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Abstract: The behavior and physiology of most organisms are temporally coordinated and aligned
with geophysical time by a complex interplay between the master and peripheral clocks. Disruption
of such rhythmic physiological activities that are hierarchically organized has been linked to a greater
risk of developing diseases ranging from cancer to metabolic syndrome. Herein, we summarize
the molecular clockwork that is employed by intestinal epithelial cells to anticipate environmental
changes such as rhythmic food intake and potentially dangerous environmental stress. We also
discuss recent discoveries contributing to our understanding of how a proper rhythm of intestinal
stem cells may achieve coherence for the maintenance of tissue integrity. Emerging evidence indicates
that the circadian oscillations in the composition of the microbiota may operate as an important
metronome for the proper preservation of intestinal physiology and more. Furthermore, in this review,
we outline how epigenetic clocks that are based on DNA methylation levels may extensively rewire
the clock-controlled functions of the intestinal epithelium that are believed to become arrhythmic
during aging.

Keywords: aging; antimicrobial peptides; bile acids; circadian rhythms; diurnal oscillations in gut
microbiota composition; intestinal epithelial cells; mucus; short-chain fatty acids

1. Introduction

In 1943, The German theoretical biologist Adolf Meyer-Abich introduced the holobiont,
a concept that refers to symbiotic associations throughout a significant portion of an
organism’s lifetime (from the Greek word holos, meaning whole or entire). This concept
is now applied to the studies of host–microbiota interactions [1]. Although speculative,
it is now conceivable that the adaptation of gut microbial communities to their nutrient-
rich environment had contributed to the host’s overall fitness over millions of years of
coevolution. Recent progress in high-throughput sequencing has given us a detailed
view of the exquisitely balanced architecture of the microbiota. Among environmental
cues that may affect the composition of the gut microbiota from the earliest days of life,
daily alternations in light may coincide with changes in air temperature, food availability
and humidity, suggesting a potential advantage for anticipating and adapting to such
changing environmental conditions that operate as zeitgebers [2]. The circadian clock
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is an endogenous, time-tracking system that generates self-sustaining oscillations in a
hierarchical manner (from the Latin circa diem, which means about a day). A plethora
of physiological functions from several subordinate organs are entrained by the circadian
system to a phase and a time period that is close to the 24 h solar day. Among internal
timekeeping processes that were acquired early in evolution, several photic and non-photic
cues influence biological behavior and the organismal physiological state on a daily basis
through a coordinated communication between the peripheral clocks and central pacemaker
located in the hypothalamic suprachiasmatic nucleus (Figure 1). Specifically, the latter is
specialized in relaying temporal signals to the peripheral clocks through the neuronal and
humoral pathways for maintenance of a neurological and metabolic synchrony across the
sleep–wake cycle. This interorgan communication in response to the light/dark cycle is
able to orchestrate a complex sequence of events that includes a fascinating regulation
of the stability of several molecular timekeeping mechanisms, including the stability of
the gut microbiota composition. A dysregulation of all natural phenomena that exhibit
a diurnal rhythm over the course of the day has been linked to a myriad of pathological
processes. The purpose of this review is to discuss recent advances that have contributed to
our understanding of how specific functions of intestinal epithelial cells oscillate within a
period of 24 h. Notably, we discuss how daily food ingestion may rewire several functions
of intestinal epithelial cells and their subsequent impact on the regulation of biological
processes at a systemic level [3,4]. Among signals that communicate this information
from intestinal epithelial cells to the rest of the body, it is becoming more and more clear
that the epithelial interaction with metabolites from the gut microbiota acts as a relay
for maintenance of intestinal homeostasis and other systemic physiological processes,
including cholesterol metabolism and bile acid synthesis.
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Figure 1. Diagrammatic overview of the regulation of clock-controlled function of intestinal epithelial
cells upon sensing of environmental cues. Diurnal fluctuations in the gut microbiota composition
may regulate the ability of stem cells to proliferate and differentiate through a complex metabolic
reprogramming (red arrows). This leads to a concerted action by intestinal epithelial cells on the gut
microbiota through both positive and negative feedback loops (blue arrows).

