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Abstract

In mammalian cells, much of signal transduction is mediated by weak protein-protein interactions 

between globular peptide-binding domains (PBDs) and unstructured peptidic motifs in partner 

proteins. The number and diversity of these PBDs (over 1,800 are known), low binding affinities, 

and sensitivity of binding properties to minor sequence variation represent a substantial challenge 

to experimental and computational analysis of PBD specificity and the networks PBDs create. 

Here we introduce a bespoke machine learning approach, hierarchical statistical mechanical 

modelling (HSM), capable of accurately predicting the affinities of PBD-peptide interactions 

across multiple protein families. By synthesizing biophysical priors within a modern machine 

learning framework, HSM outperforms existing computational methods and high-throughput 

experimental assays. HSM models are interpretable in familiar biophysical terms at three spatial 

scales: the energetics of protein-peptide binding, the multi-dentate organization of protein-protein 

interactions, and the global architecture of signaling networks.

INTRODUCTION

Signal transduction downstream of transmembrane receptors, particularly receptor tyrosine 

kinases (RTKs), is commonly mediated by networks of weak protein-protein interactions 

(PPIs) having dissociation constants in the micromolar range.1,2 Many such interactions 
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involve peptide-binding domains (PBDs; e.g. SH2, SH3, PDZ domains) that bind short 

linear sequences in partner proteins (hereafter “peptides” or “peptidic sites”) to form multi-

protein scaffolds and regulate enzyme activities.3–6 Oncogenic mutations are common in 

PBD-containing proteins and many of these proteins are drug targets.7,8 The large number of 

PBDs and peptidic sites presents a considerable hurdle to structural understanding: PBDs 

and peptidic sites are too numerous for comprehensive crystallization or analysis by cryo-

EM.9–11

The low affinities of PBD-mediated interactions represents a second challenge to their 

characterization: relatively few PBD-peptide complexes are detectable using the pull-down 

assays from cell extracts currently being performed on large scale, and this has necessitated 

the use of other methods such as protein-peptide arrays, isothermal titration calorimetry, and 

surface plasmon resonance.12–15 Such methods require synthetic and/or immobilized 

peptides and recombinant proteins and do not readily scale to a full proteome; as a result, 

binding data on many PBD families remain sparse. Computational approaches have been 

stymied by this data scarcity and by the diversity of PBD folds. Consequently, modeling 

efforts to date have focused primarily on individual domains (e.g. the SH2 domain of the 

protein STAP1)16–19 or domain families for which sufficient binding data are available (e.g. 
all SH2 domains)20.

In this paper we describe a machine learning method, hierarchical statistical mechanical 

modelling (HSM), for studying PBD-peptide interactions en masse. HSM uses experimental 

domain-peptide array data to model PPIs by generalizing along two axes: from individual 

PBD-peptide interactions to multi-dentate PPIs, and from one PBD family to another. A key 

feature of HSM is the inference of a unified energy model that enables transfer of 

biochemical and structural knowledge from domain families for which abundant binding 

data are available (e.g. SH2 domains) to ones for which data are sparse (e.g. PTB domains). 

We show that HSM predicts PBD-peptide biophysics with precision and recall superior to 

existing computational methods and to high-throughput assays (e.g. protein arrays, yeast 

two-hybrid screening, and affinity mass spectrometry). By exploiting biophysical 

knowledge, machine learning, and large-scale but sparse empirical data, HSM provides a 

substantial technical and biological advance in the study of PBDs and the cellular signaling 

networks they form in both physiological and dysregulated conditions.

RESULTS

Model design and approach

We constructed HSM models for six common PBD families involving phosphotyrosine, 

polyproline, and C-terminal peptidic sites (PDZ, SH2, SH3, WW, WH1, PTB; n = 823 

domains) and for tyrosine kinases and protein tyrosine phosphatases (TK, PTP; n = 143 

domains; Fig. 1a; Supplementary Table 1). In the human proteome, the total number of 

PBD-containing proteins is estimated to be ~104 proteins (Fig. 1b) which participate in ~105 

- 106 interactions (Fig. 1c). The eight domains studied in this paper constitute ~39% of the 

total number of human PBDs (see Supplementary Note 1). In principle, the same modeling 

framework is applicable to all remaining human PBDs, but a scarcity of data (<100 reported 

interactions per family) makes it difficult to evaluate model performance.
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HSM is a method for inferring structured Hamiltonians, the mathematical function that maps 

the state of a system to its energy and, consequently, to its thermodynamic properties. In 

classical statistical mechanics, this function is derived from physical theory. In HSM, an 

empirical approximation to the Hamiltonian is machine-learned in a manner that satisfies 

known and inferred biophysical constraints (see Supplementary Note 2). Due to data 

limitations, the process of inferring full Hamiltonians is underdetermined. Consequently, the 

HSM model is more appropriately termed a pseudo-Hamiltonian. We constrain the model to 

include only energy terms corresponding to single residues and interactions between pairs of 

residues, one in the domain and one in the peptide. Given additional data, higher-order 

effects (e.g. steric effects of triplets of residues) could be added to the model to more 

completely approximate the true Hamiltonian.

Prior to initiating machine learning we carry out a combined sequence/structure alignment 

that brings into correspondence all residue positions of a given PBD family and peptide 

class, resulting in a unified system of residue coordinates. HSM then learns a pseudo-

Hamiltonian that maps individual residues and residue pairs to binding energies in a manner 

that respects two constraints: (i) within a PBD family, a residue or residue pair at the same 

position always contributes the same energy and, (ii) across PBD families, residue pair 

energies are derived from a fixed pool of energy potentials.

The first constraint is motivated by atomic-resolution structures of PBD-peptide co-

complexes. These complexes show that structurally aligned residue positions in a domain 

family create biophysically similar binding pockets (Supplementary Fig. 1)6,13,21–24. Thus, 

learned energies for a given residue position should be transferable among domains from the 

same PBD family. Models applicable to all domains in one PBD family are described below 

as HSM for Independent Domains (HSM/ID) (Fig. 1d). HSM/ID is a generalization of the 

multiscale statistical mechanical (MSM)20 model we previously used to model SH2 

domains. However, unlike MSM, HSM/ID does not require alignment on phosphotyrosine 

sites (the chemical moiety recognized by all SH2 domains) or high-resolution protein 

structures.

The second constraint is motivated by our analysis of residue-residue potentials learned by 

HSM/ID, which revealed similar energetic patterns for groups of residues across families of 

domains (Supplementary Fig. 2). Such similarity is consistent with the view that interactions 

among diverse types of proteins are mediated by a relatively limited set of interaction 

surfaces.25,26 We formalize this observation by forcing the HSM model to learn a shared set 

of residue-residue potentials that are assigned via a learned weighted mixture to specific 

position pairs in each PBD family (Fig. 1e). We find that a small number of potentials used 

in combination can capture the observed set of sterically and chemically distinct interaction 

surfaces, enabling information transfer among residue positions. The model that uses shared 

potentials and satisfies the HSM/ID constraint is referred to as HSM for Domains (HSM/D).

Training and validation

To train HSM models, we assembled a dataset of ~2 × 106 PBD-peptide interactions derived 

primarily from array-based assays; data were binarized to allow values from different 

experimental methods to be combined, yielding 3-5% positive interactions (Supplementary 
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Table 1). To evaluate the merits of enforcing different constraints on learned energies we 

trained eight separate HSM/ID models, one for each PBD/enzyme family, and a single 

unified HSM/D model covering all families. We are unaware of any single model that covers 

an entire PBD family (including sequence variants that are associated with disease; our SH2-

specific MSM framework is the exception20) or PBDs from multiple families 

(Supplementary Table 2). We therefore compared HSM against conventional position-

specific scoring matrices (PSSM27) and, when available, previously published machine 

learning models covering subsets of PBD families.

