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ABSTRACT: A linear-scaling local second-order Møller−Plesset (MP2) method is
presented for high-spin open-shell molecules based on restricted open-shell (RO)
reference functions. The open-shell local MP2 (LMP2) approach inherits the iteration-
and redundancy-free formulation and the completely integral-direct, OpenMP-parallel,
and memory and disk use economic algorithms of our closed-shell LMP2
implementation. By utilizing restricted local molecular orbitals for the demanding
integral transformation step and by introducing a novel long-range spin-polarization
approximation, the computational cost of RO-LMP2 approaches that of closed-shell
LMP2. Extensive benchmarks were performed for reactions of radicals, ionization
potentials, as well as spin-state splittings of carbenes and transition-metal complexes. Compared to the conventional MP2 reference
for systems of up to 175 atoms, local errors of at most 0.1 kcal/mol were found, which are well below the intrinsic accuracy of MP2.
RO-LMP2 computations are presented for challenging protein models of up to 601 atoms and 11 000 basis functions, which involve
either spin states of a complexed iron ion or a highly delocalized singly occupied orbital. The corresponding runtimes of 9−15 h
obtained with a single, many-core CPU demonstrate that MP2, as well as spin-scaled MP2 and double-hybrid density functional
methods, become widely accessible for open-shell systems of unprecedented size and complexity.

1. INTRODUCTION
While open-shell species are ubiquitous in chemistry, their
investigation remains challenging from both the experimental
and the theoretical perspective.1 Here, we focus on systems of
a high-spin open-shell electronic structure, for which single-
reference quantum chemical methods can provide an accurate
description comparable to what is expected for closed-shell
molecules.2,3 The variety of such systems includes the ionized
and electron-attached states of closed-shell molecules; species
relevant in combustion, polymer, atmospheric, interstellar,
electro-, and redox chemistry; and radicals appearing as
intermediates or transition states of reactions.1

The importance and difficulties of the explicit treatment of
electron correlation for such systems and the related processes
are also well understood.2,4,5 The second-order Møller−Plesset
approach (MP2)6 is one of the standard tools for that purpose.
While the accuracy of conventional MP2 does not reach that of
the “gold standard” coupled-cluster (CC) model with single,
double, and perturbative triple excitations [CCSD(T)],7,8 its
favorable computational cost motivated the development of
various improved MP2-based methods.9,10 Among those, the
spin-component-scaled (SCS) MP2 schemes11−15 and the
double-hybrid (DH) density functionals,16−19 both proposed
by Grimme, have gained wide popularity.15,18 In the SCS-MP2
methods, the opposite- and same-spin contributions to the
correlation energy are scaled by different empirical factors,
whereas for the DH functionals, the energy is augmented with
an MP2-like second-order perturbation theory (PT2)
correction evaluated on Kohn−Sham (KS) orbitals. The

introduction of spin-scaled PT2 expressions into the
formulation of DH functionals20−24 turned out to be
particularly successful to raise the accuracy of DH functionals
above that of conventional density functionals.21,24−26

Especially when combined with the resolution-of-identity or
density-fitting (DF) technique,27 MP2-based methods can
target systems of more than 100 atoms,9 thereby extending the
about 30-atom applicability limit of CCSD(T)28 considerably.
The Laplace transform (LT) technique29,30 proposed by
Almlöf to eliminate the energy denominator of MP2 has also
become fundamental to reduce the fifth-power-scaling
computational complexity of MP2.31−39 Aiming toward the
same goal, the particularly simple form of MP2 was also
utilized in a number of creative developments on the basis of,
for instance, Cholesky-decomposed pseudo-density matri-
ces;40−43 stochastic,44,45 quadrature-based,46 and pseudospec-
tral47,48 approaches; nonorthogonal49,50 or Slater-type orbi-
tals;51,52 tensor hypercontraction;53,54 as well as large-scale
parallelization.35,55,56

Parallel to such reformulations, the group of local correlation
approaches57−59 exploits the rapid decay of electron
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correlation with distance, especially in combination with
localized molecular orbitals (LMOs). Following the pioneering
work of Pulay and Saebø,36,60 the correlation energy
contribution of distant LMO pairs can be approximated via a
more cost-efficient level of theory (pair approximation), often
using a restricted, spatially close list of correlating orbitals
(domain approximation). Particular methods also compute the
first-order MP (MP1) amplitudes, required for the MP2
energy, directly in the LMO basis, for which the solution of
coupled amplitude equations is frequently accelerated using
some sort of MP2-based natural orbitals (NOs).61−67

Alternatively, the coupling of MP1 amplitudes with distant
LMO indices can be neglected using fragmentation approx-
imations57,58,68−87 and fragment-specific semicanonical basis
sets. Our previous developments38,88−90 combine the above
benefits of decoupled MP1 amplitude expressions with the
sparsity provided by the LMO basis via an LT or Cholesky-
decomposition (CD)-based MP2 formulation.29,30,91 We also
utilize a form of MP2-based local NOs (LNOs) in our LNO-
CCSD(T)89,90,92 and higher-order LNO-CC90,93 schemes.
However, as the computational cost of the MP2-based LNO
construction is comparable to that of the MP2 correlation
energy, our local MP2 (LMP2) approach employs only the
pair and domain approximations in combination with an LT/
CD-based energy expression written in the LMO basis but
does not require NOs.38,88−90

Compared to the variety of local correlation methods
targeting closed-shell systems, the application of local
approximations for open-shell cases is much less explored.
Open-shell extensions of the incremental scheme78 were
developed by Dolg, Tew, Friedrich, and co-workers based on
unrestricted Hartree−Fock (UHF)86 as well as restricted open-
shell HF (ROHF)87 references. Most recently, the high-spin
open-shell variants of the pair NO (PNO)-based method of
Werner, Ma, and co-workers,65,94,95 as well as the domain-
based local PNO (DLPNO) method of Neese, Valeev,
Hansen, Saitow, Guo, Kumar, and co-workers63,96−98 were
also published up to the CCSD(T) level of theory. The
DLPNO family of methods employs the multireference
second-order Ansatz of the n-electron valence state perturba-
tion theory (NEVPT2)99 for the PNO generation,63 while the
PNO methods of Werner and Ma utilize a spin-adapted MP2
formulation (PNO-RMP2).65 Both approaches share the
benefit of spin-free amplitudes useful to obtain a spin-restricted
set of PNOs at the price of a somewhat more complicated
second-order treatment.
Since neither NOs nor iterative amplitude equations are

required for the efficient computation of MP1 amplitudes in
our LMP2 approach,38,89 we prioritized simplicity and chose
the ROHF-based but unrestricted MP2 Ansatz proposed by
Lauderdale and Bartlett100 and Knowles et al.101 However, the
most demanding integral transformation step is carried out in a
restricted, intermediate MO basis; thus, the computational cost
remains comparable to that of the parent closed-shell LMP2
method. To that end, the use of ROHF or restricted open-shell
KS (ROKS) reference is required, but UHF and unrestricted
KS (UKS) orbitals are also supported by the construction of
quasi-restricted orbitals (QROs).102