2. The Clock Machinery of Intestinal Epithelial Cells Is a Relay for Shaping
Circadian Homeostasis

Daily fluctuation observed at the cellular level implies a complex interaction of factors
that are intrinsic to intestinal epithelial cells. Even at a local level, many aspects of biological
behavior and physiology of intestinal epithelial cells are temporally controlled, including
drug detoxification, barrier function, the bile acid enterohepatic cycle, antimicrobial defense
and intestinal peristalsis (Figure 2). As another example, time-of-day variation in the
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renewal of the epithelium coincides with diurnal changes in the composition of the gut
microbiota. Such a fluctuation observed at the cellular level implies a complex interaction of
factors that are either extrinsic or intrinsic to intestinal epithelial cells. At the molecular level,
the circadian clock network consists of transcription–translation feedback loops (TTFLs).
Bmal1 binds to Clock in the nucleus, and the activated heterodimer induces the expression
of several genes containing E-box in the promoter site. Some of these genes are Per1, Per2,
Per3, Cry1, Cry2, Nr1d1 (that is encoding for Rev-erb alpha), Ror alpha and Dbp. Per and Cry
are then able to translocate to the nucleus and regulate the Bmal1 activity. Another level of
molecular complexity is that Rev-erb alpha and Ror alpha are involved in the repression of
Bmal1 activity. A third level of regulation is governed by Dbp and the bZIP transcription
factor NFIL3 (nuclear factor interleukin-3-regulated), which regulates Per expression by
activation or inhibition. These clock genes, once expressed, regulate the expression of other
genes that directly control biological processes; these are termed the clock-controlled genes
(CCGs) [5]. Bmal1 expression is controlled by a positive and a negative loop in intestinal
epithelial cells induced by NFIL3 and SIRT1, respectively. Interestingly, NFIL3 has been
discovered to confer a protection against obesity by diminishing the STAT3 pathway and
consequently diminishing fatty acid synthesis. NFIL3 expression is controlled by Rev-
erb alpha. Contrarily to NFIL3, SIRT1 induces insulin resistance and inhibits catabolism
in response to a high activation of Bmal1/Clock dimer [6,7]. This was demonstrated in
studies using Bmal1-deficient mice floxed with VillinCRE as an intestinal epithelial-specific
deficient model of the circadian clock. In this work, Bmal1 deficiency diminished Mrp2
mRNA and protein levels, activated by dbp and repressed by E4bp4. Furthermore, Bmal1
directly activated the transcription of dbp and Rev-erb alpha and negatively regulated
E4bp4 and Mrp2 by Rev-erb alpha [8]. For a more complete view of these notions on
additional peripheral clocks, we refer the reader to an excellent review by Koronowski
and Sassone-Corsi [9]. In some instances, such an impairment of circadian processes can
subsequently increase susceptibility to disease such as metabolic syndromes and obesity
through numerous transcription/translation oscillation loops and epigenetic changes at
one time of the day relative to another [10]. Several questions now arise regarding how
either light deprivation or ambient light pollution may negatively impact peripheral tissues
that are not directly sensitive to light, such as the intestinal epithelial barrier.
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Figure 2. Diurnal oscillations of the clock-controlled genes regulate the catabolism and anabolism of
intestinal epithelial cells. Clock-controlled genes are regulated by a complex interplay of positive
and negative loops within the framework of the solar day. As an example, Period 2 is thought to be
repressed by the bZIP transcription factor NFIL3 that is negatively regulated when the expression of
Nr1d1 (the gene that codifies Rev-erb alpha) reaches its zenith.
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3. The Clock Machinery Intrinsically Coordinates the Proliferation of Intestinal Stem
Cells and the Fate of Their Daughter Cells

