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Summary  
Previous work has demonstrated that intergenic V(D)J rearrangement, a process referred to as 
trans-rearrangement, occurs at an unexpectedly high frequency. These rearrangements generate 
novel V(D)J combinations which could conceivably have some role in the normsd immune system, 
and since they probably arise through chromosomal rearrangements akin to those associated with 
lymphoid neoplasia, they may also serve as a model for investigating recombinational events which 
underlie oncogenesis. In view of the existence of a mechanism that permits relatively frequent 
intergenic trans-rearrangements, it seems reasonable that interallelic trans-rearrangements involving 
segments bdonging to each of the two alleles of a single antigen receptor gene might also occur. 
To determine the frequency of such rearrangements, we examined thymocytes of F1 progeny 
of a cross between SWR mice, which have a deletion spanning 10 of the known V0 segments, 
and NZW mice, which have a deletion involving all Jr32 segments. Rearranged TCR-/3 genes 
containing V/~ segments from the NZW chromosome and Ja segments from the SWR 
chromosome were amplified from the DNA of F1 thymocytes with the polymerase chain 
reaction. Using this approach, we found that such rearrangements are relatively uncommon, 
being present in about 1 in 10 s thymocytes, a frequency lower than that of V.~/J0 intergenic 
trans-rearrangements. The ratio of conventional c/s-rearrangement to interalldic truns-rearrangement 
for any particular Vt~ segment appears to be about 104:1. The structure of the junctions in all 
trans-rearrangements analyzed closely resembles conventional c/s-rearrangements, indicating 
involvement of V(D)J recombinase in the ultimate joining event. However, in contrast to c/s- 
rearrangements, a strong bias for inclusion of Dal segments over Da2 segments was noted, 
suggesting that interallel~c trans-rearrangement may occur preferentiaUy during attempted D-J 
joining. J02 segment usage in trans-rearrangements also appeared to differ from that expected 
from previously studied c/s-rearrangements. The results have implications with respect to the 
events and timing of conventional c/s-rearrangement during thymocyte differentiation, and the 
prevalence of various types of trans-rearrangements. 

S omatic rearrangement of DNA constitutes a fundamental 
event leading to the production of structurally diverse an- 

tigen receptor genes (ARGs). 1 This process, which is be- 
lieved to be mediated by a lymphoid-specific recombinase, 
results in the assembly of variable (V), joining 0), and, in 
some loci, diversity (D) gene segments, into potentially func- 
tional Ig and TCR genes. Conserved heptamer and nonamer 
sequences separated by 11-12 or 22-23 bp flank each type 
of rearranging segment, and function as critical signal se- 
quences for recombination, which typically occurs within 
a few base pairs to one side of the heptamer sequence (1, 2). 

1 Abbreviation used in this paper: ARG, antigen receptor gene. 

C/s-scanning of ARG DNA by recombinase during intra- 
genie rearrangement is the simplest model for V(D)Jjoining. 
However, certain observations indicate that V(D)J joining 
occurs, at least some of the time, by a mechanism other than 
c/s-scanning. For example, many lymphoid neoplasms con- 
rain chromosomal translocations in which the breakpoint in 
one of the two participating chromosomes maps cytogene- 
tically to the site of an ARG (3). Sequence analysis of the 
breakpoints in these translocations has shown that the sites 
of recombination within ARGs usually lie adjacent to 
heptamer-nonamer sequences, precisely where normal V(D)J 
joining occurs during intragenic rearrangement. In some cases, 
the breakpoint in the second chromosome also lies near se- 
quences with homology to heptamer/nonamer signals (4, 5), 
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consistent with the action of recombinase on DNA in both 
chromosomes participating in the translocation. 

There is also evidence that intergenic trans-rearrangement 
occurs routindy in normal lymphoid tissue. Cytogenetic anal- 
yses indicate that about I in 1,000 spreads of metaphase chro- 
mosomes prepared from normal human peripheral lympho- 
cytes show translocations in which both breakpoints map to 
the site of ARGs (6-8). Using the polymerase chain reaction 
PCR, several groups have recently detected the presence of 
chimeric ARG rearrangements within normal thymocytes and 
peripheral lymphocytes having V and J segments contributed 
by different ARGs (9, 10). O f  note, the frequency at which 
chimeric sequences are detected, one or more cells in 104 
total calls, approximates the frequency of translocations that 
map cytogenetically to these loft, suggesting that chromosomal 
translocation is the mechanism through which chimeric rear- 
rangements arise. 

In view of the relatively high incidence of intergenic trans- 
rearrangement between ARGs, another type of t r a n s - ~ g e -  
ment seems possible. These rearrangements would result from 
recombination between gene segments of allelic ARGs lo- 
cated on each of two chromosome homologues. Such recom- 
bination could be relatively frequent yet be overlooked, be- 
cause rearrangements produced in this fashion would not 
generally be cytogeneticaUy detectable and would likely con- 
tain V(D)J coding junctions that are structurally similar or 
identical to those produced by conventional c/s-rearrangement. 
Indeed, it may be that intergenic trans-rearrangements merely 
reflect errors occurring during attempted interalldic trans- 
rearrangement, since both processes involve recombination 
between chromosomes. The possibility of interallelic recom- 
bination during V(D)Jjoining is also suggested by the exis- 
tence of interallelic recombination during isotype switching 
within IgH genes (11), although the enzyme systems catalyz- 
ing these events are presumably different. 