For the generalization of our local correlation methods to
the high-spin open-shell case, here, we identify and resolve a
number of technical subtleties emerging already at the LMP2
level of theory. Special attention is devoted to the treatment of
singly occupied MOs (SOMOs) in the pair and domain

approximations as well as in the pair and domain correlation
energy contributions and to the energy contribution of single
excitations. The independent evaluation of the MP1
amplitudes also allows for the introduction of a novel cost-
reduction approach: we show that up to 50−90% of the
correlation energy contributions can be computed relying on
closed-shell algorithms by approximating long-range spin-
polarization effects far away from the localized SOMOs.
The resulting open-shell LMP2 correlation energies are

equivalent to the closed-shell ones for systems with only
doubly occupied orbitals in the zeroth-order wave function.
The open-shell LMP2 approach inherits the beneficial
properties of our previous algorithms,38,89,90 which are the
iteration- and redundancy-free amplitude evaluation, and the
operation-count and memory-efficient, integral-direct, practi-
cally disk I/O-free, and OpenMP-parallel implementation. The
present local approximations are free from empirical
parameters, manual fragment definitions, real-space cutoffs,
etc. often associated with local correlation methods. All
approximations are systematically improvable and automati-
cally adapt to the electronic structure because of the employed
energy and orbital coefficient-based threshold definitions.
Additional unique properties include the treatment of near-
linear-dependent AO basis sets, integration to multilevel local
correlation methods,103,104 the utilization of general point
group symmetry, and frequent checkpointing.
The accuracy of the open-shell LMP2 method is

benchmarked for radical stabilization energies (RSEs),
ionization potentials (IPs), and spin-state energy differences
of a large set of open-shell species. Mean (maximum) absolute
errors against canonical DF-MP2 references are well below the
intrinsic accuracy of MP2 being 0.01−0.06 (0.04−0.13) kcal/
mol for all three types of quantities with various basis sets. The
same errors remain in the 0.01−0.12 kcal/mol range for a
smaller set of systems including 37−175 atoms, while the
corresponding LMP2 calculations take only up to 3−4 h with
an 8-core CPU.
The capabilities of the present open-shell LMP2 code are

demonstrated on three-dimensional, real-life protein models
including 565 and 601 atoms and about 11 000 atomic orbitals.
Both examples represent current challenges of large-scale
correlated calculations (see Section 4): the lowest-lying quintet
and triplet states of the first system were especially complicated
to find at the self-consistent field (SCF) level, and one of the
SOMOs of the other molecule is delocalized over a large
fragment, leading to extremely large domains to handle. In
spite of these difficulties, it was feasible to perform LMP2
computations for four species in this size range, each taking
about 9−15 h on a single, 20-core CPU. Thus, the present
implementation is highly capable of extending the reach of
open-shell (spin-scaled) MP2 and DH density functional
computations to systems of unprecedented size.
The paper is organized as follows. Sections 2 and 3 provide

the theoretical details of the LMP2 Ansatz and the
corresponding algorithms, respectively. The employed techni-
cal details and test systems are introduced in Section 4. The
accuracy of the individual and combined local approximations
is assessed in Sections 5 and 6. Finally, Section 7 presents
large-scale applications and analyzes the corresponding
computational requirements.
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2. THEORETICAL BACKGROUND
A restricted open-shell reference determinant of doubly and
singly occupied molecular orbitals (DOMOs and SOMOs,
respectively) is assumed. These orbitals will be subjected to
various orbital transformations, and the notations distinguish-
ing the different orbital sets are collected in Table 1. The

correlation energy expressions of the conventional theory will
be introduced in terms of unrestricted, semicanonical (also
known as pseudocanonical) MOs denoted by (i, j, k, ..., I, J, K,
...) and (a, b, c, ..., A, B, C, ...) indices for the occupied and
virtual subsets, respectively. Lower (upper) case indices label
the spin-up (spin-down) set of semicanonical orbitals. Local
approximations will rely on localized molecular orbitals
(LMOs) obtained from a restricted open-shell reference
( , , , ...), while these LMOs will be labeled as i′, j′, k′,
... (I′, J′, K′, ...), respectively, when occupied by spin-up (spin-
down) electrons.
2.1. Canonical Open-Shell MP2 Ansatz. Here, we briefly

summarize the MP2 approach introduced by Lauderdale and
Bartlett100 and Knowles et al.101 for restricted open-shell
reference determinants. Starting from a set of restricted
orbitals, spin-up and spin-down Fock matrices are constructed
using the DOMOs and SOMOs for the former and only the
DOMOs for the latter. The spin-up (spin-down) MOs of the
restricted open-shell determinant are then canonicalized
separately using the respective spin-up (spin-down) Fock
matrices, yielding the semicanonicalized MO sets. The
corresponding second-order correlation energy (EMP2

c ) is
calculated relying on an unrestricted formalism

E t f t f t ab ij

t AB IJ t aB iJ

1
4

1
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i
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Here, quantities ti
a and tij

ab ... denote MP1 amplitudes
corresponding to single and double excitations. Moreover, f i

a

and ⟨ab|ij⟩ stand for Fock-matrix elements and electron
repulsion integrals (ERIs) in the Dirac notation, respectively,
while ⟨ab∥ij⟩ = ⟨ab|ij⟩ − ⟨ab|ji⟩. The beneficial properties of
this correlation energy expression include the invariance to the
separate unitary transformation of the occupied and
unoccupied MOs. This opens the possibility of introducing
local correlation approximations exploiting LMOs. Naturally,

eq 1 is equivalent to the closed-shell MP2 correlation energy in
the special case of closed-shell systems.