Under normal conditions, diurnal fluctuations in the proliferation of intestinal stem
cells have been noticed within the crypt for some time [11]. The sensitivity of intestinal
epithelial cells to oxidative damage has been linked to circadian oscillations [12]. From
a molecular point of view, Per2 reduces cell cycle progression and cellular proliferation
downstream of the beta-catenin pathway in intestinal epithelial cells [13]. Per2 gene si-
lencing was found to enhance cell proliferation and reduce cellular apoptosis in isolated
epithelial cells [14]. Furthermore, it is worth noting that attenuation of Bmal1 function
resulted in downregulation of genes in the canonical Wnt pathway [15]. The amplitude
of the cyclic variation is also enhanced in terminally differentiated intestinal epithelial
cells that have irreversibly lost their ability to proliferate when compared to the dividing
intestinal stem cells and Paneth cells that reside at the crypt base [16]. Such control of
the self-renewal capacity is maintained by several Paneth-cell-secreted Wnt ligands that
indirectly influence the gut microbiota composition. This implies a bidirectional interplay,
as the clock-controlled expression of several regulators of the cell cycle (including the
orphan nuclear receptor retinoic-acid-related orphan receptor alpha (ROR alpha)) orches-
trates mutualistic interactions with the microbiota [17]. Studies on stem cells demonstrated
that the expression of several circadian genes is repressed by an intrinsic program that is
induced during their differentiation process [18,19]. Besides those studies in mammals,
other studies in Drosophila sp. revealed that intestinal stem cells do not necessarily require
clock genes during differentiation. In one such study, a generated GFP-per reporter gene
demonstrated a high heterogeneity of the activity of the circadian clock machinery among
discrete subsets of intestinal epithelial cells, and it was not present in enteroendocrine
cells [20]. Nevertheless, the use of the murine fibroblast cell line NIH3T3 cells corroborated
the concept that circadian clocks, mediated by a highly robust synchronized expression
and/or repression of circadian genes between two oscillators, contribute to the dividing
capacity of stem cells [21]. Although challenging, further work is required to properly
understand how environmental cues are involved in the metabolic reprogramming of stem
cells to meet their functional bioenergetic needs at any time of the day.

4. Cyclic Variations in the Functionality of Secretory Intestinal Epithelial Cells and
Interactions with the Gut Microbiome

Over the past twenty years, it has been documented that immune reactions fluctuate
in magnitude to anticipate the daily time window of greater likelihood of infection. Inter-
estingly, it has recently emerged that the abundance of several discrete subsets of bacteria is
submitted to circadian oscillations [22]. The gut is inhabited by a large number of microor-
ganisms with variable needs and behaviors, and it is now becoming clear that circadian
rhythms regulate the composition of the intestinal microbiota through several mechanisms
to be discussed below. Preliminary studies showed that gut hormones, glucocorticoids and
serotonin are secreted by intestinal epithelial cells in a circadian manner [23,24]. Emerging
work from the Weizmann Institute of Science has provided evidence that the dominant
takeover of a dysbiotic microbiota is properly regulated by the epithelial secretion of antimi-
crobial peptides (namely, angiogenin-4, Intelectin 1 and Resistin-like molecule β/FIZZ2)
downstream of IL-18 signaling [25]. There is growing appreciation, as a result of transcrip-
tomic and epigenetic studies, of the importance of the diurnal fluctuations of bacterial
attachment to the epithelial surface as instrumental for temporally modulating the func-
tional outcome of oscillating transcriptional and epigenetic programs as a way to anticipate
potential threats, including bacterial infection [26]. Furthermore, the dysbiotic microen-
vironment increased susceptibility to the intestinal colonization of pathobionts, such as
Salmonella. Recently, a study revealed that bacterial attachment triggers a STAT3-dependent
antimicrobial response to daytime feeding changes in intestinal epithelial cells [27]. Mecha-
nistically, the authors identified that the attachment of SFB is needed for optimal induction
of a STAT3-dependent gene program in intestinal epithelial cells during the feeding period.
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Consequently, a greater susceptibility to Salmonella infection was noticed as a consequence
of the adherence of SFB that concomitantly leads to an overproduction of Reg3 gamma
by intestinal epithelial cells. However, vancomycin treatment lowers the production of
Reg3 gamma in models of colitis, leading to greater fungal fitness. The authors provided
convincing evidence that such a protective effect of fungi on the severity of colitis is caused
by an increase in the abundance of Proteobacteria, especially Enterobacteriaceae [28]. When
considering this aspect, future investigation will be needed to determine the extent to which
the clock-mediated regulation of antimicrobial peptide secretion by intestinal epithelial
cells is similarly important for responses against other microorganisms, such as fungi
and enteric viruses. Establishing all of the consequences for organismal output will be
key to further chronopharmacological investigation to improve the efficacy of immune
surveillance, including those that also contribute to defense against cancers.