To investigate the possible occurrence of trans-rearrangement 
between aUdes of ARGs, we have studied rearrangements 
within the TCR-B gene of F1 mice resulting from crosses 
between homozygous N Z W  and SWK parents. These mice, 
like several inbred mouse strains, have been shown to have 
ddetions involving various portions of the TCK-B gene. 
Specifically, SWK mice have deleted almost half of the normal 
complement of V~ segments (12), while N Z W  mice have 
a deletion that spans C~1, Da2, and Ja2.1 through 2.6 
coding segments (13). F1 mice produced by crossing N Z W  
and S W R  strains are thus doubly heterozygous for deletions 
involving V and J coding segments, with the two ddetions 
being carried in a trans configuration. Using oligonucleotide 
primers specific for the deleted segments, we have performed 
PCR analysis to detect and quantify interalldic trans- 
rearrangements within the TCR-B locus. 

Mat . r ia ls  and Methods 

Materia/~ Enzymes and phage vector DNAs were obtained from 
BILL Gibco (Gaithersburg, MD). 

Experimental Animals. NZW, SWR., NZW x SWR, and 

BALB/c male mice were obtained at 6 wk of age (The Jackson 
Laboratory, Bar Harbor, ME). Animals were killed within 1 d of 
receipt, and thymuses were immediately removed and stored at 
-70~ 

DNA Preparation. Frozen tissue was ground to a powder in 
a disposable pestil and subjected to proteinase K digestion, 
phenol/chloroform extraction, and digestion with RNase using 
a standard method (14). DNA was stored in 10 mM "Iris, 1 mM 
EDTA, pH 8.0, at 4~ 

PCR Conditions. Oligonucleotide primers were synthesized on 
a DNA synthesizer (model 381A; Applied Biosystems, Foster City, 
CA). The sequences of individual primers and the combinations 
of primer pairs used to amplify particular kinds of rearranged ARGs 
are described in Table 1. All reactions were carried out in 50/~1 
of 10 mM Tris, pH 8.3, in the presence of 50 mM KC1, 1.5 mM 
MgCh, 0.001% gelatin, 10% dimethyl sulfoxide, 1.25 U of ther- 
mostable DNA polymerase (AmpliTaq; Perkin-Elmer Cetus Corp., 
Emeryvilh, CA), and 100 ng of each oligonucleotide primer. Gener- 
ally, two rounds of 30 amplification cycles were performed in an 
automated thermal cycler (Perkin-Elmer Cetus Corp.). Regardless 
of the primer pair, during the first round of amplification template 
DNA was denatured at 94~ for 3 rain in the first cycle, and for 
1 min in subsequent cycles, and extension was carried out at 72~ 
for 2 min during the first 29 cycles, and for 8 rain during the final 
cycle. A second round of amplification with one or two internal 
primers, using 2/~1 of initial reaction mixture as template, was then 
performed in an identical fashion. Annealing temperatures varied 
depending on the primer pair used, and are given in Table 2. To 
avoid contamination with ptt~riously amplified products, PCRs were 
prepared in a dedicated laminar flow hood, reaction mixtures were 
treated with UV light (254 nm) for 10 rain in a UV box (Foto- 
dyne, New Berlin, WI) before addition ofTaq polymerase and DNA 
template (15), and pipette tips with aerosol filters (Vanguard, Inc., 
Neptune, NJ) were employed. All reactions were performed in par- 
allel with appropriate negative controls described in Results. 

Analysis of PCR Products. PCR products were electrophoresed 
in 1.8% agarose gels, stained with ethidium bromide, and trans- 
ferred to nylon membranes (Phsco, Inc., Woburn, MA) by Southern 
blotting. Membranes were prehybridized for 1 h in a solution con- 
taining 6x SSC, 5x Denhardt's solution, 2% formamide, 0.2% 
sodium pyrophosphate, and 0.5 rag/m1 sonicated salmon sperm 
DNA, then hybridized in 6x SSC, 5x Denhardt's solution, 2% 
formamide, 0.2% sodium pyrophosphate, 0.5 mg/ml sonicated 
salmon sperm DNA, 2.5% dextran sulfate at 42~ for 5 h with 
100 ng of an internal oligonucleotide probe which had been end- 
labeled by 3~-[3ZP]ATP (New England Nuclear, Boston, MA) using 
T4 kinase to a specific activity of ~125/~Ci//~g. Membranes were 
then washed twice for 15 min in 6x SSC-0.1% SDS at 54~ and 
autoradiograms were prepared at room temperature using exposure 
times of 15 min to 4 h. 