2.2. Open-Shell Local MP2 Ansatz. The present open-
shell local MP2 Ansatz is constructed analogously to our highly
efficient closed-shell local MP2 (LMP2) implementa-
tion.38,88,89 The LMP2 approach employs ideas from
fragmentation approaches, such as the incremental expan-
sion78,86,87 up to orbital pairs, which can also be interpreted as
pair approximations for distant orbital pairs as employed
frequently in direct local correlation approaches.36,60−62,64,67

The main correlation energy contribution is obtained using
orbital-specific basis sets reminiscent of the cluster-in-
molecule,76,80,82 as well as the divide-expand-consolidate84,85

models. Moreover, a Laplace-transform (LT) or Cholesky-
decomposition (CD)-based MP2 formulation29,30,38,91 is
employed to circumvent redundant amplitude evaluations
and the need for the iterative solution of MP1 amplitude
equations expressed in a noncanonical basis.
By exploiting the unitary invariance of eq 1, EMP2

c can be
rewritten in terms of restricted orbitals. Then, EMP2

c is
expressed in terms of correlation energy contributions of
occupied orbitals by separating one occupied index in the
summations of eq 1

E E E E
i

i
I

IMP2
c ∑ ∑ ∑δ δ δ= = +

′
′

′
′

(2)

It is important to emphasize that denotes a spatial orbital
occupied by either one or two electrons, while i′ (I′) refers to
orbitals with the same spatial component as but occupied by
at most one spin-up (spin-down) electron. Here, we also
assume that the restricted orbitals of eq 2 are LMOs; hence,
the orbital indices are primed. The equivalence of eqs 1 and 2
can be utilized to define the correlation energy contributions of
individual LMOs occupied by spin-up and spin-down electrons
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Note that the last term of eq 1 including both spin-up and
spin-down occupied indices results in both the spin-up and
spin-down correlation energy contributions (cf. the last terms
of eqs 3 and 4) because both of its occupied indices can be
transformed to the LMO basis. Furthermore, because of the
unitary transformation of i → i′ (I → I′) and the restriction of
the summations over this index, the complete permutational
symmetry of the MP1 amplitudes and two-electron integrals is
lost. Consequently, the final terms of eqs 3 and 4 cannot be
combined into a single term like in the conventional theory,
which explains the appearance of the additional, sixth type of
term (third one of eq 4). Note also that the δEI′ contribution
of a singly occupied (SO) restricted LMO is zero by definition;
therefore, the correlation energy contribution of the SO LMOs
contains only half as many terms as for a doubly occupied
(DO) LMO.
To achieve asymptotically linear scaling with system size, the

summations of eqs 3 and 4 are restricted. Therefore, the
correlation energy contribution of each LMO can be computed
with asymptotically constant cost, at least for nonmetallic

Table 1. Summary of Index Notations for Orbital Sets
Employed in Sections 2 and 3

i, j, k, ... (semi-)canonical occupied orbitals (spin-up)
I, J, K, ... (semi-)canonical occupied orbitals (spin-down)
a, b, c, ... (semi-)canonical virtual orbitals (spin-up)
A, B, C, ... (semi-)canonical virtual orbitals (spin-down)
i′, j′, k′, ... localized restricted occupied orbitals (spin-up)
I′, J′, K′, ... localized restricted occupied orbitals (spin-down)

, , , ... localized restricted occupied orbitals (spatial)
i,̃ ..., a,̃ ... (semi-)canonical orbitals in the primary or extended domain

(spin-up)
I,̃ ..., Ã, ... (semi-)canonical orbitals in the primary or extended domain

(spin-down)
μ, ν, λ, ... atomic orbitals
P, Q, ... auxiliary functions for the DF approximation
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systems, where the pair correlation energy of all orbital pairs
decays with distance. First, a list of occupied and virtual
orbitals called the extended domain (ED) is assembled around
each LMO, in which the selected LMO serves as the central
MO (CMO) of the ED. The occupied subspace, that is, the
strong pair LMO list, of the ED consists of those restricted
LMOs that have a sufficiently high pair correlation energy with
the CMO. Then, the virtual subspace of the ED is constructed
from such restricted projected atomic orbitals (PAOs, as
defined by eq 6) that are important for the correlation energy
contributions of any of the CMO’s strong pairs.
For the accurate and efficient estimation of the MP2 pair

correlation energies required for the strong pair list
construction, we combine domain approximations with the
multipole expansion of the two-electron integrals.38 Specifi-
cally, the distant and strong pairs are characterized using
multipole approximated pair energies evaluated in the primary
domains (PDs) of the LMOs forming the pair. Moreover, the
pair correlation energies of the distant pairs are used to
estimate their contribution to the total MP2 correlation energy

E E E E( ) ( )MP2
c

LMP2
c

distant

∑ ∑δ δ≈ = +
< (5)

Here, and indicate that the corresponding energy
contribution is evaluated only in the orbital spaces of the pair’s
PDs or that of the ED, respectively. For closed-shell systems,
the resulting expression is equivalent to our spin-restricted
LMP2 formulation.38

3. LOCAL MP2 ALGORITHM
The major steps of the present restricted open-shell LMP2
(RO-LMP2) algorithm are collected in Figure 1 and discussed
in this section in detail.
3.1. Self-Consistent Field Calculation. First, a restricted

or quasi-restricted open-shell HF or KS reference determinant

is obtained for the entire molecule. Then, semicanonical Fock
matrices are computed in the AO basis using the (quasi-)
restricted electron densities. If any core orbitals are kept
frozen, that is, left out of the correlation calculation, then the
mixing of those orbitals with the correlated orbitals is avoided
during both the semicanonicalization and orbital localization
steps.
For the cases where the convergence of ROHF/ROKS is

problematic, we also implemented quasi-restricted orbitals
(QROs) as proposed by Neese.102 Here, the starting point can
be an unrestricted HF/KS (UHF/UKS) solution, which is
often simpler to find than the ROHF/ROKS one. However,
such UHF/UKS solutions may exhibit considerable spin-
contamination, that is, the single determinant wave function
does not provide the appropriate S(S + 1) eigenvalue for the
square of the spin operator, Ŝ2, with S as the spin quantum
number. To circumvent this, the QROs are constructed as the
eigenvectors of the total density matrix of the unrestricted
computation.102 The orbitals obtained in this way with
occupation numbers close to 2, 1, and 0 are selected to be
DO, SO, and unoccupied in the QRO determinant,
respectively, which becomes an eigenfunction of Ŝ2 by
construction. Our numerical experience to date is in line
with the findings of Neese and co-workers63,102 that the QRO
determinant provides a reliable reference (when the RO
solution is unavailable) with a somewhat higher energy than
the corresponding ROHF/ROKS determinant.
At the few-hundred-atom range, the fourth-power-scaling