5. Epithelium Integrity Is Intrinsically Coordinated by the Clock Machinery of
Intestinal Epithelial Cells

Besides defense response to oxidative stress, the colonic permeability of ions, nutrients,
and water is a mere output function of the circadian system in intestinal epithelial cells.
Specifically, the expression of occludin and claudin-1 exhibits daily variations that are con-
sistent with the nighttime nadir of cortisol. A recent study provided evidence that the key
clock genes Period1 (Per1) and Per2 were expressed in antiphase with the aforementioned
tight-junction proteins. It should be noted that the expression of occludin and claudin-1
is constantly lowered in the colon of mice bearing a mutation in the Per2-encoding gene,
which were more resistant to colonic injury induced by dextran sodium sulfate (DSS) than
wild-type mice [29]. Per2 acts as an antisense oscillator and directly contributes to the
repression of clock-controlled target genes through several mechanisms. Notably, the nu-
cleocytoplasmic shuttling of Cry1/2 is regulated by Per2, which rhythmically interacts with
several RNA-binding proteins that may control the expression of tight-junction proteins [30].
However, how the circadian clock transcriptionally regulates their expression has not been
clarified in enough detail. The loss of the oscillation of Per2 enhanced expression of several
genes involved in epithelial–mesenchymal transition [31]. Such data are of interest, given
that the loss of oscillation coincided with lowered levels of genes that are associated with
progenitor/epithelial cell function, such as the α6 integrin that mediates the adhesion of
epithelial cells to laminin [32]. The authors linked this observation to a mechanical control
that mainly depends on the extracellular matrix. The extracellular matrix was described
as one of the main actors that communicate with surrounding cells to control their clock
biology. Experiments using murine organoids demonstrated that the extracellular matrix
then promotes contractile movements in these cells in vitro. This contractile behavior was
dependent on the increase in the percentage of oxygen at the surface of intestinal epithelial
cells [33]. However, it is currently not clear how the clock machinery in intestinal epithe-
lial cells is molecularly influenced by the stiffness of the extracellular matrix to provide
protection against fragility and shedding. Answering this question will require further
detailed studies making use of synchronized organoids and mouse models with specific
defects of several clock genes in intestinal epithelial cells. Among molecules of interest
is PPAR-gamma, loss of which heightens epithelial oxygenation and results in the loss of
barrier function through actin disassembly from the cytoskeleton [34]. Although it has not
been addressed experimentally, it makes sense to consider the metabolic reprogramming of
intestinal stem cells through fatty acid oxidation as instrumental in the divergence of their
proliferative capacity when compared to their daughter cells, in which full activation of
PPAR-gamma is attained (Figure 2). Furthermore, it is important to keep in mind that the
amplitude of clock gene expression is enhanced in soft 3D microenvironments compared to
stiff 2D environments [35].
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6. The Circadian Clock Machinery of Intestinal Epithelial Cells Regulates Their
Response to Oxidative Stress