HSM/D and HSM/ID significantly outperformed existing machine learning models17,28 (p ≤ 

6.4 × 10−12; DeLong test) and PSSMs27 (p ≤ 4.9 × 10−56; DeLong test) in all cases in which 

comparison was possible (Fig. 2a; Supplementary Fig. 3a; Supplementary Table 3). We also 

observed strong concordance between experimentally-derived and model-inferred 

interaction probabilities (Supplementary Fig. 3b), suggesting that predicted values can be 

meaningfully interpreted as physical affinities. HSM/D outperformed HSM/ID across all 

domains (p ≤ 2.4 x 10−2; DeLong test), likely due to information sharing among domains. 

Improvement was observed for both high-data (e.g. PDZ) and low-data (e.g. PTB) domains. 

HSM covers more PBD families and a substantially larger fraction of each family than other 

methods (parentheses in Fig. 2a). Critically, much of the improvement is concentrated in low 

false-positive rate (FPR) regions (FPR < 0.10), where realistic use of model predictions 

would occur.

Many mammalian signal transduction proteins contain multiple PBDs and/or peptidic sites. 

We modelled multi-dentate PPIs involving multiple peptidic sites and/or PBDs by 

computing the energies of all possible binding configurations using the HSM/D pseudo-

Hamiltonian and then extracting the probability of the bound ensemble. These whole-protein 

models are referred to as HSM for Proteins (HSM/P) (Fig. 1c; Supplementary Table 4). The 

additivity of Hamiltonians is a key advantage of the HSM approach; it enables the principled 

aggregation of domain-level predictions while accounting for increases in affinity arising 

from multi-dentate binding. Thus, HSM/P accounts for cooperativity, but not changes in 

binding energy associated with steric hindrance at the level of tertiary structure. This 

limitation may not be consequential since many proteins containing PBDs and peptidic sites 

involve discrete folded domains separated by structurally disordered and presumably flexible 

polypeptides.

To evaluate the accuracy of HSM/P models, we constructed a “gold standard” set of 32,504 

direct PPIs derived from two curated molecular interaction databases (BioGRID29, IntAct30) 

using three criteria: (i) direct interactions, (ii) low-throughput assays, and (iii) multiple 

verifications (see Methods). We assessed the performance of HSM/P and three recent high-

throughput experimental assays11,31–33 (Supplementary Table 5) against this gold standard 

set. Because HSM is only trained on domain-peptide interactions, the gold standard protein-

level PPI data is independent of HSM predictions. To further guard against data leakage, we 

removed from the gold standard set any PPIs comprised of domain-peptide interactions 

present in the HSM training set. To ensure a fair comparison, recall was computed on the 

subset of PPIs detectable by each method (e.g. tested pairs in a yeast two-hybrid binary 

interactome). At comparable false-discovery rates, HSM/P roughly doubled the recall 
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achieved by any of the three experimental assays (Fig. 2b). This comparison is likely to 

underestimate the actual improvement provided by HSM due to (i) underreporting of weak 

PPIs in the gold standard dataset (these appear as false positive HSM predictions),1,34 and 

(ii) the presence in the gold standard dataset of interactions that are mediated by domains 

other than the modeled PBDs (these appear as false negative HSM predictions). The 

comparison nonetheless shows that HSM/P improves on high-throughput experimental 

methods while covering the space of poorly-characterized interactions.

To assess the utility of HSM in predicting novel protein-protein interactions, we combined 

protein-level data from BioGRID and high-throughput experiments and filtered them for 

PPIs discovered subsequent to the date HSM domain-level training data were reported (see 

Methods). Given the number of domain- and peptide-containing proteins in the human 

proteome for which HSM is capable of making predictions, the highest number of possible 

PPIs is ~5.3M. At an expected FDR of 0.01 (calibrated using the results of Fig. 2), HSM/P 

predicts 23,309 PPIs not reported in the combined protein-level data prior to the time of the 

split. Among these, 161 interactions have subsequently been detected experimentally (Fig. 3; 

Supplementary Fig. 4); we use HSM/P to gain detailed insight into them. Almost all 

interactions examined (99%, n = 160 PPIs) involved one or more high-affinity PBD-peptide 

interactions (p ≤ 0.05, HSM/D prediction) but they were otherwise diverse: 69 (43%) were 

multi-dentate (with two or more strongly-interacting PBDs), 11 (7%) involved multiple 

PBDs from one or more families and a single peptide, and 68 (42%) involved multiple 

peptides and one PBD. Phosphotyrosine- and proline-binding predominated (Fig. 3), but the 

two chemistries were largely non-overlapping (only 6 PPIs combined both). In most 

interactions we also observed either that (i) the number of multiply bound peptidic sites (i.e. 
sites having more than one high-affinity PBD partner) exceeded the number of PBDs (n = 

106 PPIs), and/or (ii) that multiple peptidic sites strongly interacted with a single PBD (p ≤ 

0.05, HSM/P; n = 119 PPIs). We expect both types of interactions to decrease off-rates (Koff) 

while minimally impacting on-rates (Kon). Consequently, the affinities of these PPIs should 

be higher than predicted from PBD-peptide affinities considered individually (that is, they 

should exhibit cooperativity). Phosphosite-binding has the additional property of being 

regulable by kinases and phosphatases, further diversifying the properties of multidentate 

interactions.

Mechanistic insights into PBD-peptide binding.

How well does HSM capture the details of a PBD-peptide interaction known from a high-

resolution structure? To investigate this we examined the structural basis of SH3-peptide 

binding; similar analyses of other PBD families are shown in Supplementary Fig. 5 and 6. 

To identify key features in PBD-peptide interaction based on energetic similarity, the 

Pearson correlation coefficient was calculated for all residue-to-residue energy potentials 

across domain positions (Fig. 4a) and then used as the basis for hierarchically clustering 

domain positions. To visualize energetic similarity, the four maximally separated clusters 

were colored using distinct colors (“anchors” in Fig. 4a, bottom). All other clusters were 

colored using a weighted mixture of these four colors, with cophenetic distance as the 

weight (see Methods and Supplementary Fig. 5a for color mixtures). Resulting colors were 

mapped onto the SH3 domain of HCK, an SH3-peptide co-complex for which a high-
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resolution structure is available (PDB:2OI3; Fig. 4b). The canonical SH3 binding pocket is 

known to involve a conserved triplet of aromatic residues (W114, Y132, Y87) comprising 

two polyproline type-II (PPII) helix xP-recognition grooves and specificity-defining n-Src 

and RT-loops21,35 (Fig. 4b–c). W114 constitutes a “tryptophan switch” that can adapt to 

support both Class I (N-to-C oriented) and Class II (C-to-N oriented) peptide binding.36 

HSM reveals the involvement of two additional residues in peptide binding (Y89, Y127; Fig. 