DNA Sequencing. Bands containing PCR products of interest 
were excised from agarose gels, and DNA was isolated on silica 
beads (GeneClean II; La Jolla, CA). The purified DNA and 
M13mp18 or mp19 RF DNA was cut with the appropriate pair 
of restriction enzymes (Table 1 A), mixed, and incubated with T4 
ligase for 4-8 h at 16~ Transformation of competent Escherichia 
coli strain JM109 with ligation mixtures using a heat shock method, 
identification of/ac- recombinant phage, and purification of 
single-stranded template DNA were performed using standard 
procedures (16). Inserts were sequenced with a kit (U.S. Biochem- 
ical, Cleveland, OH) employing the dideoxy method (17) according 
to the manufacturer's instructions. 
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l~sults 
The basis for the method used to detect interallelic rear- 

rangements within the TCR-/$ locus is presented schemati- 
cally in Fig. 1. The TCR-fl locus of SWK mice contains a 
deletion spanning ten of the known murine V0 coding seg- 
ments (12). Likewise, NZW mice have also suffered a dele- 
tion in this gene which has removed C~1, DO2, and Ja2.1- 
J02.6 coding segments (13); Jt~2.7, a pseudogene segment, 
is also deleted. Since Ft NZW x SWK mice carry these 
two deletions in a trans configuration, rearranged ARGs com- 
posed of VO segments absent from the SWR chromosome, 
and J~2 segments absent from the NZW chromosome can 
only arise from a recombination event occurring between the 
NZW and SWR alleles. 

We attempted to detect interallelic trans-rearrangement prod- 
ucts using crossed pairs of oligonucleotide primers specific 
for deleted Vo and J02 segments in PCRs containing F1 
thymic DNA. To increase the likelihood of detecting such 
products, initial efforts focused on the V~8 subfamily. This 
subfamily has three highly homologous members, V~8.1, 
8.2, and 8.3 (18), which make up more than 10% of all known 
murine V~ segments. V~8 segments frequently participate 
in V(D)J recombination, being expressed by about 25% of 
TCR-positive thymocytes and peripheral T cells (19), and thus 
might also be expected to be frequently involved in inter- 
allelic trans-rearrangements. Primer sequences, combinations 
of primer pairs, and annealing temperatures used to amplify 
V~8/J02 rearrangements and other rearrangements (dis- 
cussed later) are listed in Tables 1 and 2. Nested V08 primers 
were chosen which are complementary to sequences lying 
at the 5' end of the Vo8 coding region and which are com- 
pletely homologous to all three V08 segments. These 
primers were paired with nested J02.5 external and internal 
primers lying just 3' to and within the Ja2.5 segment. PCR 
products were then analyzed by Southern blotting, using an 
internal V~8-specific oligonucleotide probe (VoSihp). 

To assess the sensitivity and specificity of our assay, con- 
trol reactions were carried out with thymic DNA from 
BALB/c mice that possess the full complement of V0 and 
Jo coding segments, and with NZW and SWR thymic 
DNA from parental mice. Reaction conditions were chosen 
that permitted amplification of products from BALB/c DNA, 
while failing to give positive signals with NZW, SWK, or 
NZW DNA mixed with SWK DNA. The control reaction 

containing mixed parental thymic DNAs is particularly im- 
portant, since it rules out false positives generated by partial 
extension of primers into regions of homology. Such partial 
products could conceivably anneal to allelic sequences and 
be further extended in subsequent rounds of amplification, 
thereby giving rise to composite sequences that could be mis- 
taken for trara-rearrangements. The absence of such prod- 
ucts in the parental mixing control indicates that the PCR 
method used specifically amplifies only preexistent rearrange- 
ments that must have occurred in vivo. 

Dilution experiments were then performed with BALB/c 
thymic DNA mixed with sufficient NZW and SWR parental 
thymic DNA to hold the total amount of DNA constant 
at 2 #g, representing about 2 x 105 cell equivalents (Fig. 
2). When 200 or more cell equivalents of BALB/c thymic 
DNA were added to PCRs, a variety of differently sized prod- 
ucts were obtained. In contrast, 0 to 3 distinct hybridizing 
bands ranging from *240-920 bp were seen in most reac- 
tions containing 20 cell equivalents of BALB/c DNA, indi- 
cating that this is close to the limiting dilution. It is notable 
that although bands corresponding to the position of 
Vt~8/J~2.5 rearrangement (,o240 bp) predominated in the 
presence of high concentrations of template, bands approx- 
imating the expected position of Vo8/Jo2.1 and Va8/Jt~2.2 
rearrangements (,o920 and 720 bp, respectively) were readily 
detected in some reactions performed with low concentra- 
tions of BALB/c DNA. Thus, while smaller PCR products 
are preferentially amplified, the method is capable of detecting 
larger products as well. Further dilution revealed a positive 
signal in 3 of 16 reactions containing two cell equivalents 
of BALB/c thymic DNA (Fig. 2, and results not shown). 
Applying this data to the Poisson equation leads to a calcu- 
lated frequency for V~8/J02 rearrangements of about 1 per 
10 cells. Using published data that 25% of BALB/c thymo- 
cytes have at least one V(D)J rearrangement involving VO8 
segments (19), and assuming that roughly 60% of these rear- 
rangements involve J~2.1-2.5 (20), one would predict that 
up to 15% of BALB/c thymocytes contain detectable 
Vo8/J~2 rearrangements. Therefore, the obtained results are 
close to the predicted results and indicate that the assay has 
a sensitivity close to the theoretical maximum of 1 cell in 
10 s. 

Thymic DNA from F1 NZW x SWR mice was then 

SWR deletion 

VJ] 5.2.8.3,5.1,8.2,5.3,8.1,13,12,11 

/ 
V Beta Segments 

NZW 

/ (  
/ /  

D~,I Jp1.1-1.7 C1~1 D132 J1~2.1-2.7 CIr. 