Circadian rhythmicity is reinforced by several nutrients, energy and redox level sig-
nals to adapt intestinal physiology to specific needs within the framework of the solar day.
Below, we review recent findings on the daily fluctuations in the expression or activity
levels that have been measured for many enzymes that protect the intestinal epithelium
from oxidative stress [36]. Specifically, intestinal epithelial cells express several genes of
the clock machinery, deletion of which has an impact on cellular response to oxidative
stress, including xenobiotic/drug detoxification [36]. This was elegantly demonstrated
in studies using a model of clock machinery deficiency in intestinal epithelial cells. Loss
of the aryl hydrocarbon receptor nuclear translocator-like protein 1 (Arntl, also referred
to as Bmal1 for brain and muscle ARNT-like 1) in intestinal epithelial cells lowered the
expression of the multidrug-resistance-associated protein 2 (Mrp2), which is required to
limit methotrexate absorption by blocking entrance into enterocytes. In everted gut sac
experiments, the mucosal-to-serosal transport and intestinal accumulation of methotrexate
was enhanced as a consequence of loss of Bmal1 in intestinal epithelial cells [8]. This is of
particular importance, as methotrexate is an inhibitor of dihydrofolate reductase, and its
anti-inflammatory action relies on the production of reactive oxygen species (ROS) [37].
When reaching elevated intracellular levels of ROS, one may anticipate some cellular
damage, including lipid peroxidation. It is conceivable that continuous oxidative stress
throughout the day leads to pathological conditions, including leaky gut and fibrosis.
However, some bacteria, such as Lactobacillus paracasei, transfer lactate to the epithelial cells,
in which acetyl-coA synthesis occurs in the presence of oxygen, favoring the tricarboxylic
acid cycle (TCA) and fatty acid synthesis [38]. Dissecting how the clock machinery properly
regulates the interplay between innate immunity and redox signaling will contribute to
the understanding of downstream defense responses when oxidative stress excessively
occurs in intestinal epithelial cells. It has been demonstrated in stem cells and epithelial
cells from other organs that Bmal1 can negatively regulate the expression of the mito-
chondria Ucp1 protein to reduce the amount of ATP generated through an oxidation of
fuels [15] and ROS generation [39]. Among several possible explanations, the potential
contribution of peroxisome-proliferator-activated receptor delta (PPAR-delta), which is
activated upon fasting, remains to be determined [40]. Consistent with this concept, the
formation of ketone bodies is induced by long-term fasting and depends on changes in
the microbiome. Specifically, increased ketone bodies were observed in conventionalized
mice compared to germ-free animals [41]. In addition, the use of the Arntl-floxed villin-Cre
mice revealed that the epithelial expression of Bmal1 contributes to obesity development,
body weight gain and related abnormalities, such as hyperlipidemia, through decreased
lipid absorption. Among the underlying mechanisms, the epithelial loss of Bmal1 led to
a reduced expression of the Dgat2-encoding gene, which codifies the enzyme of triacyl-
glycerol synthesis [42]. In this sense, it is unclear how circadian regulation of fatty acid
oxidation may be correlated with epithelial renewal capacities of stem cells and whether
epigenetic chromatin-modifying enzymes may contribute to this fairly dynamic process at
steady state. However, natural protective mechanisms against lipid peroxidation and nitric
oxide production are intrinsically controlled by the expression of PPAR-gamma in intestinal
epithelial cells. Another possibility involves the orchestration of local and systemic lipid
metabolism by a signaling circuit linking the epithelial clock to sensing of the gut-specific
microbial components by innate immune cells [6].