HF computation can become a computational bottleneck even
in combination with the DF approach. However, it is possible
to accelerate the evaluation of the exchange term in DF-HF via
local DF (LDF) domains, that is, using a restricted list of
auxiliary functions for each LMO lying in its proximity.38,105

This LDF approach was extended to both restricted open-shell
and unrestricted HF- and KS-SCF in the present work.
Additionally, the third-power-scaling of exchange evaluation in
the LDF-HF approach can be brought down to asymptotically
linear scaling by also restricting the list of AOs appearing in the
exchange matrix contribution of each LMO.106,107 Most
recently, our (L)DF-HF algorithms were further sped up by
multipole approximations107 as well as approximate SCF
iterations followed by first-order corrections;108 however, these
improved schemes were not yet employed here.

3.2. Orbital Localization. The localization of the reference
(quasi-)restricted occupied orbitals can be carried out by the
Boys109 or the Pipek−Mezey110 scheme, although we found
the Boys orbitals to be considerably more suitable for our
algorithm.38 The highly demanding localization of the
unoccupied orbitals is not required. Additionally, the local-
ization can be carried out in a spin-unrestricted or a spin-
restricted manner. To take advantage of the computational
savings offered by the above RO-LMP2 Ansatz, here we
localize the (restricted and correlated) DO and SO orbitals
separately. A drawback of this approach may emerge when
there is only one SOMO in the entire molecule (or when
SOMOs cannot mix due to symmetry) because in this case the
unchanged SOMO(s) of the canonical basis may remain
considerably delocalized. Moreover, the number of SOMOs is
anyway smaller than that of the DOMOs leading to fewer
degrees of freedom for their localization and consequently a
somewhat larger spread of the localized SOMOs. Alternatively,
the spin-up and spin-down orbitals can be localized separately,
leading to potentially better localized but unrestricted LMOs

Figure 1. Major algorithmic steps of the presented restricted open-
shell LMP2 algorithm.
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and twice as many integrals to transform. Thus, in agreement
with previous studies,57,63,65 restricted LMOs are employed.
3.3. PAO Construction. The LMO optimization is

followed by the construction of PAOs,60,65 which span the
virtual subspace of the entire system defined by

i

k
jjjjjj

y

{
zzzzzza 1

DO SO

∑ μ| ⟩ = − | ⟩⟨ | | ⟩μ

∪

(6)

Here, |aμ⟩ denotes the PAO projected from AO |μ⟩, and the
summation runs over both DO and SO MOs. The PAOs of eq
6 span only the virtual subspace of spin-up electrons because
the projection makes the PAOs orthogonal also to the SO
subspace. Therefore, the unoccupied subspace of the spin-
down electrons is spanned by the union of the above PAOs
and all SOMOs. In other words, the SOMOs have a dual role:
they are occupied in the spin-up and unoccupied in the spin-
down orbital set.
3.4. Pair Energy Calculation. The approximate MP2 pair

correlation energies are evaluated for each LMO using nearby
virtual orbitals residing in the PDs of the LMOs. The PDs are
built using our modified38,89 Boughton−Pulay (BP) domain
construction scheme111 similar to our closed-shell implemen-
tations. Briefly, the BP algorithm selects a compact list of
atoms and corresponding AOs so that the overlap of the
projection of the input MO onto the selected AOs with the
input MO will be larger than the specified threshold (T). In
other words, the MOs projected onto their BP AO list exhibit a
well-controlled truncation error of 1 − T.38 For the PD
construction, the BP atom lists are obtained for each LMO and
PAO with completeness criteria of TPDo = 0.999 and TPDv =
0.98, respectively. The SOMOs are part of both the occupied
and virtual subspaces; thus, both of these BP atom lists are
assembled for them.
The PAO list of the PD contains the PAOs derived from the

AOs in the BP domain of the PD’s LMO. Additionally, if a BP
list of a SOMO obtained with the TPDv criterion overlaps with
the BP list of the LMO, then this SOMO is appended to the
spin-down PAO list of the PD. The atom and AO lists of the
PD are obtained as the union of the BP lists of all MOs (LMO,
PAOs, SOMOs) of the PD. The MOs of the PD are projected
onto the AO basis of the PD, and the PAOs (and potential
spin-down SOMOs) are orthogonalized within this truncated
AO basis,38 leading to different spin-up and spin-down MOs.
Then, for the noniterative evaluation of the MP2 pair energies,
the PD’s virtual space is canonicalized separately for the spin-
up and spin-down MOs. Finally, the multipole approximated
opposite-spin MP2 pair correlation energies38 are evaluated as

E E E E E

a i b j
F F
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F F
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F F
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F F
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̃ ̃

[ ]

̃ ̃ ′ ′ ′ ′ ̃ ̃

[ ]

̃ ̃ ′ ′ ′ ′

(7)

Here, subscript or of the virtual orbitals indicates that the
virtual indices run over the virtual subspace of the PD of the
corresponding LMO. Furthermore, aε ̃ denotes the pseudoca-
nonical orbital energy of orbital a ̃ , and Fi′i′ (FI′I′) is the
diagonal element of the spin-up (spin-down) Fock matrix. The
ERIs of a i b j( ) 4̃ ′| ̃ ′ [ ] written in the Mulliken notation are

obtained using the multipole expansion up to the fourth order,
that is, including terms with dipole−dipole, dipole−quadru-
pole, quadrupole−quadrupole, and dipole−octopole mo-
ments.38