4d); these residues are energetically similar to W114 (shared green color), potentially 

contributing to binding energy via van der Waals forces (involving the tryptophan aromatic 

core) or via hydrogen-bonding (involving the tyrosine alcohol group). Y89 and Y127 appear 

to function cooperatively with W114 to facilitate binding in Class I and Class II 

conformations, with Y89 exhibiting features characteristic of both W114 and Y87 (Y89 is 

darker green, similar to Y87 in Fig. 4b). The existence of such energetic coupling is 

confirmed by the selectivity of W114 and Y89 for a residue adjacent to the core proline 

motif on the peptidic site (Fig. 4d, bottom). We also observed energetically similar residues 

in the RT and n-Src loops (Fig. 4e; shared gold color). This similarity, supported by 

associated energy profiles (Fig. 4e, bottom), is consistent with the conformational flexibility 

observed in the peptidic segments adjacent to the RT and n-Src loops (Fig. 4c): all residues 

in both loops have similar physico-chemical preferences which, in conjunction with their 

flexibility, allows them to act cooperativity. Thus, even though HSM uses no high-resolution 

structural information for training, it correctly infers known binding motifs (e.g. the W114 

tryptophan switch) as well as previously unrecognized aspects of peptide binding (e.g. the 

role of Y89 and Y127 in Class I vs. II binding). We conclude that HSM generates an energy-

based description of protein mechanism from which novel biophysical and structural 

insights can be obtained.

As a second approach to studying the energies that comprise HSM predictions, we mapped 

predicted interaction energies onto the HCK co-complex (PDB: 2OI3). Residues on the 

surface of the domain were colored by mean energies of interaction with peptidic residues at 

defined radii (2.5Å, 5Å, and 10Å) and in total (Fig. 5a). Attractive regions (blue) broadly 

correspond to known interaction surfaces such as the RT-loop and proline recognition 

pocket. The peptide bound to HCK in this complex (HSKYPLPPLPSL) is unusual however: 

it binds in a Class I (N-to-C oriented) conformation involving the typical proline motif 

(HSKYPLPPLPSL) but an atypical N-terminal sequence (HSKYPLPPLPSL).37,38 HSM 

predicts a strongly favorable set of interactions for the proline motif involving both the 

conserved tyrosine residues (Y87, Y132) as well as two adjacent polar residues S130, N131 

(Fig. 5b). Although the role of the tyrosine residues is well-described21,37,38, the 

contributions of S130 and N131 are not. We speculate that these residues may serve to 

decrease off rates by coming into contact with a dissociating peptide.

In its specificity defining N-terminal sequence, the bound peptide is atypical with an 

aromatic tyrosine residue at the -3 position and a basic lysine residue at the -4 position.37 

Compared to the typical peptide conformation, which smoothly curves into the RT and n-Src 

pocket, this induces an atypical, “S-shaped” conformation that involves two structural 

differences: K(-4) is in an orientation that is typically occupied by the -3 position and Y(-3) 

sterically hinders H93 (Fig. 5c). Despite this unusual arrangement, HSM predicts the 
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expected energetics: the RT-loop has a broadly attractive interaction with the anchoring basic 

residue (K(-4) and E94 / D95, possibly electrostatic) along with weaker interactions between 

H(-6) and Y127, which may involve van der Waals forces. Similarly, HSM assigns repulsive 

energies to the sterically hindered H93 residue. Speculatively, this unfavorable interaction 

suggests a potential mechanism for optimizing the binding affinity of the peptides; HSM 

suggests that smaller, non-polar residues (leucine and isoleucine are the most favorable 

substitutions) would better enhance affinity at position (-3) than tyrosine.

Insights into signaling networks.

Many proteins contain multiple PBDs of different classes with and without co-occurring 

peptidic sites. To study networks involving this type of binding, we generated a proteome-

wide node-edge graph of high-confidence human PPI predictions (HSM/P, p > 0.7), with 

nodes corresponding to proteins and edges to interactions (Fig. 6). Networks were laid out 

using an automated, repulsion-based algorithm that places nodes with similar neighbors 

nearby (i.e. proteins having similar sets of interacting proteins; Methods). We found that 

proteins containing PBDs from the same family interacted with similar sets of partners, 

resulting in PBD “neighborhoods” (Supplementary Fig. 7). Globally, the network is further 

divided into clusters rich in phosphosite-binding and polyproline-binding, with relatively 

few interconnecting proteins. This hierarchical organization is suggestive of separate, 

potentially independently-evolving, signaling programs.

Many PBD families form distinct subnetworks (Supplementary Fig. 7), with a broad range 

of microscale structures such as bifans and feed-forward loops.39 The existence of common 

peptidic ‘currencies’ for PBDs based on phosphosite and polyproline binding allows distinct 

PBD-specific subnetworks to interact, establishing the observed mesoscale structure. We 

speculate that proteins with PDZ and/or SH3 domains may have evolved to interconnect the 

phosphosite-binding and polyproline-binding signaling currencies (Fig. 6).

DISCUSSION

The HSM approach to modeling PBD-mediated interactions represents a form of bespoke 

machine learning in which statistical mechanical principles and universal features of protein 

chemistry are wedded to the data-driven learning paradigm through the power of automatic 

differentiation frameworks (e.g. TensorFlow). Bespoke models like HSM combine the 

robustness of machine learning—with respect to learning from complex, heterogeneous, and 

incomplete data—with the interpretability of fundamental (bio)physical theory. We speculate 

that the performance achieved by HSM is unlikely to be possible using a generic machine 

learning approach.

Because learned pseudo-Hamiltonians are the basis of HSM, it is possible to interpret 

learned interactions in terms of familiar position-specific binding energies. HSM is therefore 

able to provide structural insight at three spatial scales: the residue/co-complex level, by 

facilitating understanding and prediction of PBD and/or peptidic function; the protein level, 

by quantifying relative contributions of individual PBDs and ligands in multi-dentate 

interactions; and the network level, by enabling large scale modeling of information 

transmission from the cell surface to determinants of cell structure and function.
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The biophysical detail captured by HSM is most readily illustrated by comparing learned 

energies to insights inferred from crystal structures, as illustrated in this paper by analysis of 

SH3 domains, one of the eight classes of PBDs/enzymes we model. We find that HSM 

provides insight into regions of contact that are remarkably similar to those obtained from 

crystal structures while also providing a broader synthesis obtainable only from a 

comprehensive picture of all known SH3 structures.

For well-studied PBD families (SH2, SH3, PDZ) the current work substantially extends 

current understanding of binding modes and for less well-understood domains (e.g. PTB, 

WH1) it provides new insights. The flexibility of HSM representation makes it adaptable to 

modeling mutant PBDs and peptides in disease and to designing peptide-based drugs or 

PBD-like biosensors. In the future it should be possible to develop models for PBDs (e.g. 
BRCT, 14-3-3) that currently lack sufficient data. We expect this to yield comprehensive, 

proteome-scale models of PBDs in mitogenic and inflammatory signaling and of PBD and 

peptidic site mutations in diseases such as cancer.

Online Methods

HSM - models

We denote a given PBD by D and its putative cognate peptide by L, and consider the 

reaction:

D + L DL

where D+L represents the pair in an unbound configuration and DL in a bound 

configuration. We associate a Hamiltonian with both the unbound, ℋ(D + L), and bound, 

ℋ(DL), states. We assume that the energies associated with the unbound configuration are 

additive, i.e. ℋ(D + L) = ℋ(D) + ℋ(L).