/(  
/ /  

NZWdeletion Figure 1. Structure of TCK-B alleles in 
NZW x SWR mice. 
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Table 1. PCR Oligonucleotides 

Restriction 
Oligonucleotide Sequence (5'-3') site Reference 

VB8ext ATGGAGCTGCAGTCACCCA 38 

V~8int ATGAATTCATGTACTGGTATGGGCAGGA EcoK1 38 

VB8ihp GGGCTGAGGCTGATCCATTA 38 

V~5ext AAGGATCCAGCAGATTCTCAGTCCAA BamH1 38 

VB5ihp AGTTTGATGACTATCACTCT 38 

JB2.5ext ACTGCAGCCCAATCCCGCTGAGAA 39 

J~2.5int AAGTCGACGGCCCAAAGTACTGGGTGTC Sall 39 

J~l.5ext ACACTGCAGGTCCAAAGGACAATGGT Pst 1 40 
V',/2ext AAGGAATTCATCGAAAGCTTTAGGAG EcoR1 41 

V 3 ~ 2 i h p  ACCATACACTGGTACCGGCA 41 

Underlined nudeotides denote noncomplementary sequences included to create restriction sites. 

Table 2. Primer Pairs and Reaction Conditions 

Target rearrangement Primers (Round 1) Primers (Round 2) 

v~s/j~2 
v~5/j~2 
v-r2/j~2 
v~e/jfll 

VB8ext/Jfl2.5ext (60~ 

VB5ext/J132.5ext (55~ 

V~2ext/Jfl2.5ext (60~ 
VBSext/J131.5ext (60~ 

vB8int/JB2.5int (60~ 

VB5ext/Jfl2.Sint (55~ 

V'r2ext/JB2.Sint (60~ 

vB8int/JB1.5ext (60~ 

Annealing temperatures are given in parentheses next to each primer pair. V~/nomenclature is according to Garman et al. (41). 

Figure 2. Amplification and detection of V~8/Jo2 rearrangements in 
BALB/c thymocytes. Indicated cell equivalents of BALB/c thymic DNA 
were used as temphte in PCgs with VO8 and Jo2 specific primers. The 
total amount of DNA was held constant at 2 #g by adding equimolar 
amounts of NZW and SWR thymic DNA. Control reactions contained 
1 #g of NZW thymic DNA mixed with 1 #g of SWK thymic DNA. 
PCK products were electrophoresed in 1.8% agarose gds, transferred to 
nylon membranes, and hybridized to an internal V~8-specific probe end- 
labded with Phosphorous-32. The resultant autoradiogram is shown. 

Figure 3. Detection of Vfl8/Jfl2 trans-rearrangements in thymocytes of 
SWIL x NZW mice. PCRs were performed with Va8 and Ja2 primers 
and the following additions: water only; NZW thymic DNA (2/zg); SWR 
thymic DNA (2 Izg); NZW thymic DNA (1/~g) mixed with SWK thymic 
DNA (1/~g); NZW x SWR hepatic DNA (2/~g); or NZW x SWK 
thymic DNA. (2 Izg). Amplified trans-rearrangements were detected on 
Southern blots by hybridization with an internal V~8-specific probe end- 
labded with Phosphorous-32. The resultant autoradiogram is shown. 
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amplified in the same fashion. Results obtained with three 
different animals were similar. When 2/zg of F1 thymic 
DNA was used as template, electrophoresis of PCR prod- 
ucts on agarose gels consistently revealed one to several in- 
tense ethidium bromide-stained bands that were always found 
to hybridize to the VaSihp probe on Southern blots (Fig. 
3). The position of hybridizing bands most commonly cor- 
responded to the expected size of Va8/Ja2.5, Va8/Ja2.4, and 
Va8/Ja2.3 rearrangements. Control reactions run concomi- 
tantly containing no added template, NZW thymic DNA, 
SWR thymic DNA, mixed NZW and SWR thymic DNA, 
or NZW x SWR liver DNA uniformly failed to produce 
hybridizing bands. 

Detection of only a few of the five possible Va8/Ja2 prod- 
ucts in most amplifications suggested that the frequency of 
such rearrangements is relatively low. To better quantify this 
type of rearrangement, multiple PCRs were performed using 
0.4/xg of thymic DNA (,'~4 x 104 cell equivalents) pooled 
from three F1 animals as template. With this amount of 
DNA, hybridizing bands were observed in 10 of 24 reactions 
(not shown), most often in the positions expected for Ja2.5, 
J~2.4, and Jo2.3 rearrangements. In contrast, hybridizing 
bands corresponding in size to rearrangements involving 
Ja2.2 and J~2.1 were not observed. Since such bands were 
readily detected when BALB/c thymic DNA was used as tem- 
plate (Fig. 2), particularly near limiting dilution, this is un- 
likely to be an artifact stemming from preferential amplification 
of smaller products. Using the Poisson equation, the calcu- 
lated frequency of Va8/Jt32 tram-rearrangements in F: 
thymus is 1.4 per 105 cells. This is somewhat lower than the 
true frequency, since Vo8/Ja2.6 rearrangements are nSt de- 
tected by the method. 