With that, the LMO pair of and is classified as a strong
pair if E fw wδ ε> ; otherwise, the pair is treated as a distant
pair, and its contribution is added to the final MP2 correlation
energy (see eq 5). Here, εw is the same strong pair threshold
employed in our methods previously,38,88−90 and fw is a scaling
factor introduced for the following reasons. Let us consider the
case when one LMO of the pair, say , is SO. Then, the
second and third terms of eq 7 vanish, and therefore, all such
pair correlation energies contain only half as many terms
compared to the pair energy of two DO LMOs. Furthermore,
if both and are SO, then only the first term of eq 7
survives, leading to 4 times less terms contributing to an SO−
SO pair than to a DO−DO pair. In accord with this
consideration, on average, we find the SO−DO (SO−SO)
pair correlation energies to be twice (four times) as small as
those of DO−DO pairs. To handle the strong/distant pair
characterization of all pair types on an equal footing, fw factors
of 1, (1/2), and (1/4) are employed for the DO−DO, DO−
SO, and SO−SO pairs, respectively. The numerical properties
of this scaling are analyzed in Section 5.1. We note that a
similar scaling factor of (1/3) is introduced in ref 63 in the
DLPNO context for pairs involving at least one SOMO. On
systems with unusually large numbers of SOMOs, the factor of
(1/3) provided better numerical performance than 0.1 or
0.5.63 This could be explained by the fact that, for the systems
explored in ref 63, (1/3) is the closest to the weighted average
of (1/2) and (1/4) recommended here.
The closed-shell limit of this pair energy expression matches

the formulae used in our closed-shell LMP2 method. However,
due to the fact that the MP2 pair energy is evaluated on an
unrestricted basis, the computational requirement is somewhat
higher. In practice, this does not pose a computational
bottleneck as the multipole-based MP2 pair energy calculation
is very efficient compared to the remaining steps of the
algorithm.

3.5. Extended Domain Construction. The main
correlation energy contribution (first term on the right side
of eq 5) of each LMO is evaluated in LMO-specific EDs of
asymptotically constant size to ensure the linear scaling of this
step. The ED construction scheme closely follows our
algorithm developed for closed-shell systems;38,89 thus, only
a brief summary is provided here focusing on the modifications
required for open-shell systems.
The occupied space of the ED consists of the CMO and all

of its strong pair LMOs. The atom list of the ED is the union
of the BP atom lists obtained with a BP completeness criterion
of TEDo = 0.9999 for all LMOs of the ED. The AOs on these
atoms form the AO basis of the ED. The LMOs are projected
onto the AOs of their respective BP atom lists ensuring at most
1 − TEDo truncation error and are then reorthogonalized. The
virtual space of the ED is spanned by restricted PAOs
originating from atoms of the PAO center domain (PCD) of
the ED. The PCD is the union of the more compact BP atom
lists of all LMOs in the ED obtained with To = 0.985. Since the
PAOs tend to be more delocalized than the LMOs, they are
projected onto the whole AO basis of the ED. Analogously to
the case of the PD construction, the SO LMOs of the ED are
appended to the spin-down unoccupied MOs of the ED. The
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specific combination of the Gram−Schmidt and Löwdin
algorithms112,113 is employed for the orthogonalization of the
virtual space of the ED analogously to our previous
approach.38,89 Finally, pseudocanonical and hence unrestricted
occupied and virtual orbitals are obtained for the iteration free
MP2 energy formulae of the ED.
3.6. Integral Transformation in the Extended

Domain. The correlation energy computation in the ED is
accelerated using the density-fitting (DF) approximation.114,115

The required antisymmetrized two-electron integrals are
denoted as

ab i j ai bj aj bi K K( ) ( ) ai bj aj bi, ,⟨ ̃ |̃| ′ ̃⟩ = ̃ ′| ̃ ̃ − ̃ ̃| ̃ ′ = −̃ ′ ̃ ̃ ̃ ̃ ̃ ′ (8)

and the K ERI tensors are factorized as

K IV I I L L I JJ( )1 T 1 T 1 T T= = =− − −
(9)

Here, Ia ̃i′,P = (a ̃i′|P) denotes three-center two-electron
integrals, and P refers to the auxiliary basis functions. The
two-center integral matrix VPQ = (P|Q) is subjected to
Cholesky decomposition (V = LLT) yielding the J = I(L−1)T

tensor. We showed in ref 38 that the auxiliary basis functions
residing on the atoms of the PCD can accurately expand all
LMO−PAO orbital product densities of the ED; thus, the
auxiliary function list of the ED is chosen accordingly.
The integral-direct ERI transformation algorithm proceeds

as follows

where C and P collect the occupied and virtual MO
coefficients discussed in Section 3.5. First, the (μ̃ν ̃|P) AO
integrals are evaluated for a shell triplet at a time using a highly
optimized three-center two-electron AO integral code116 only
for the AOs and auxiliary functions of the ED. These batches
are immediately subjected to the first transformation of scheme
eq 10, leading to half-transformed integrals with one index in
the restricted LMO basis and then discarded. This integral-
direct approach effectively makes use of the available memory
and data traffic bandwidth between the lower levels of cache
and the CPU. The evaluation and first transformation of the
three-center ERIs are the most computationally demanding
operations in our LMP2 scheme and can be performed at a
similar cost as in the closed-shell implementation because
restricted LMOs are employed. The introduction of this
intermediate step transforming to the restricted LMO basis is
thus more effective than transforming from the AO basis
directly to the semicanonical occupied basis. The latter,
restricted LMO to semicanonical MO transformation is
performed much more efficiently as the final step of scheme
eq 10. Before that, however, it is beneficial to decrease the
number of operations by performing the AO-to PAO
transformations (second step of scheme eq 10). Note that
the number of integrals entering the second half-trans-
formation is considerably lower than in the first step.
Consequently, there is no motivation to perform the AO-to-
PAO transformation in two steps by making use of the
restricted PAO basis unlike in the case of the first half-
transformation. In conclusion, the three-center ERIs are thus
transformed to the spin-up and spin-down ED MO bases in a
cost comparable to that of the closed-shell alternative.