Every Hamiltonian is decomposed into a set of energy functions {e(·)}, such that each 

function maps a set of residues (singles or pairs) to an energetic contribution, dependent on 

the: (i) state of the interaction (bound (b) or unbound (u)), (ii) position(s) of residue(s) in the 

canonical alignment, and (iii) order of the interaction (singleton or pairwise). We denote the 

state and position in subscript and the order in a superscript; for example eb; i, j
(2)  corresponds 

to the pairwise (i.e., order 2) interaction between the i-th PBD position and j-th peptide 

position in a bound PBD-peptide complex. A Hamiltonian is then defined by a summation 

over these energy functions:

ℋ(D) = ∑
i = 1

∣ D ∣
eu; i
(1)(Di)

ℋ(L) = ∑
i = 1

∣ L ∣
eu; i
(1)(Li)
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ℋ(DL) = ∑
i = 1

∣ D ∣
eb; i
(1)(Di) + ∑

j = 1

∣ L ∣
eb; j
(1) (L j) + ∑

i = 1

∣ D ∣
∑

j = 1

∣ L ∣
eb; i, j
(2) (Di,L j)

In general, a Hamiltonian should be composed of all possible interaction orders (i.e. all 

possible subsets of residues in a complex). Due to limitations in available experimental data, 

we constrain our representation to first- and second-order interactions. Thus, HSM is more 

correctly thought of as a pseudo-Hamiltonian. The above model formulation corresponds to 

a single PBD family in the case of HSM/ID.

A stronger prior can be placed on this pseudo-Hamiltonian by redefining the second-order 

energy functions to be linear combinations of an underlying basis set shared among all PBD 

families:

eb; i, j
(2) (Di, L j) = ∑

k = 1

K
wi, j

k ⋅ bk(Di, L j)

Where K is the number of basis functions, bk is the k-th basis, and wi, j
k  is a learned weight 

associating the k-th basis with position pair (i,j). Note that the weights are dependent on 

position, whereas the basis functions are independent of position and common to all PBDs 

and all families. This model corresponds to the HSM/D formulation.

Finally, we consider the interaction of two proteins 𝒫1 and 𝒫2:

𝒫1 + 𝒫2 𝒫1𝒫2

Let β(𝒫1, 𝒫2) define all permissible bound states between the two proteins. A permissible 

state is a set comprised of PBD-peptide pairs {DL} such that every pair has a non-zero 

probability of interaction in HSM and no PBD or peptide is paired more than once. For a 

given bound state B ∈ β(𝒫1, 𝒫2), we define the Hamiltonian:

ℋ(B) = ∑
DL ∈ B

ℋ(DL) + ∑
D ∉ B

ℋ(D) + ∑
L ∉ B

ℋ(L)

While the unbound state Hamiltonian is described by:

ℋ(𝒫1 + 𝒫2) = ∑
D ∈ 𝒫1

ℋ(D) + ∑
L ∈ 𝒫2

ℋ(L)

HSM – probabilistic derivation

To learn energy functions, we first translate the model described above into a probabilistic 

framework.20 Using the Boltzmann distribution, we write the likelihood of the canonical 

ensemble (ce) representing the bound and unbound states as:
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p(ce)(D + L) = 1
Z(D, L)e

− 1
kT (ℋ(D) + ℋ(L) − TSu)

p(ce)(DL) = 1
Z(D, L)e

− 1
kT (ℋ(DL) − TSb)

where Z(D,L) is the partition function over the two states:

Z(D, L) = e
− 1

kT (ℋ(D) + ℋ(L) − TSu)
+ e

− 1
kT (ℋ(DL) − TSb)

and T is the temperature, k the Boltzmann constant, and Su and Sb are the entropies 

associated with the unbound and bound states, respectively. Note that entropies are not 

sequence specific.

Using the same distribution, we define the likelihood of a pair of interacting proteins in 

configuration B as

p(ce)(B) = 1
Z(𝒫1, 𝒫2)e

− 1
kT (ℋ(B) − T( ∣ Nb(B) ∣ Sb + ( ∣ N ∣ − ∣ Nb(B) ∣ )Su))

where Nb (B) defines the number of domains in a bound state in configuration B and N 
defines the total number of domains. The partition function over the interacting proteins is 

consequently defined as:

Z(𝒫1, 𝒫2) = e
− 1

kT (ℋ(𝒫1) + ℋ(𝒫2) − T ∣ N ∣ Su)

+ ∑
B ∈ β(𝒫1, 𝒫2)

e
− 1

kT (ℋ(B) − T( ∣ Nb(B) ∣ Sb + ( ∣ N ∣ − ∣ Nb(B) ∣ )Su))

Using this probabilistic formulation we can apply machine-learning techniques to learn 

model parameters.

The above formulation contains an inherent indeterminacy however. Specifically, algebraic 

simplification yields partition functions that are exclusively described in terms of differences 

between bound and unbound terms. As a result, the parameters we learn are differences in 

energy. This is illustrated by simplification to the standard logistic function:
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p(ce)(DL) = e
− 1

kT (ℋ(DL) − TSb)

e
− 1

kT (ℋ(D) + ℋ(L) − TSu)
+ e

− 1
kT (ℋ(DL) − TSb)

p(ce)(DL) = e
− 1

kT (ℋ(DL) − ℋ(D) − ℋ(L) − T(Sb − Su))

1 + e
− 1

kT (ℋ(DL) − ℋ(D) − ℋ(L) − T(Sb − Su))

Expanding the Hamiltonian, we are left with a function that is a difference of bound and 

unbound energies:

ℋ(DL) − ℋ(D) − ℋ(L) = ∑
i = 1

∣ D ∣
eb; i
(1)(Di) − eu; i

(1)(Di) + ∑
j = 1

∣ L ∣
eb; j
(1) (L j) − eu; j

(1) (L j) + ∑
i = 1

∣ D ∣
∑

j = 1

∣ L ∣
eb; i, j
(2) (Di, L j)

These differences, which we will denoted by Δℋ(i), in addition to the change in entropy, ΔS, 

are the uniquely determinable values. Hence the inferred energy functions represent the 

difference in energy associated with binding a peptide. This indeterminacy extends to the 

protein interaction model described below.

Given a likelihood function, we can define a loss function. Using the negative of the 

conditional log-likelihood we define the loss function as:

Loss ≔ − p(emp)log p(ce) + (1 − p(emp)) log(1 − p(ce))

This function maximizes the conditional likelihood of the data over the available training set. 

We encourage sparsity via an L1 regularization penalty. In HSM/ID the penalty is placed on 

all weights, while in HSM/D the basis sets are excluded.

HSM/D (independent and universal)

Data—Sequences for PBDs were taken from the UniProt database and aligned using the 

Superfamily40 Hidden Markov Model (HMM) associated with each PBD’s respective fold. 

Sequences were aligned and trimmed to the model using HMMER3.1b2 (hmmalign and 

alimask; see Supplementary Data Set 1).

The space of PBDs considered in this work divided naturally into three peptidic types for the 

purpose of alignment: phosphosites, C-terminal sites and ‘other’ sites. Phosphosites, bound 

by the SH2, PTB/PID, TK and PTP families, were aligned using the central phosphorylated 

residue and trimmed to include the seven leading and trailing residues. C-terminal sites, 

associated with the PDZ family, were aligned to the C-terminus and trimmed to include the 

trailing six residues. In both cases, the choice of site length was based on examination of 

representative crystallographic structures of PBD-peptide co-complexes.
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The ‘other’ sites, associated with SH3, WW, and WH1/EVH1 domains, were aligned with 

reference to PBD-peptide co-complexes. All co-complexes of a given family were extracted 

from the Protein Data Bank and structurally aligned using a rigid-body alignment38, with the 

PBD domains serving as the reference points (i.e. the positions of peptides were ignored 

when defining the alignment, but were rigidly transformed in the same way as the domain). 