7. Short-Chain Fatty-Acid-Producing Bacteria Impose a Metabolic Choice to Be Made
by Intestinal Epithelial Cells

Some gut bacteria are beneficial due to the end products of their metabolism that they
provide to the intestinal epithelial cell. Notably, dietary fibers are metabolized in short
chain fatty acids (SCFA) by some anaerobic bacteria. The end products of their metabolism
subsequently induce a metabolic reprogramming of colonocytes. One intriguing example
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among others is that PPAR-gamma activation by butyrate promotes aerobic glycolysis, to-
gether with fatty acid oxidation [43]. Epithelial loss of PPAR-gamma enhances nitric oxide
production to a similar extent as that observed in response to interferon-gamma. Specifi-
cally, inducible nitric oxide synthase (iNOS) was inhibited by PPAR-gamma in response to
butyrate to prevent dysbiosis that may predispose to colitis. The pantetheinase VNN1 that
is regulated by PPAR-gamma is able to reduce the Warburg effect produced under cellular
stress conditions, contributing to metabolic homeostasis. This was demonstrated by Giess-
ner and colleagues when pantetheinase, an inducer of Vnn1 expression, was administered
to mice, inducing an increase in the mitochondrial function in tumors [44]. In contrast,
colonocytes cannot rely on mitochondrial fatty oxidation under inflammatory conditions
but rather on anaerobic glycolysis, as observed in cancer cells. Of particular interest, the
cellular metabolic choice of colonocytes was restricted by interferon-gamma, creating an
environment in which oxygen supply is excessive, leading to an expansion of facultative
anaerobic bacteria, such as Enterobacteriaceae. Conversely, the inhibition of PPAR-gamma
contributes to a deregulation of glucose metabolism and induces an increase in glucose
uptake [45]. To some extent, this is similar to the metabolic reprogramming that is needed
to support cell fate and function of myeloid cells [46]. Of equal importance is the epithelial
function of the pentanoate receptor GPR41 (also called free fatty acid receptor 3), which
promotes inflammation [47], whereas pentanoate administration suppresses the generation
of small-intestinal Th17 cells in germ-free mice mono-colonized with segmented filamen-
tous bacteria (SFB) [48]. Furthermore, the G-protein-coupled receptor GPR43 facilitates
inflammasome activation in colonocytes when treated with acetate [49]. It is conceivable
that other acetate-producing bacteria may help epithelial cells generate acetyl-coenzyme A
(acetyl-coA), which is required under intracellular anaerobic conditions to promote fatty
acid biosynthesis. Another level of complexity that must be considered is the influence
of changes in the gut microbiota composition that may lead to the generation of bacterial
fermentation products that have the capacity to upregulate the expression of other genes
involved in mitochondrial fatty acid oxidation, such as PPAR-alpha, CD36 and carnitine
palmitoyltransferase I [50]. Furthermore, it remains to be determined whether metabolites
other than SCFA may also impose a choice to be made by intestinal stem cells and their
daughter cells. Among such metabolites, phytate and inositol trisphosphate have been re-
ported to control the expression of intestinal epithelial histone deacetylase 3 (HDAC3) [51],
which is recruited rhythmically to chromatin and produces diurnal oscillations in histone
acetylation and therefore in metabolic gene expression, including CD36 [52]. Thus, HDAC3
represents a converging epigenetic sensor of distinct metabolites that calibrates rhyth-
mic host responses to diverse microbial signals. Furthermore, the activity of PPAR-alpha
is undoubtedly influenced by the daily fluctuation in the abundance of Gram-negative
bacteria through the epithelial activation of the rate-limiting enzyme Cyp11a1 in cortisol
synthesis. Prior studies using genetically modified mouse models of epithelial deficiency in
either PPAR-alpha or glucocorticoid receptor confirmed microbiota-dependent mediation
of several clock genes to enable lipolysis and lower insulin levels after a long period of
antibiotic treatment [17]. However, it remains unclear whether such oscillating phenomena
may reflect an epithelial detachment of bacteria at a specific time of day, as observed when
SFB is able to adhere to the epithelium to modulate antimicrobial peptide expression during
the sleep-to-wake transition [27].

8. Systemic Influence of Epithelial Clock Machinery on the Synthesis of Bile Acids
and on Gut Motility

Bile acids are synthesized from cholesterol through the activation of cholesterol 7alpha-
hydroxylase (CYP7A1) in the liver. After being conjugated with either glycine or taurine,
they are released to the intestinal lumen to promote the epithelial absorption of long-
chain fatty acids [53]. The circadian clock can change the expression of some genes that
control the synthesis of bile acids, such as the farnesoid X receptor (FXR). FXR activation
controls bile acid synthesis in the liver and bile acid secretion in organs by regulating the
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expression of bile acid transporters in both the liver and enterocytes [54]. Some colonic
bacteria are then required to specifically deconjugate conjugated primary bile salts and
transform them into secondary bile acids during the fasting period. The deconjugation is
catalyzed when the bile salt hydrolase (BSH) is synthesised by a discrete subset of bacteria,
including Lactobacillus, Clostridium, Bacteroides, Enterococcus and Bifidobacterium [55]. In
response to vancomycin, postprandial fecal concentrations of secondary bile salts and of
fibroblast growth factor 19 (FGF19) were significantly reduced, suggesting reduced BSH
activity. Interestingly, a compensatory increase in Gram-negative bacteria coincided with a
marked reduction in the abundance of Gram-positive bacteria in response to vancomycin.
In agreement with the possibility that vancomycin may enhance bile acid synthesis, an
increased level of the primary bile acids cholic acid (CA) and chenodeoxycholic acid
(CDCA) was inversely correlated with the abundance of SCFA-producing bacteria [56].
Consequently, peripheral insulin sensitivity was significantly lowered, despite the absence
of changes in the plasma level of insulinotropic hormones. Intriguingly, some studies
demonstrated that glucagon secretion is reduced in mice that are deficient in carnitine
palmitoyltransferase (Cpt1a), a transporter of fatty acids to the mitochondria [57]. Of
equal importance, vancomycin decreases the abundance of Gram-positive bacteria while
changing gut motility [58]. This effect on intestinal motility is likely dependent on the
bacterial sensing capacity of Toll-like receptor 4 (Tlr4) at the surface of intestinal epithelial
cells [59]. Further work is required to determine whether the decreased insulin sensitivity
is a consequence of the vancomycin-induced decrease in the levels of lithocholic acid (LCA)
and deoxycholic acid (DCA) that are sensed by the bile acid membrane receptor TGR5 at
the surface of colonic epithelial cells for maintenance of systemic insulin sensitivity. This
is of particular importance to clarify the sequence of events leading from changes in the
gut microbiota composition to a reduced number of enteroendocrine cells in response
to dietary lards [60]. Among the bacteria found more abundantly in response to a high-
fat diet, Bilophila wadsworthia is a sulfite-reducing pathobiont that subsequently affects
the epithelial integrity in Interleukin-10-deficient mice [61]. Additional work is awaited
to understand how the metabolism of bile acids is influenced by other bacteria, such as
Parabacteroides distasonis and Ruminoclostridium [62]. P. distasonis produces secondary bile
acids and succinate, which are absorbed by the intestinal cell to produce de novo glucose
in response to FXR activation [63].