3.7. Energy Contribution in the Extended Domain.
Let us first note that the MP1 amplitudes appearing in the
ED’s correlation energy expressions of eqs 3 and 4 are required
only for a fixed i′ or I′ index. Thus, we recommended38,88

circumventing the redundant evaluation of MP1 amplitudes via
CD91 or LT29,30 techniques. The benefit is that, by factorizing
the energy denominators, we can directly evaluate the
amplitudes with mixed restricted LMO and semicanonical
ED MO indices, e.g.,

t J Ji J
aB

P
ai P BJ P, ,∑ ∑= ̅ ̅

ω

ω ω
′ ̃
̃ ̃

̃ ′ ̃ ̃
(11)

Here, ω labels the summation index over the Cholesky vectors
or integration quadrature weights used in the LT. Since the
doubles amplitudes can have both spin-up and spin-down
indices, it is more beneficial to obtain spin-independent
Cholesky vectors or quadrature points. For instance, in the
case of LT, this is achieved using the range [min(εi,̃ εI)̃,
max(εa,̃ εÃ)] to determine the weights (wω) and quadrature
points (tω). Then, the J̅ integrals of eq 11 can be constructed,
e.g., as

J J cai P ai P ai, ,̅ =ω ω
̃ ̃ ̃ ̃ ̃ ̃ (12)

where caĩ ̃
ω denotes the elements of the Cholesky vector, or in

the case of LT

c w texp( ( ) )ai a iε ε= − −ω
ω ω̃ ̃ ̃ ̃ (13)

Utilizing these integrals, the energy denominator free
expression of eq 11 can be directly written down with Ja̅ĩ′,P

ω

obtained from Ja̅ĩ,̃P
ω via the unitary transformation of the

occupied MO index.
Let us note that our original closed-shell LMP2 algorithm

employed an additional, so-called natural auxiliary function
(NAF)117 approximation to compress the auxiliary function
space of the EDs.38,88 To simplify the Ansatz, the NAF
approximation is not invoked in the EDs in our most recent
closed-shell LMP2 approach.89 NAFs are only employed in
combination with natural orbitals for our LNO-CC meth-
ods.89,90 For the sake of compatibility, the open-shell extension
of the NAF approach118 is not employed here at the MP2 level.
The remaining amplitudes with the other three spin cases

(ti′j ̃
a ̃b̃, tI′J ̃

ÃB̃, and tI′j ̃
Ãb̃) are evaluated analogously using the

appropriate spin cases of the J ̅ tensors. Finally, the RO-
LMP2 energy contribution of orbital can be evaluated in its
ED as
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(14)

Here, we exploit the permutational symmetries of ti′j ̃
ab̃̃ and tI′J ̃

ÃB̃ in
the second and fifth terms; thus, the evaluation of eq 14 takes
about three times more operations than its closed-shell
analogue.

3.8. Contribution of Single Excitations. Special
attention has to be devoted also to the energy contribution
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of single excitations (first and fourth terms of eq 14). These
contributions appear because the presented Ansatz assumes a
reference determinant with unrestricted orbitals, but an
ROHF/ROKS/QRO reference is employed instead of UHF.
Consequently, the occupied-virtual block of the complete
molecule Fock matrix written in the basis of the semicanonical
MOs is nonzero even without any of the above local
approximations. Additionally, the truncation of the MOs in
the EDs would result in a second contribution to f i′

a ̃ and f I′
Ã of

eq 14. The reason for that is a small contamination of the
projected occupied (virtual) orbitals of the ED from the virtual
(occupied) subspace spanned by the untruncated MOs of the
entire system. In the closed-shell context, we found this source
of error small and well-controlled by the BP completeness
criteria governing the truncation of the ED’s LMOs.38

Previously, it was found best not to include these artificial
off-diagonal Fock-matrix contributions into the ED’s correla-
tion energy contribution. However, this strategy is more
challenging to follow for the open-shell case because one
cannot simply discard the correlation energy contributions of
the single excitations. To maintain the exact MP2 energy as the
approximation-free limit of the present local scheme and to
handle the off-diagonal Fock-matrix contributions comparably
to the closed-shell case, the two effects are separated as follows.
Let us recognize that, if we consider the Fock matrix in the

MO representation, the majority of the above nonorthogon-
ality error would originate from its dominating diagonal
elements. However, only the off-diagonal occupied-virtual
block is required for the correlation energy expression.
Therefore, we build the f i′

a ̃ and f I′
Ã quantities in each ED only

from the off-diagonal part of the original semicanonical Fock
matrices. The latter are computed in the AO basis at the end of
the complete molecule SCF computation as

F F C COD Tϵ= − (15)

Here, F and FOD are the complete Fock matrix and its off-
diagonal part in the AO basis, respectively, C holds the
unrestricted MO coefficients, and ϵ is a matrix with the
corresponding orbital energies on its diagonal. The benefits of
storing the additional (spin-up and spin-down) FOD matrices
are illustrated with the example of vitamin E succinate (see
Section 4.2). Using the complete F to compute the first and
fourth terms of eq 14 would result in a 124% relative error in
the singles contribution or in a 0.1% relative error with respect
to the total correlation energy. Compared to that, replacing F
by FOD in the calculation of the f i′

a ̃ and f I′
Ã matrices, the error in

the singles contribution reduces to 0.01%, which is negligible
from the perspective of the total correlation energy. For clarity,
the complete Fock matrices are employed everywhere else in
the algorithm, such as for the semicanonicalization of PD or
ED orbitals. The use of FOD is limited to the energy
contribution of single excitations.
Let us also note that the energy contribution of single

excitations is omitted from the second-order contribution of
DH density functionals to ensure compatibility with the
conventional implementations.119