To show that this frequency for interallelic trans-rearrange- 
ment within the TCR-/3 locus is likely to be representative, 
a less extensive series of amplifications were also performed 
with primers complementary to Va5 subfamily sequences. 
This subfamily, which is also deleted in SWR mice, consists 
of two homologous V segments and one pseudogene (18) 
which are used in about 8% of thymocyte/3 chain transcripts 
(21). Positive and negative control experiments were performed 
with BALB/c thymic DNA as described for Vt~8 primers to 
ascertain reaction conditions that permit specific and sensi- 
tive amplification of va5/Ja2 rearrangements (not shown). 
FI thymic DNA was then amplified with va5/Ja2 primer 
pairs (Fig. 4). 9 of 10 PCRs performed with 2/~g of F1 
thymic DNA contained at least one to as many as three 
amplification products that hybridized to an internal V~5- 
specific probe (VaSihp). Most of these products approxi- 
mated the expected size of VaS/Ja2.5 or va5/Ja2.4 rear- 
rangements. Hybridizing bands were absent from control reac- 
tions performed in parallel with NZW thymic DNA mixed 
with SWR thymic DNA. Limiting dilution experiments re- 
vealed the frequency of Va5/Ja2 rearrangements to be about 
1 per 105 cells (not shown), dose to that observed for VaS/ 
Ja2 rearrangements. Again, rearrangements involving Ja2.1 
and Ja2.2 were not seen at limiting dilution. 

The identity of the interallelic trans'rearrangements was 

Hgure  4. Detection of VaS/Ja2 trans-rearrangements in NZW x 
SWR thymocytes. NZW thymic DNA (1 #g) mixed with SWR thymic 
DNA (1/zg), or NZW x SWR thymic DNA (2/~g) was used as tem- 
plate in PCRs containing Va5- and Ja2-specific primers. Amplified trans- 
rearrangements were detected on Southern blots by hybridization with 
an internal Va5-specific probe end-labeled with Phosphorous-32. The 
resultant autoradiogram is shown. 

further confirmed by the sequencing of PCR products cloned 
into M13. A total of twenty distinct Va8 and two V#5 
clones were analyzed (Table 3). All consist of Va8 or Va5 
coding segments joined to Ja2 coding segments in a manner 
resembling standard recombinase-mediated ARG rearrange- 
ment. Specifically, the breakpoints within both segments lie 
dose to their respective heptameric signal sequences, exonudeo- 
lytic digestion appears to have occurred at the 3' and 5' ends 
of the V and J coding segments, respectively, and random 
addition of N nudeotides is apparent in most rearrangements 
in the region between V-D and D-J coding junctions. 19 of 
22 V(D)Jjunctions contain at least a 3 bp sequence homolo- 
gous to a Da segment. Unexpectedly, although 10 of the 
rearrangements contain unambiguous Dal segments, no 
rearrangements bearing the Da2-specific sequence GACTG 
are seen, indicating that participation of Dal segments is 
strongly favored. While the three rearrangements that lack 
sequences homologous to Da segments could represent ex- 
amples of direct Va to Jajoining, they also can be explained 
by complete exonudeolytic removal of De segments before 
ligation. Apparent misincorporation of nudeotides by Taq 
polymerase was detected in flanking V~ and Ja coding seg- 
ments at a frequency that varied from 1 in 200 to 1 in 1,000 
bp, and thus are unlikely to contribute substantially to the 
observed V(D)J junctional heterogeneity. 

The possible contribution of interallelic tram-rearrangement 
to diversity among rearranged ARGs was assessed by com- 
paring the frequency ofc/s and tram-rearrangements for given 
Va segments. To do this, the frequency of Va8/Jal cis- 
rearrangements was determined by limiting dilution of F1 
thymic DNA in PCRs containing Va8 and Jal.5 primers 
(Fig. 5). In these experiments, SWR thymic DNA that lacks 
Va8 segments was used as a negative control and as diluent 
to hold the amount of total DNA constant at 2 #g in reac- 
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Table 3. Sequences of TCR-~ Trans-Rearrangements 

Va (Pv)-N-(PD) Dal (PD)-N-(Pj) Ja 

GGGACAGGGGGC 
V8.1 AGCAGTGATG 
V8.1.a AGCAGTGATG GTCAAAACA 2.4 
V8.1.b AGCAGTGAT GAC CAAAACA 2.4 
V8.1.c AGCAGTGAT GGGG ACA 2.5 
V8.1.d AGCAGTGATG C GGGG AGACA 2.5 
V8.1.e AGCAGT CAAAGCC GGACA AAACACCGG 2.2 
V8.1.f AGCAGT T GGGACAGGGG AGA TGCAGAAA 2.3 

V8.2 AGCGGTGATG 
V8.2.a AGCGGTG CTCCC GGA GTGCAGAAA 2.3 
V8.2.b AGCGGT AAG GGGAC C GACA 2.5 
V8.2.c AGCGGTG TGGC GGG T AGTCAAAACA 2.4 
V8.2.d AGCGGTG TTC GGGACAG CCAAGACA 2.5 
V8.2.e AGCGGTGAT GC C AGTCAAAACA 2.4 
V8.2.f AGCGGTG TAC GACAG A AAAACA 2.4 
V8.2.g AGCG GGGACAGGGG AGGAG GCTG 2.1 
V8.2.h AGCGGTGATG CAC GGACA A TGCAGAAA 2.3 
V8.2.i AGCGGTG C GACA ACCAAGACA 2.5 
V8.2.j AGCGG CAGAAA 2.3 