This alignment induced a structure-based correspondence between peptides, even ones with 

highly divergent sequences. We extracted a multiple sequence alignment (i.e. residue-to-

residue correspondences with no internal gaps) from the structural alignment by pairing 

residues between peptides such that the sum of Euclidean distances between paired residues 

is minimized. We then add peptides without structural representatives to this multiple 

sequence alignment by finding the most similar peptide with a structural representative, and 

performing pairwise sequence alignment on the two peptides (with no internal gaps).

Binding data were extracted from a total of 554 publications reporting domain-peptide 

binding assays. The complete training set is provided in Supplementary Data Set 2 (file 

includes PubMed ID of each publication).

Implementation and Training—All models were implemented in TensorFlow (v. 1.4). 

Learned parameters include the energetic terms comprising the Hamiltonian and a constant 

term, which approximates entropic contributions. The basis functions defined in HSM/D are 

learned and not pre-defined. In each training iteration, all domain families are represented. 

Consequently, the domain-specific weights receive gradients (only) from domain-peptide 

samples of the same class whereas the basis functions receive gradients from all domain 

families.

We used a k-fold cross-validation procedure (k = 8). Data for each domain was randomly 

split into k independent subsets (folds). For each split, we hold out a single fold (“test data”) 

and re-train the model on the remaining folds (“training data”). Hyper-parameters (L1 

regularization parameters per domain, number of epochs, learning rate) were fit against a 

randomly chosen training fold in a given split and a model was trained on the entire training 

set using these parameters. For novel prediction (i.e. for use in HSM/P), a model was re-

trained on all training data with hyper-parameters averaged over all validation folds.

Validation—HSM/ID and HSM/D were first compared against position-specific scoring 

matrices (PSSMs). A PSSM, w, of length L is specified by an L x A matrix (A is the number 

of amino-acids) where the l,a-th entry is the empirical probability of observing amino acid a 
at position l. The likelihood of observing a sequence s is then defined as:

P(s ∣ w) = ∏
i = 1

∣ s ∣
Pi(si ∣ wi)

To compute this model, domains of a given class were clustered using average / unweighted 

pair group method with arithmetic mean (UPGMA)41 with inter-sequence distance defined 

via the PAM120 substitution matrix. A PSSM was derived for each cluster from all the 
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empirical binding data in our training set. The clustering threshold was chosen to maximize 

the performance of the PSSMs on the test set.

Second, HSM/ID and HSM/D were compared with published models of PBD-peptide 

interactions if such models were available. The significance of the relative performance 

improvement of HSM/ID and MSM/D was assessed using the DeLong Test.42

HSM/P

Data—We identified a total of 991 human PBDs in 591 proteins using the alignments 

constructed for HSM/D. For peptidic sites, tyrosine phosphosites were extracted from 

PhosphositePlus43 and filtered to only include entries with a minimum of one literature 

citation. Potential non-phosphorylated sites (i.e. C-termini and polyproline sites) were 

selected based on two properties: solvent accessibility and disorder, which we predicted 

proteome-wide using RaptorX_Property.44 Using known ligands derived from the ELM45 

linear motif database, thresholds were chosen for RaptorX_Property-predicted values to 

optimally recreate this known set of ligands. All C-termini regions (length = 6) that meet the 

previously described thresholds were included. Potential polyproline regions were identified 

by taking all protein regions that satisfied the previous thresholds and included at least one 

proline residue. At each proline, we search l residues in each direction (l = 8). If a proline 

residue is encountered, that residue is added to the putative site, and the search is expanded 

by another l residues. If no proline residues are found, the site is padded by l / 2 in that 

direction. When no expansions are possible, the site is finalized as a potential polyproline 

binding site. This algorithm splits large regions (20+ residues) into subsets of contiguous 

prolines in a motif-agnostic way, i.e. a motif like ‘PxxP’ is not pre-defined.

Phosphosites and C-termini peptides were aligned in the same manner as described above 

for HSM training. For polyproline sites, all possible binding configurations were considered 

for a given site. That is, the bound ensemble represents the likelihood of a given domain 

binding the entire polyproline region. For efficiency, computation of PPIs only included 

ligands with greater than 0.01 probability of interaction.

The selection of peptidic sites represents a potential and unavoidable source of error. For 

example, some known ligands of SH3 (i.e. annotated via ELM) are excluded due to the 

solvent accessibility / disorder thresholds. The existence of annotation error necessarily 

informs interpretation of model results, as they are conditional on the space of selected 

ligands. We release the set of selected peptidic sites in our analysis (Supplementary Data Set 

3) for future reference and possible improvement.

Validation—A high confidence set of PPIs, the “gold standard” set, was derived as follows. 

First, interaction data was extracted from the BioGRID29 and IntAct30 databases, which 

serve as repositories for experimentally-detected, manually curated PPI datasets. From these 

databases, all interactions were extracted that fit three criteria: (1) direct interaction (PSI-MI:

0407), (2) low-throughput source, and (3) reported by multiple (low-throughput) sources. 

Here, a low-throughput source is defined as any source reporting no more than 1,000 

interactions. For comparative assessment, we used three recently released, high-throughput 

data sources: HT-MANN11, HT-GYGI (BioPlex)31,32, and HT-VIDAL33. Comparisons were 
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conducted on detectable interactions for each method (i.e. filtered based on bait-prey 

relationships). False-discovery rate (FDR) was based on literature-reported values for each 

source.33 We report predictions at an equivalent FDR by combining HSM/D false-positive 

rates using Fisher’s method (to derive a combined p-value) and correcting using the 

Benjamini-Hochberg method (see Fig. 2b).46 For calculating HSM recall, we removed any 

PPIs in the gold standard set that may be comprised of domain-peptide interactions in the 

training set.

This benchmark likely underestimates the true predictive performance of HSM. While we 

only consider proteins that contain at least one PBD or peptidic site, we cannot guarantee 

that any given PPI will be PBD-mediated. The high-throughput methods considered can 

detect, in principle, any kind of PPI, unlike HSM which only predicts PBD-mediated ones. 

Furthermore, curated databases are primarily composed of higher-affinity PPIs1,34, 

presenting an underreporting bias against the types of PPIs HSM is specifically designed to 

predict.

As additional validation, we consider a set of chronologically-split PPIs reported in public 

repositories subsequent to when our (domain-level) training data was collected. Specifically, 

we combine all interactions from the three high-throughput proteomics experiments (HT-

MANN, HT-GYGI, and HT-VIDAL) with all data reported in BioGRID following 2015 

(IntAct does not record dates). We did not filter BioGRID using the previous three criteria as 

we wanted to maximize the number of PPIs for this analysis, but interactions reported prior 

to 2015 were removed. Predictions from HSM (FDR ≤ 0.01) that confirmed these results are 

reported with the associated mechanisms visualized in Fig. 3 and Supplementary Fig. 4.