3.9. Approximate Long-Range Spin Polarization.
Here, we analyze the spin-polarization effect of the SOMOs
on the MP1 amplitudes of the EDs. The present Ansatz
employs unrestricted amplitudes where the contributions of
spin-up and spin-down MOs to the correlation energy differ
because of their different interactions with the spin-up
SOMOs. The reason for that is the construction of unrestricted

semicanonical MOs in the EDs even if the ED’s amplitudes are
otherwise computed independent of each other, that is, they
are not coupled. This spin-polarization effect takes place in all
EDs, which include at least one SOMO, and thus we take this
effect into account in its full extent.
The other case when the ED does not contain any SOMO is

of more interest here. In these “doubly occupied MO-only”
EDs, the equivalence of the spin-up and spin-down MOs
originating from the restricted LMOs and PAOs of the ED is
split only because their semicanonicalization in the ED is
performed with the respective spin-dependent Fock matrices.
In other words, in these EDs, there is no direct mixing between
the SOMOs and the spin-up MOs of the doubly occupied
space of the ED upon canonicalization. Note that the most
important second-order contribution to the long-range and
spin-polarized interaction of the SOMOs and the CMOs of
such doubly occupied MO-only EDs is already taken into
account via the distant pair correlation energy terms. What
remains in such domains is a secondary spin-polarization effect
caused by the interaction with the SOMOs through the spin-
dependent Fock matrices resulting in the splitting of the orbital
energies of the ED’s MOs. However, when such CMOs are
distant pairs with all SOMOs, we expect that the magnitude of
this long-range effect decreases rapidly.
An option has been implemented to exploit the long-range

decay of spin polarization. When this is activated, the EDs
without any SOMOs are treated as closed-shell subsystems,
and their LMP2 energy contributions are calculated using the
closed-shell formulae. This requires the introduction of an
approximation: in these doubly occupied MO-only domains,
the canonicalization step is performed with the average of the
spin-up and spin-down Fock matrices projected onto the ED.
We note in passing that alternatively, the MP1 wave function
could also be spin-adapted, leading to a different Ansatz,65 but
the applicability thereof in combination with the present local
CD/LT techniques is yet to be explored.
The benefit of the introduced approximation is that the ED’s

canonical MOs remain restricted, and the complete ED
computation can be performed using the closed-shell
algorithm. Consequently, the memory requirements of such
EDs can be cut in half, and the operation count needed for the
doubles amplitude evaluation can be decreased by about a
factor of three. Moreover, our numerical experience presented
in Section 5.4 shows that this long-range spin-polarization
effect can indeed be approximated with negligible loss of
accuracy.

3.10. Scaling of the Algorithm. The computational
requirement of the presented open-shell approach is only
moderately higher than that of the analogous closed-shell one,
achieving for the rate-determining steps asymptotically linear
scaling with system size.38 To verify this, the runtimes of the
fifth-power scaling DF-MP2 and the present LMP2 methods
were measured for quasi-linear [Th-(CH2)n-Th]

2+ diradicals,
where Th denotes thiophene rings attached to the end of the
alkane chains.120 Detailed timing data are presented in Section
S1 of the Supporting Information. In these measurements,
canonical DF-MP2 exhibited an N( )4.1 -scaling, which is
somewhat lower than its formal N( )5 -scaling. This can be
understood as the most time-consuming step is still the N( )4

-scaling integral transformation even for the largest chain. In
comparison, the LMP2 algorithm exhibits clear linear scaling,
which sets in already for the smallest systems. Because of the
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redundancy-free evaluation of the LMP2 amplitudes, the DF-
MP2 and LMP2 calculations take comparable time only up to
about 50 atoms followed by the clearly superior performance
of LMP2 for larger systems.
For the sake of completeness, we note that the PAO

construction and the multipole-based pair energy evaluation
currently scale with the third and second powers of the system
size, respectively, but constitute only a few percent of the total
runtime even for our largest examples. The same observation
can be made for the cubic-scaling localization of the occupied
orbitals. The most computationally demanding part of an
open-shell LMP2 calculation is thus the SCF calculation, which
can also be accelerated to cubic scaling via local approx-
imations as discussed in Section 3.1.
The memory requirement of the algorithm is even closer to

its closed-shell analogue. The open-shell LMP2 program
requires the storage of six matrices with dimensions equal to
the number of basis functions. In comparison, the preceding
SCF procedure needs eight such matrices. Moreover, all arrays
related to the EDs are asymptotically constant in size, and thus
the memory requirement of the open-shell LMP2 algorithm is
again lower than that of the preceding SCF calculation, just as
for our closed-shell implementation.

4. COMPUTATIONAL DETAILS AND TEST SYSTEMS

4.1. Technicalities. The presented RO-LMP2 approach is
implemented in the MRCC suite of quantum chemical
programs121,122 and will be made available in a forthcoming
release of the package. The default or Normal threshold
values controlling the accuracy of the local approximations are
collected in Table S1 of the Supporting Information. These
settings correspond to the Normal threshold combination
employed currently in the closed-shell LMP2 approach,89

which are the tighter settings introduced in ref 38.
The performed calculations utilize the split valence and

triple-ζ valence basis sets including polarization functions
(def2-SVP and def2-TZVP) developed by Weigend and
Ahlrichs,123 Dunning’s (augmented) correlation-consistent
polarized valence basis sets [(aug-)cc-pVXZ, X = D, T, and
Q],124 and for third-row atoms, the revised (aug-)cc-pV(X +
d)Z basis sets125 were also employed. The corresponding
auxiliary basis sets of Weigend et al. were used for all AO
bases.126 Extrapolations toward the complete basis set (CBS)
limit were performed according to standard formulae for both
the HF127 and correlation energies.128

The DF approximation was employed in all HF and
reference canonical MP2 calculations. The evaluation of the
exchange contribution in the HF calculations was accelerated
by utilizing local fitting domains as implemented in the MRCC

package (see Section 3.1) for systems containing more than
500 atoms. The Boys localization109 scheme was chosen for the
construction of the LMOs in each presented LMP2 calculation.
The core electrons, including the subvalence electrons for the
iron and cobalt atoms, were kept frozen in the correlation
calculations. The energy denominators of the EDs were
factorized via Cholesky decomposition,91 with an automatically
determined number of Cholesky vectors such that the diagonal
elements of the residual matrix were less than 10−4.
The statistical measures utilized for accuracy character-

ization are the maximum absolute error (MAX), mean absolute
error (MAE), and the standard deviation of the absolute error
(STD), the latter measuring the consistency of the errors.

Relative energy differences with respect to a reference energy
(EDF‑MP2

c ) are obtained as (100%)·(ELMP2
c − EDF‑MP2

c )/EDF‑MP2
c .

The presented wall-clock times were measured with an 8-
core 3.0 GHz Intel Xeon E5-1660 and a 20-core 1.3 GHz Intel
Xeon Gold 6138 CPU.