9. Aging

Aging is characterized by a progressive decrease in a wide variety of physiological
functions. Some studies have demonstrated that cyclicity and activity of clock genes
showed significant age-related alterations, becoming fragmented and diminished in elder
individuals. This evidence suggests that there is a progressive degeneration of the structure
and cyclicity of the circadian timing that induces a break of the control of the rest and sleep
phases in the elderly [64]. Recently, epigenetic events were discovered as a consequence
of hypoxia. Specifically, hypoxia-inducible factor 1 alpha (HIF1α) modifies the epithelial
expression of the HDAC3 that controls epithelium integrity [65]. These pieces of evidence
open the road for additional investigations on how the oscillations of the gut microbiome
may occur. This conundrum is particularly difficult to address, as it will require a more
detailed understanding of how arrhythmic bacterial adhesion may precisely manipulate
the functionality of different cells at a specific time of the day. We can further estimate
that the epigenetic events induced by environmental factors during aging are cause a
metabolic alteration in intestinal epithelial cells as a consequence of the clock asynchrony.
However, further investigations are required to better understand how alterations in the
gut microbiome may confer a greater risk of degenerative diseases and cancer later in life
as a potential consequence of epigenetic events.
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10. Perspectives

A wealth of recent studies unveiled that intestinal epithelial cells play an essential
role in relaying signals both to and from the intestinal microbiota during either fasting
or dietary intake time windows. One may speculate that the diurnal fluctuations in the
composition of the gut microbiome help to assist host defense and metabolic homeostasis.
From an evolutionary perspective, this concept implies the need for specific molecular
passwords that are released at a time when there is a specific need for either anabolism
or catabolism. A deregulation of the axis induced by diet, antibiotics or other dysbiosis-
promoting factors is challenging for the host and may contribute to disease development
upon failure to properly compensate for the functionality of the gut microbiome. Notably,
an alteration of the bile acid sensing and transport by intestinal epithelial cells may influence
liver metabolism through PPAR-alpha-dependent mechanisms that are beginning to be
understood. As an excellent example, it was described how a high-fat diet promotes
a dysbiosis environment that alters the clock machinery of peripheral organs, leading
to increased permeability and insulin resistance [66]. Furthermore, a high-fat diet can
induce a disruption of the circadian oscillation of some important genera with BSH activity,
such as Lactobacilli [67]. The importance of the circadian regulation of feeding time for
the microbiota was demonstrated by the application to db/db mice of an intermittent
fasting of 24 h; this condition was compared with ad libitum fed diabetic mice. During the
intermittent fasting, microbiota composition of db/db mice was abruptly changed, increasing
the abundance of Lachnospiraceae, Lactobacillus, Oscillospira, Ruminococcus and Clostridiales at
the fecal level. In contrast, the abundance of Akkermansia and Bacteroides decreased in obese
mice with intermittent fasting [68]. It is now evident that epithelial cells play a key role to
control alterations of the gut microbiome. However, it remains difficult to mechanistically
characterize the advantages or disadvantages that each oscillating bacterium may induce
individually or collectively at either a steady state or upon metabolic stresses. Additional
studies are required to optimize the design of drug dosing regimens for individuals with a
disrupted circadian clock who may experience a lowered drug detoxification, leading to
defects in ROS scavenging and/or antioxidant signaling.
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