Biophysical analysis of inferred models

Analyses of PBD-peptide co-complexes was performed by computing the Pearson 

correlation coefficient between all residue positions for a given PBD. We then summarize 

each position in the aligned PBD coordinate system by a set of second-order interaction 

energies ei, j
(b)(αi, α j) , where i and j correspond to residue positions in the PBD and peptide, 

respectively, and α is the amino acid at a given position. We define the correlation between 

two PBD residue positions, m and n, as the correlation over all amino acid pairs and all 

peptide positions, i.e.:

rm, n
(D) =

∑k = 1
∣ P ∣ ∑αm = αn, αk ∈ AA em, k

(b) (αm, αk) − μm en, k
(b) (αn, αk) − μn

∑k = 1
∣ P ∣ ∑αm, αk ∈ AA em, k

(b) (αm, αk) − μm ∑k = 1
∣ P ∣ ∑αn, αk ∈ AA en, k

(b) (αn, αk) − μn

This correlation coefficient effectively treats the similarity of different PBD residue 

positions as the average similarity of their inferred binding energies. Finally, we performed 

hierarchical clustering on all residue positions based on the above distance metric to order 

residue positions (clustering illustrated by a dendrogram; Fig. 4a). To enable visual 

inspection of energetically related surface patches, we associated colors with clusters using a 

greedy algorithm to map cophenetic distance into a color space.
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Consider the set of non-singleton clusters, C1, C2, … , Cn, and singleton clusters, S1, S2, … , 

Sn that result from a given clustering threshold. For a given inter-cluster distance metric, 

δ(·,·) (here, average / unweighted pair-group method with arithmetic mean (UPGMA)), we 

choose the next most distinct cluster, Di = Cj, on the basis of greatest sum of distances from 

the previously selected most distinct clusters, D1, D2, … Di−1 (i.e. Di = Cj if 

C j = argmax
Ck ∉ D1, …Di − 1

∑l = 1
i − 1δ(Ck, Dl)). The first most distinct cluster, D1, is chosen as the most 

distinct from all clusters. The first four clusters, D1, D2, D3, D4, are “anchored” into a color 

space by arbitrarily assigning the four “anchor colors” to the clusters. For each subsequent 

non-singleton cluster, Di, we assign the red (R), green (G), and blue (B) color channels by 

taking an inverse (cophenetic) distance weighted average of all previously colored channels 

(e.g. the fifth most distinct cluster is colored as a function of the first four clusters, the sixth 

as a function of the first five clusters, and so forth). For example, the red channel, R(·), of Di 

is defined:

R(Di) = ∑
j = 1

i − 1
wDi

(D j) ⋅ R(D j)

where wDi(Dj) is defined as a basic inverse distance weight:

wDi
(D j) =

δ(Di, D j)
− p

∑ j = 1
i − 1 δ(Di, D j)

− p

We found that setting p to 15 yielded the best results visually and emphasized nearby 

clusters. The green and blue channels are assigned in the same way. Singleton clusters were 

not assigned iteratively; rather, singletons were assigned as a mixture of all non-singleton 

clusters (i.e. all singletons are weighed with respect to the set C1, C2, …, Cn). Colors were 

mapped onto representative co-complexes for which high resolution structures are available 

enabling identification of congruent surface patches (Fig. 4b–e; Supplementary Fig. 5–6).

Domain structures were also colored according to the interaction energy between domain 

and peptidic residues (Fig. 5). Using the second-order interaction energies 

ei, j
(b)(αi, α j) ei, j

(b)(αi, α j) , consider a domain residue at position i, αi = a. The interaction energy 

is determined by the set of peptidic residues, p1, p2, … pn. We compute the total interaction 

energy is computed by averaging over all peptidic residues:

eι = 1
n ∑

j = 1

n
ei, j
(b)(a, p j)

We may refine this average energy by considering subsets of peptidic residues that lie within 

a certain distance (we use radii of 2.5Å, 5Å, and 10Å) of the i-th domain position, αi. 

Residue-residue distance is defined by the closest pair of atoms in the domain and peptidic 

residues.
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Force-directed layout algorithm

Protein-protein interaction networks were laid out using a force-directed algorithm through 

the graph-tool Python package47 (https://graph-tool.skewed.de). This algorithm simulates a 

pair of physical forces—repulsion between nodes (i.e. nodes are analogous to electrons) and 

springs for edges (i.e. all edges are approximately the same length). The layout results from 

minimizing the opposing forces (i.e. repulsion between nodes and attraction based on 

springs), placing nodes with similar sets of adjacent nodes close to one another. In the 

context of proteins, this translates into the formation of neighborhoods that have similar sets 

of neighboring proteins. The non-random structure of the networks shown in Figure 6 and 

Supplementary Figure 7 arises directly from these calculations and does not involve human 

intervention.

Website

A Web-based tool was created to enable visualization of HSM interactions by capturing both 

topology and the PBD/peptide composition of individual nodes. At the review stage, the 

network can be viewed at (https://ProteinPeptide.hms.harvard.edu). A searchable interface is 

also provided to allow users to query for PPIs at varying likelihood thresholds.

Reporting Summary

Further information on research design is available in the Reporting Summary linked to this 

article.

DATA AVAILABILITY—The domain-peptide and protein-protein interactions predictions 

are made available through a custom website (https://ProteinPeptide.hms.harvard.edu). The 

protein-peptide interaction data are also made available in figshare with the identifiers 

https://doi.org/10.6084/m9.figshare.10084745. Data used in training the model are available 

as Supplementary Data Set 2.

CODE AVAILABILITY—All code and data used for training and testing HSM are available 

in a public repository at https://github.com/aqlaboratory/hsm.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

This work was funded by NIH Grants U54-CA225088 and P50-GM107618 and by DARPA/DOD grant 
W911NF-14-1-0397 to PKS.

References

1. Gao A et al. Evolution of weak cooperative interactions for biological specificity. Proc. Natl. Acad. 
Sci 115, E11053–E11060 (2018). [PubMed: 30404915] 

2. Perkins JR, Diboun I, Dessailly BH, Lees JG & Orengo C Transient Protein-Protein Interactions: 
Structural, Functional, and Network Properties. Structure 18, 1233–1243 (2010). [PubMed: 
20947012] 

Cunningham et al. Page 16

Nat Methods. Author manuscript; available in PMC 2020 July 06.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript

https://graph-tool.skewed.de/
https://proteinpeptide.hms.harvard.edu/
https://proteinpeptide.hms.harvard.edu/
https://doi.org/10.6084/m9.figshare.10084745
https://github.com/aqlaboratory/hsm


3. Mayer BJ The discovery of modular binding domains: building blocks of cell signalling. Nat. Rev. 
Mol. Cell Biol 16, 691–698 (2015). [PubMed: 26420231] 

4. Tompa P, Davey NE, Gibson TJ & Babu MM A Million Peptide Motifs for the Molecular Biologist. 
Mol. Cell 55, 161–169 (2014). [PubMed: 25038412] 

5. Scott JD & Pawson T Cell Signaling in Space and Time: Where Proteins Come Together and When 
They’re Apart. Science 326, 1220–1224 (2009). [PubMed: 19965465] 

6. Cesareni G, Gimona M, Sudol M & Yaffe M Modular Protein Domains. (John Wiley & Sons, 2006).

7. Yang F et al. Protein Domain-Level Landscape of Cancer-Type-Specific Somatic Mutations. PLOS 
Comput. Biol 11, e1004147 (2015). [PubMed: 25794154] 

8. Miller ML et al. Pan-Cancer Analysis of Mutation Hotspots in Protein Domains. Cell Syst. 1, 197–
209 (2015). [PubMed: 27135912] 

9. Rual J-F et al. Towards a proteome-scale map of the human protein–protein interaction network. 
Nature 437, 1173–1178 (2005). [PubMed: 16189514] 

10. Beck M, Claassen M & Aebersold R Comprehensive proteomics. Curr. Opin. Biotechnol 22, 3–8 
(2011). [PubMed: 20888217] 

11. Hein MY et al. A Human Interactome in Three Quantitative Dimensions Organized by 
Stoichiometries and Abundances. Cell 163, 712–723 (2015). [PubMed: 26496610] 