V8.3 AGCAGTGATG 
V8.3.a AGCAGT GGGACAGGG ATACGT ACCGG 2.2 
V8.3.b AGCAGTGAT GGGACAGG AAG GACA 2.5 
V8.3.c AGCAGTGATG GGGGG GAT AAGACA 2.5 
V8.3.d AGCAGTGAT GAC C AAACA 2.4 

V5.1 CAGCTCTCTC 
VS.l.a CAGCTCTCTC G GGGAC AACCAAGACA 2.5 
V5.1.b CAGCTC GT A C A G ~ C  TG CCAAGACA 2.5 

Germline VO sequences are indicated with bold labels. Underlined nucleotides represent possible P additions. Ambiguous nucleotides have been ar- 
bitrarily assigned to Da segments and are indicated in italics. For comparison, the germline sequence of Da2 is G G G A C T ~ .  

tions containing F1 DNA. Under the conditions employed, 
inclusion of 200 pg (20 cell equivalents) of F1 thymic DNA 
resulted in amplification of one to several bands which hy- 
bridized to the Va8ihp probe on Southern blots. Reactions 
performed with SWK DNA alone were negative. The pat- 
tern of bands seen with 20 cell equivalents of F1 DNA in- 
dicates that this is close to the limiting dilution, which is 
confirmed by further dilution to two cell equivalents. Thus, 
the frequency of va8/Jal c/s-rearrangement in F1 mice is 
close to 1 in 10 cells. Again, this is somewhat lower than 
the true frequency since va8/Jal.6 rearrangements will be 
missed. The data indicate therefore that the ratio of intra- 
genic c/s-rearrangement to interallelic tram-rearrangement of 
Va8 segments is roughly 104:1. 

To further compare the fine structure of Va8 c/s- and tram- 
rearrangements, 22 c/s-rearrangements were amplified from 
F1 thymic DNA with Va8 and Jal.5 specific primers, cloned, 
and sequenced (not shown). All clones consisted of Va8 
coding segments joined to Jal coding segments. Like the 
Va8/Ja2 tram-rearrangements, many coding junctions con- 
rained sequences homologous to Dal diversity segments, 
consistent with derivation from the NZW chromosome. The 
extent of exonucleolytic digestion and size and content of 
N insertions did not differ significantly from that observed 
in the Va8/Ja2 tram-rearrangements. Thus, interallelic trans- 
rearrangements do not appear to possess any distinct struc- 
tural features that would allow them to be readily distinguished 
from c/s-rearrangements. 
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Table 4. Sequences of Vy2/JB2 Trans-Rearrangements 

v~2 Pv-N-Pj J~, 

GTTCCTACGG G GACA 2.5 
GTTCCTACG AAACAC 2.4 
GTTC CAAGACA 2.5 
GTTCCTACGG CTGAGG GTCAAACAC 2.4 
GTTCCTACGG CTAAAGT AACCAAGACA 2.5 
GTTCCTACGG CTATT CAAGACA 2.5 

Underlined nucleotides represent possible P additions. 

Figure 5. Frequency of va8/Jal c/s-rearrangement in NZW x SWR 
thymocytes. SWR thymic DNA (2 #g) or indicated amounts of NZW 
x SWR thymic DNA mixed with SWR thymic DNA were used as tem- 
plate in PCRs containing Va8- and Jal-specific primers. Amplified c/s- 
rearrangements were detected on Southern blots by hybridization with 
an internal Va8-specific probe end labeled with Phosphorous-32. The 
resultant autoradiogram is shown. 

The calculated frequency of interalhlic trans-rearrangements 
in the F1 mice is about an order of magnitude lower than 
that previously reported for other types of trans-rearrangement 
which produce chimeric receptors, such as V~/J~ and V-r/J6 
rearrangements (9, 10). This difference could be due to strain 
variation or could represent a real difference in the frequency 
of these types of rearrangements. To differentiate between 
these possibilities, the prevalence of Vv/J~2 trans-rearrange- 

Figure 6. Detection of Vv2/ 
Jo2 trans-rearrangements in NZW 
x SWR thymocytes. NZW or 
NZW x SWR thymic DNA (2 
/~g) was used as template in PCRs 
containing primers specific for 
Vv2 and Jo2. Amplified trans- 
rearrangements were then de- 
tected on Southern blots by hy- 
bridization with an internal Vv2- 
specific probe end labeled with 
Phosphorous-32. The resultant 
autoradiogram is shown. 
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ments was investigated in F1 thymuses. In these experi- 
ments, N Z W  thymic DNA that lacks J~2 segments was 
used as a negative control. Addition of 0.2/~g (2 x 104 cell 
equivalents) of DNA to the PCR consistently resulted in 
amplification of several bands which hybridized to an internal 
Vv2 probe (Vv2ihp) on Southern blots (Fig. 6), while N Z W  
DNA never produced any positive signals. Identity of the 
hybridizing bands was confirmed by DNA sequencing, which 
demonstrated direct joining of Vv2 coding segments to Ja2 
coding segments without interposed Da segments (Table 4). 
Further dilution revealed positive signals in 11 of 24 reac- 
tions containing 0.04/~g (4 x 103 cell equivalents) of DNA 
(not shown), giving a frequency for V~2/J~2 trans-rearrange- 
ments of ~15 per 10 s cells. The size of most rearrangements 
approximated that expected for joining with Ja2.5, J~2.4, or 
Ja2.3. Bands corresponding to the size of V~2/Ja2.1 rear- 
rangements were not seen. Once again, the calculated fre- 
quency for V~2/Ja2 tram-rearrangements represents a lower 
limit, since rearrangements involving Vv segments other 
than Vv2 or Ja2.6 will not be detected by the primers used. 
With this caveat, it can be concluded that the frequency of 
intergenic Vv/Ja trans-rearrangements is about one order of 
magnitude higher than that of interallelic Va/J~ trans- 
rearrangements. 

