+ > deltaP−
}

.

Fig. 3  Example of prediction for metoprolol
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IAP is calculated as

where NumOf{deltaP+ > deltaP−} is the number of cases 
where the deltaP for positive SoLAs exceeds the deltaP 
value for negative SoLAs. Thus, all pairs of SoLAs from 
the evaluation set are compared. N+ and N− are the num-
bers of all positive examples and all negative examples in 
the set, respectively.

Abbreviations
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