12. Levinson NM, Seeliger MA, Cole PA & Kuriyan J Structural Basis for the Recognition of c-Src by 
Its Inactivator Csk. Cell 134, 124–134 (2008). [PubMed: 18614016] 

13. Waksman G, Shoelson SE, Pant N, Cowburn D & Kuriyan J Binding of a high affinity 
phosphotyrosyl peptide to the Src SH2 domain: Crystal structures of the complexed and peptide-
free forms. Cell 72, 779–790 (1993). [PubMed: 7680960] 

14. Demers J-P & Mittermaier A Binding Mechanism of an SH3 Domain Studied by NMR and ITC. J. 
Am. Chem. Soc 131, 4355–4367 (2009). [PubMed: 19267471] 

15. Tinti M et al. The SH2 Domain Interaction Landscape. Cell Rep. 3, 1293–1305 (2013). [PubMed: 
23545499] 

16. Hou T, Chen K, McLaughlin WA, Lu B & Wang W Computational Analysis and Prediction of the 
Binding Motif and Protein Interacting Partners of the Abl SH3 Domain. PLOS Comput. Biol 2, e1 
(2006). [PubMed: 16446784] 

17. Kundu K, Mann M, Costa F & Backofen R MoDPepInt: an interactive web server for prediction of 
modular domain–peptide interactions. Bioinformatics 30, 2668–2669 (2014). [PubMed: 
24872426] 

18. Mignon D, Panel N, Chen X, Fuentes EJ & Simonson T Computational Design of the Tiam1 PDZ 
Domain and Its Ligand Binding. J. Chem. Theory Comput 13, 2271–2289 (2017). [PubMed: 
28394603] 

19. Kaneko T et al. Loops Govern SH2 Domain Specificity by Controlling Access to Binding Pockets. 
Sci Signal 3, ra34–ra34 (2010). [PubMed: 20442417] 

20. AlQuraishi M, Koytiger G, Jenney A, MacBeath G & Sorger PK A multiscale statistical 
mechanical framework integrates biophysical and genomic data to assemble cancer networks. Nat. 
Genet 46, 1363–72 (2014). [PubMed: 25362484] 

21. Zarrinpar A, Bhattacharyya RP & Lim WA The Structure and Function of Proline Recognition 
Domains. Sci STKE 2003, re8–re8 (2003). [PubMed: 12709533] 

22. Denu JM & Dixon JE Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr. 
Opin. Chem. Biol 2, 633–641 (1998). [PubMed: 9818190] 

23. Wagner MJ, Stacey MM, Liu BA & Pawson T Molecular Mechanisms of SH2- and PTB-Domain-
Containing Proteins in Receptor Tyrosine Kinase Signaling. Cold Spring Harb. Perspect. Biol 5, 
a008987 (2013). [PubMed: 24296166] 

24. Harris BZ & Lim WA Mechanism and role of PDZ domains in signaling complex assembly. J. Cell 
Sci 114, 3219–3231 (2001). [PubMed: 11591811] 

25. Kolodny R, Koehl P, Guibas L & Levitt M Small Libraries of Protein Fragments Model Native 
Protein Structures Accurately. J. Mol. Biol 323, 297–307 (2002). [PubMed: 12381322] 

26. Nepomnyachiy S, Ben-Tal N & Kolodny R Global view of the protein universe. Proc. Natl. Acad. 
Sci 111, 11691–11696 (2014). [PubMed: 25071170] 

Cunningham et al. Page 17

Nat Methods. Author manuscript; available in PMC 2020 July 06.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



27. Stormo GD, Schneider TD, Gold L & Ehrenfeucht A Use of the ‘Perceptron’ algorithm to 
distinguish translational initiation sites in E. coli. Nucleic Acids Res. 10, 2997–3011 (1982). 
[PubMed: 7048259] 

28. Miller ML et al. Linear Motif Atlas for Phosphorylation-Dependent Signaling. Sci Signal 1, ra2–
ra2 (2008). [PubMed: 18765831] 

29. Chatr-aryamontri A et al. The BioGRID interaction database: 2017 update. Nucleic Acids Res. 45, 
D369–D379 (2017). [PubMed: 27980099] 

30. Orchard S et al. The MIntAct project—IntAct as a common curation platform for 11 molecular 
interaction databases. Nucleic Acids Res. 42, D358–D363 (2014). [PubMed: 24234451] 

31. Huttlin EL et al. The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell 
162, 425–440 (2015). [PubMed: 26186194] 

32. Huttlin EL et al. Architecture of the human interactome defines protein communities and disease 
networks. Nature 545, 505–509 (2017). [PubMed: 28514442] 

33. Rolland T et al. A Proteome-Scale Map of the Human Interactome Network. Cell 159, 1212–1226 
(2014). [PubMed: 25416956] 

34. Yoo J, Lee T-S, Choi B, Shon MJ & Yoon T-Y Observing Extremely Weak Protein–Protein 
Interactions with Conventional Single-Molecule Fluorescence Microscopy. J. Am. Chem. Soc 138, 
14238–14241 (2016). [PubMed: 27758101] 

35. Lee CH et al. A single amino acid in the SH3 domain of Hck determines its high affinity and 
specificity in binding to HIV-1 Nef protein. EMBO J. 14, 5006–5015 (1995). [PubMed: 7588629] 

36. Fernandez-Ballester G, Blanes-Mira C & Serrano L The Tryptophan Switch: Changing Ligand-
binding Specificity from Type I to Type II in SH3 Domains. J. Mol. Biol 335, 619–629 (2004). 
[PubMed: 14672668] 

37. Schmidt H et al. Solution Structure of a Hck SH3 Domain Ligand Complex Reveals Novel 
Interaction Modes. J. Mol. Biol 365, 1517–1532 (2007). [PubMed: 17141806] 

38. Teyra J et al. Comprehensive Analysis of the Human SH3 Domain Family Reveals a Wide Variety 
of Non-canonical Specificities. Structure 0, (2017).

39. Ma’ayan A et al. Formation of Regulatory Patterns During Signal Propagation in a Mammalian 
Cellular Network. Science 309, 1078–1083 (2005). [PubMed: 16099987] 

References (Online Methods-only)

40. Wilson D et al. SUPERFAMILY—sophisticated comparative genomics, data mining, visualization 
and phylogeny. Nucleic Acids Res. 37, D380–D386 (2009). [PubMed: 19036790] 

41. Sokal RR & Michener CD A Statistical Methods for Evaluating Relationships. Univ. Kans. Sci. 
Bull 38, 1409–1448.

42. DeLong ER, DeLong DM & Clarke-Pearson DL Comparing the areas under two or more 
correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837–
845 (1988). [PubMed: 3203132] 

43. Hornbeck PV et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids 
Res. 43, D512–D520 (2015). [PubMed: 25514926] 

44. Peng J & Xu J Raptorx: Exploiting structure information for protein alignment by statistical 
inference. Proteins Struct. Funct. Bioinforma 79, 161–171 (2011).

45. Dinkel H et al. ELM—the database of eukaryotic linear motifs. Nucleic Acids Res. 40, D242–
D251 (2012). [PubMed: 22110040] 

46. Benjamini Y & Hochberg Y Controlling the False Discovery Rate: A Practical and Powerful 
Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol 57, 289–300 (1995).