Discussion 

By making use of strain-specific deletions, we have detected 
and analyzed rearranged routine TCR-B genes which appear 
to have been created by interallelic V(D)J recombination, a 
process we refer to as interaUelic trans-rearrangement. Our 
results indicate that this type of rearrangement occurs rela- 
tively infrequently, the ratio of c/s- to trans-rearrangement 
being about 104:1. In N Z W  x S W R  mice, the frequency 
of interallelic trans-rearrangement involving Va8 and Va5 
segments within the TCR-/3 locus is around 1 per 105 
thymocytes. Assuming that the ratio of c/s- to trans-rearrange- 
ment is also about 104:1 for other Va segments, the cumu- 
lative frequency of all interallelic trans-rearrangements in 
TCR-/~ is probably not greater than 1 per 104 thymocytes 
in these animals. 

Previously, evidence supporting the occurrence of inter- 
aUelic trans-rearrangement in other ARGs has been obtained 



from serologic studies performed on rabbit Ig. Rabbits pref- 
erentially rearrange a single V. segment (22), V.1, which 
shows strain-specific variation, and also possess variation in 
CH segments. Therefore, it is possible to breed animals that 
are doubly heterozygous for allotypic V. and C. sequences. 
About 1% of Ig molecules from the peripheral blood of such 
animals appear to contain V. and C. allotypes encoded by 
alleles carried in a trans configuration in the germline DNA 
(23, 24). Additionally immunofluorescent studies have demon- 
strated colocalization of both allotypes in about 1% of plasma 
cells (25). Recently, a single rearranged IgH gene from a 
doubly heterozygous rabbit has been cloned and shown to 
have a sequence consistent with a trans-rearrangement (26). 

These data, though mostly indirect, when considered in 
the context of the present studies imply that the incidence 
of interallelic tram-rearrangement might be several orders of 
magnitude greater within the IgH locus than within the 
TCR-fl locus. However, a number of observations indicate 
that recombination events other than V(D)J recombinase- 
mediated trans-rearrangement could partly or wholly explain 
the observations made in rabbits. Homozygous rabbits pre- 
sumed to lack certain V. allotypes can be induced to express 
them after immunization with antiallotype antibody (27), 
and pseudogenes potentially capable of contributing V. 
allotype-specific sequences through gene conversion events 
have been detected in allotype-negative rabbits (28). Recent 
data suggest that gene conversion plays an important role in 
generating sequence diversity in the rabbit IgH gene (22), 
and therefore may participate in creation of doubly allotypic 
molecules. Finally, since one site of aUotypic variation lies 
within C. segments, the serological data could also be ex- 
plained by trans-switching (11) or trans-splicing (29), subse- 
quent to recombinase-mediated C.# c/s-rearrangement. 
Therefore, the high apparent incidence of tram-rearrangement 
within the rabbit IgH locus may be due to the summation 
of several kinds of genetic events, some involving recombinase 
and some not, and as a result, the true incidence of inter- 
allelic tmns-rearrangement involving the IgH gene is uncertain. 

Alternatively, it is possible that deletions within murine 
TCR-fl genes might somehow suppress the participation of 
remaining gene segments in interallelic tram-rearrangements, 
thus leading to an unrepresentatively low incidence of such 
events in the mouse cross used in this study. For example, 
it could be argued that deletion of C~1, D~2, and Ja2 seg- 
ments from the NZW allele diminishes trans-rearrangement 
of residual Dill and Jill segments. This seems unlikely for 
several reasons. Model systems for studying recombinase- 
mediated recombination have produced little evidence of pro- 
motion or suppression of recombination by flanking sequences 
(30, 31). More directly, it seems likely that any suppressive 
influence of deletions would extend to c/s-rearrangements and 
intergenic trans-rearrangements. However, c/s-rearrangement 
appears to proceed normally in NZW mice, and intergenic 
V.JJfll rearrangements occur at similar frequencies in NZW 
and wild-type mice (data not shown), indicating that dele- 
tions within TCR-fl do not inhibit other types of inter- 
chromosomal recombination. 

Three issues arising from our work concern the role of 
trans-rearrangements in normal immune function, the mech- 
anism by which they are produced, and factors which tend 
to promote or suppress their occurrence. With regard to the 
first issue, the current work does not seem to support a major 
role for interallelic rearrangement in augmentation of the im- 
mune repertoire. The detected trans-rearrangements occur at 
low frequency and generate coding junctions similar to stan- 
dard c/s-rearrangements. Further, except for unusual situa- 
tions, such as the double-deletion mice used by us to detect 
the existence of trans-rearrangements, it seems unlikely that 
novel V(D)J combinations will be generated by this mecha- 
nism. On the other hand, the possibility that chimeric ARGs 
created by intergenic transorearrangement may have novel prop- 
erties remains open to question. 