47. Peixoto TP The graph-tool python library. (2017) doi:10.6084/m9.figshare.1164194.v14.

Cunningham et al. Page 18

Nat Methods. Author manuscript; available in PMC 2020 July 06.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



Figure 1. Peptide-binding domains (PBDs) and modeling frameworks.
(a-c) Schematic representations of the (a) PBD families modeled by HSM, (b) GRB2, a 

representative PBD-containing protein with one SH2 and two SH3 domains, and (c) a PBD-

mediated ternary complex involving SOS, GRB2, and EGFR. The numbers of estimated (a) 

modeled human PBD domains, (b) PBD-containing proteins, and (c) interactions mediated 

by PBDs are shown below each schematic. (d) Two models of PBD-peptide interactions: 

HSM for independent domains (HSM/ID; left-to-right, model extent denoted by black bar) 

and HSM for domains (HSM/D, right-to-left). HSM/ID decomposes a PBD-peptide 

interaction into pairwise residue-residue interactions (grayscale matrix). Every pair of 

residue positions (one on the PBD, one on the peptide) within a PBD family is associated 

with a residue-residue energy potential (colored matrix, middle) that is machine-learned 

from data. Predictions for a given PBD/peptide combination are made by summing the 

energies associated with their amino acid sequences, then converting the summed energy 

into a probability. HSM/D learns a shared set of residue-residue potentials (overlapping 

colored matrices) across all position pairs and PBD families (grayscale matrix cutouts with 

associated structures, right). From this shared pool, a weighted mixture of potentials 

(grayscale blocks in “potentials pool”) is assigned to every position pair in every PBD 

family in a machine-learned fashion. Predictions are made by summing energies in the same 

way as for HSM/ID. (e) Multidentate PPIs are handled using the protein model (HSM/P) by 

predicting the energies of all possible PBD (A–C) and peptidic site (1–3) combinations 
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using HSM/D and then computing the equilibrium dissociation rate between the unbound 

state and the ensemble of all possible bound states (dashed gray box) using statistical 

mechanics techniques.
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Figure 2. Model performance and newly predicted PPIs.
(a) Receiver operating characteristic (ROC) curves plotting the true positive rate (TPR) of 

HSM predictions and other methods as a function of the false positive rate (FPR) over a 

high-confidence region (FPR ≤ 0.1). Individual lines are labelled with the Area Under the 

ROC curve (AUROC) and the fraction of PBDs (in parentheses) covered by the method 

indicated relative to HSM. PSSM refers to Position-Specific Scoring Matrix27; NetPhorest28 

and PepInt17 are collections of (independent) PBD models. AUROC is reported over the 

entire curve (i.e. over FPR ranging from 0 to 1). The complete ROC curves are plotted in 

Supplementary Figure 3a. (b) Recall vs. false discovery rate (FDR) of physically-validated 

PPIs (e.g. by isothermal titration calorimetry; n = 32,504 interactions; see Methods) for 

HSM/P (blue curve) and for two affinity purification/mass spectrometry datasets, (AP/MS) 

HT-GYGI31,32 and HT-MANN/HT-MANN High-Confidence (HT-MANN HC;11 green 

points; Supplementary Table 5) and one yeast two-hybrid (Y2H; orange point) dataset, HT-

VIDAL33.
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Figure 3. Predicted mechanisms for newly predicted interactions.
Schematics of PBD-peptide interactions driving 161 newly reported PPIs as predicted by 

HSM/P. Numbers denote how many examples of each PBD/peptide configuration were 

identified. The complete set of annotated interaction mechanisms is shown in Supplementary 

Fig. 4. PBD-peptide interaction strength is denoted by edge opacity. Experimental data 

confirming these interactions were obtained from BioGRID29 (n = 37), HT-VIDAL (n = 31), 

HT-MANN (n = 32) and HT-GYGI (n = 86). No PDZ-mediated interactions were observed, 

likely owing to experimental bias: the attachment of a tag to the C-terminus of a protein, 

necessary for affinity purification, disrupts PDZ-mediated interactions.
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Figure 4. Mechanistic analysis of SH3 domain binding.
(a) Correlation matrix of energy potentials at every residue position in the SH3 domain 

model. Correlation (Pearson’s r, n = 7,056 energies comprising each domain residue - 

peptide potential (21 amino acids x 21 amino acids x 16 peptide residue positions)) level is 

shown in grayscale. Lower-left half of the matrix is ordered by sequence position. Upper-

right half of the matrix is ordered by bi-clustering distance (shown as a dendrogram). Colors 

(top, right) are assigned based on cophenetic distance (see text) and mapped to the sequence 

(bottom, left). (b) Structure of the HCK SH3 domain in complex with a bound peptide 

(black; PDB accession code 2OI3). Domain residues are color coded based on the clustering 

patterns shown in panel (a). The aromatic triplet residues in the HCK SH3 domain (Y87, 

W114, Y132) and specificity-defining loops (RT, n-Src) are labeled. (c) Overlaid SH3-

peptide co-complexes (PDB accession codes 1FYN, 1CKA) highlighting the conformational 

flexibility of bound peptides between the n-Src and RT-loops. SH3 domains are colored 

using the energetic color spectrum from panel (a). Peptides are highlighted in black (1CKA) 
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and white (1FYN). (d) Close-up of the SH3 tryptophan switch (W114) and energetically-

related residues (Y89, Y127). HSM infers a similar energetic profile (similar colors) for 

W114 and the spatially adjacent residues Y89 (shared functional similarity with Y87-

associated cluster) and Y127. This energetic similarity implies a common functional role for 

this triplet that is complementary to the role played by three previously recognized canonical 

aromatic residues (Y87, W114, Y132). Energy potentials for the interaction of W114 and 

Y89 with a single peptide position (bottom) show strong energetic concordance. (e) Close-

up of the RT (top) and n-Src (bottom) loops exhibit a set of energetically similar, acidic 

residues, supporting peptidic conformational flexibility. Mean HSM energy potentials for 

each loop are shown below.
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Figure 5 |. Energy surface of SH3-peptide co-complex.
(a) Energy surfaces for the interaction between the SH3 domain of HCK and a peptide with 

the sequence HSKYPLPPLPSL. Each SH3 residue is colored with its mean predicted energy 

of interaction with peptidic residues lying within a specified distance (2.5Å, 5Å, 10Å; 

residue-residue distances are measured between the closest pair of atoms) and with all 

peptidic residues (“Total”; not bounded by a distance). (b-c) Close-up view of energy 

surfaces for <5Å interactions. Position and orientation are indicated by arrows on inset 

structures. (b) Close-up of the core proline-binding motif (Y87, Y132) along with adjacent 

residues (S130, N131) that interact with the peptide proline motif (HSKYPLPPLPSL). 

Motif positions are denoted by ‘Mx’ where x is the position within the motif in the N-to-C 

orientation. (c) Close-up of the specificity defining RT-loop in the SH3 domain with the N-

terminal region of the bound peptide (HSKYPLPPLPSL). An adjacent SH3 residue, Y127 

(on the β-sheet), is included in the highlighted residues.
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Figure 6 |. Hierarchical organization of the human PBD-mediated PPI network.
(a-b) Human PPI network with nodes corresponding to proteins and edges to predicted 

interactions (HSM/P, p > 0.7). Nodes were automatically laid out using a force-directed 

layout. Each node is represented by a pie chart that denotes (a) domain or (b) peptidic site 

composition. Blue denotes phosphotyrosine-associated mechanisms, green, proline-

associated mechanisms, orange, C-terminus-associated mechanisms, and white, no-

associated mechanisms (i.e. a protein that contains no modeled PBDs in (a)). For 

visualization, maximal adjacency for each node is limited to the 50 most probable partners. 

(See Supplementary Fig. 7 for networks per PBD family; see website for higher quality 

images)
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