The close resemblance of the coding junctions of trans- 
rearrangements, whether interallelic or intergenic, to those 
seen in conventional recombinase-mediated c/s-rearrangements, 
strongly implicate recombinase in the ultimate V(D)Jjoining 
event. The simplest way for this to occur would be for recom- 
binase to directly catalyze chromosomal translocation. Indirect 
evidence linking intergenic trans-rearrangements to chro- 
mosomal inversions and translocations supports this mecha- 
nism (9, 10, 32, 33). 

Alternatively, Vfl or Jfl sequences could be moved from a 
trans-orientation to a cis-orientation by some other type of 
recombination event between homologous chromosomes, ei- 
ther before or after conventional intrachromosomal c/s-V(D)J- 
rearrangement. In the case ofinterallelic tram-rearrangements, 
reorientation of coding segments by gene conversion, homol- 
ogous mitotic recombination, reinsertion of sequences ex- 
cised from one allele during c/s-rearrangement, or Vfl re- 
placement after c/s-rearrangement seem possible. A number 
of considerations, however, make these possibilities less likely. 
While gene conversion commonly occurs in trans and is be- 
lieved to play an important role in diversification of Ig Vx 
sequences in chickens (34, 35) and VH sequences in rabbits 
(22), within Ig genes it typically results in transposition of 
short stretches of DNA sequence ranging from 10 to 120 
bp. Since the V~ primers used to amplify V(D)J trans- 
rearrangements lie 150-200 bp 5' of the recombination signal 
sequences, similar conversion events occurring in TCR-fl 
would have been expected to result in recombinant Vfl se- 
quences, which were not observed. Moreover, gene conver- 
sion has not yet been described in the TCR genes. 

More importantly, some features of the interallelic trans- 
rearrangements appear to directly support involvement of 
V(D)J recombinase. Specifically, models requiring reorienta- 
tion of segments by a mechanism not involving recombinase 
do not readily explain the absence of Dfl2 segments from in- 
terallelic trans-rearrangements, since Dfl2 segments partici- 
pate in about 50% of cis-rearrangements containing J~2 seg- 
ments (20, 36). In contrast, a trans-joining mechanism 
mediated by recombinase could produce this result if inter- 
allelic trans-rearrangement within TCR-fl is limited to Dfl 
to Jfl joining. Trans-rearrangements occurring during at- 
tempted VflNZW to DflJ0swR joining can contain either Dill 
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or Da2 segments, since the S W R  allele contains both D~I 
and Da2 segments. In contrast, the N Z W  allele contains 
only a Dal segment, so that all tram-rearrangements occur- 
ring during attempted DaNzw to JaswP, joining must involve 
Dal segments and cannot contain De2. The lack of De2 
segments in the interallelic trans-rearrangement products is 
therefore consistent with restriction of such rearrangements 
within TCR-B to D~ to Ja joining, with subsequent V e to 
DaJe joining occurring only in cis. 

Our data also suggest that Ja usage differs when Da to 
Je joining occurs in trans rather than cis. Je2.1 segments nor- 
mally participate in about 20-30% of cis De to J~2 rear- 
rangements (20, 36). In contrast, hybridizing bands of the 
expected size of a Ve/Je2.1 tram-rearrangement were quite 
infrequent, not being seen at all in PCRs performed at lim- 
iting dilution. The reason for this difference in Je usage is 
unclear, but it may be a general feature of tram-rearrangements 
involving Ja2 segments, since V,/Ja tram-rearrangements 
also appear to only rarely involve Ja2.1. These data further 
support restriction of interallelic trans-rearrangement to De 
to Jo joining, since tram-rearrangements formed by joining 
of Ve segments to DaJa segments previously rearranged in 
cis would be expected to frequently contain Ja2.1. 

Given this possible restriction in interallelic tram-rearrange- 
ment, one might ask what factors determine the frequency 
of joining of various ARG segments in trans. It seems tea- 

sonable that concomitant accessibility of gene segments to 
recombinase is necessary, albeit perhaps not suf~dent, to pro- 
mote tram-rearrangement. The low incidence of Va to DaJa 
interallelic tram-rearrangement might thus be the result of 
the temporal separation of Va to DaJa rearrangemei~t events 
in the two alleles. The situation is analogous to what has 
been proposed to occur during V~ to DdH joining in pre-B 
cell lines (2), during which temporally staggered rearrange- 
ment of alleles is believed to contribute to the process of al- 
lelic exclusion. Our data suggest that a similar mechanism 
may promote allelic exclusion in TCR-B. 

Aside from the timing of rearrangement, a separate factor 
which could effect the frequency of trans-rearrangement is 
the physical localization of rearranging gene segments in the 
interphase nucleus, since topological proximity of ARGs 
would seem to be an absolute requirement for tram-rearrange- 
ment to occur. In most mammalian cells, chromosomal 
homologs are usually spatially separated from one another 
in interphase (37). If true of thymocytes as well, this could 
also act to diminish the chance of interallelic tram-rearrange- 
ment. Topological constraints could conceivably explain, for 
example, why V~/Ja tram-rearrangements appear to occur 
more frequently than interallelic De/Ja tram-rearrangements. 
Additional studies assessing the spatial relationship of ARGs 
in differentiating lymphoid cells may help to resolve this 
question. 
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