4.2. Benchmark Sets and Test Systems. The RO-LMP2
correlation energies are benchmarked on three test sets
composed of small to medium-sized open-shell molecules
with an average (maximum) system size of 11 (23) atoms. The
first test set collects 30 radical stabilization energies (RSE30)
and is a 30-species selection from the RSE43 compilation129 as
defined in ref 130 and reoptimized in ref 94. Furthermore, 21
adiabatic ionization potentials of organic species (IP21) are
considered for systems of ref 94. The structures of the neutral
systems were taken from ref 94, while the geometries of the
ions were optimized using unrestricted B3LYP with the cc-
pV(T + d)Z basis (see the Supporting Information). Finally, a
set of 12 singlet−triplet energy gaps of aryl carbenes131

(AC12) was also investigated.
Five processes involving larger open-shell systems of 42−81

atoms were also selected for the accuracy assessment. These
are the radical stabilization of vitamin E succinate, the singlet−
triplet energy gap of artemisinin (structures taken from ref 63),
and the vertical ionization potential of testosterone, borrelidin,
and glutathione (taken from ref 94). The corresponding
structures are depicted in Figure 2.
Large-scale calculations were carried out for a three-

dimensional iron(II) complex of 175 atoms120 in its quintet
and triplet spin state (see Figure 3). Additionally, a homolytic

Figure 2. Structures of the medium-sized organic molecules studied in
Sections 5 and 6.5.
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bond-breaking reaction involving the coenzyme B12 (5′-
deoxyadenosylcobalamin, dAdoCbl) with open-shell systems
of up to 179 atoms [the CobIIalamin (Cbl) radical] was also
considered132 (see Figure 3).
To demonstrate the current capabilities of our LMP2

method, calculations for even larger systems were carried out
for a 565-atom model of bicarbonate in photosystem II
(PSII)63 (Figure 9) and for a 601-atom model of the D-amino
acid oxidase (DAAO)133 (Figure 4).

Following the recent mechanistic study of Kiss and
Ferenczy,133 two steps are taken from the DAAO-catalyzed
oxidation of D-alanine along the oxidative half-reaction. As
illustrated in Figure 5, the reduced form of the flavin moiety of
the flavin adenine dinucleotide (FAD) cofactor is reoxidized by
O2. The diradical reactant state of Figure 5 results from a single
electron transfer from reduced FAD to O2, leading finally to
the oxidized form of FAD and H2O2. Models of the

corresponding triplet and singlet states of the structures
labeled by O1T and O3CSS in ref 133 are provided in the
Supporting Information.
The bicarbonate system of PSII contains an iron(II) center

for which the SCF computations were found complicated for
both the quintet and triplet spin states (see Section S3 of the
Supporting Information). Satisfactory UHF-based QRO
references were obtained using the def2-TZVP basis set, as
well as a mixed basis set labeled by def2-SVP’, which includes
def2-SVP for all atoms, except for the def2-TZVP basis used
for the Fe atom.

5. ACCURACY OF THE LOCAL APPROXIMATIONS
The truncation threshold dependence of the RO-LMP2
approach is documented in this section compared to
approximation-free DF-MP2 references showing the systematic
convergence of the introduced local approximations. The
majority of the approximations have been extensively
benchmarked in our related studies on closed-shell sys-
tems.38,88−90 Therefore, convergence tests illustrating individ-
ual approximations focus on the two parameters (εw and TEDo)
responsible for the bulk of the local error. Open-shell-specific
approximations, which did not appear before, are also
thoroughly benchmarked. For the remaining truncation
parameters, which affect the closed- and open-shell systems
similarly, such as the BP parameters of the PDs or the order of
multipole expansion, the previously assessed values are

Figure 3. Structure of the FeC72N2H100 complex120 (on the left) containing 175 atoms, and the structure of the 5′-deoxyadenosylcobalamin
(dAdoCbl) of 209 atoms (on the right). The dashed line in dAdoCbl marks the breaking Co−C bond leading to the Cbl and 5′-deoxyadenosyl
radicals.132

Figure 4. Triplet state of the D-amino acid oxidase (DAAO)
model.133

Figure 5. Investigated triplet reactant and singlet product states of the
oxidative half-reaction catalyzed by DAAO.133
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adopted.38,89 Note that such approximations are also active and
hence tested in the benchmarks of Section 6.
5.1. Strong Pair Classification. As discussed in Section

3.4, the pair correlation energy expression of eq 7 does not
contain an equal number of nonzero terms for orbital pairs
involving different numbers of SOMOs. To handle the strong/
distant pair classification of the DOMO−SOMO and SOMO−
SOMO pairs on an equal footing with that of the DOMO−
DOMO pairs, we propose to scale the pair energy threshold
(εw) by fw factors of (1/2) and (1/4) for the pairs including
one or two SOMO(s), respectively.
The numerical behavior of this approach is illustrated in

Figure 6, which plots pair correlation energy contributions
E( )δ as a function of the real-space distance between the

centers of LMOs I and J. The Eδ values are collected from
multiple systems containing two methyl carbene species placed
at varying distances from each other, with both methyl carbene
subsystems being in their local triplet state. The left panel,
collecting unscaled pair energies, illustrates that pairs involving
different numbers of SOMOs gather into three distinct clusters
of points. This verifies our expectation that for pairs with
comparable orbital center distances, smaller pair correlation
energies are obtained for SO−SO or DO−SO pairs than for
DO−DO pairs. Consequently, the curves of the three groups
of unscaled pair energies intersect the default pair energy
threshold (dashed horizontal line) at different distances. This
reveals a potential bias in the strong/distant pair classification
of pairs involving SOMOs. However, our goal is to ensure
comparable classification for all pairs exhibiting a similar pair
distance or interaction strength regardless of their occupation.

To that end, we examine the distance dependence of the same
pair correlation energies scaled by

f
1

w

, that is, by 2 and 4 for the

DO−SO and SO−SO pairs, respectively. This emulates the use
of the fw εw strong pair threshold instead of εw. The resulting
scaled pair energies collected in the right panel of Figure 6
indeed exhibit the same trend for all three types of pairs
independent of the occupation. Another beneficial conse-
quence of using the scaled pair threshold is that the chance of
including the SOMOs in the EDs increases. These SOMOs
often play an important role in the chemical processes of open-
shell species, and therefore, their improved description is
advantageous.

5.2. Strong Pair Selection. Here, we assess the
convergence of the LMP2 correlation energy toward the
canonical DF-MP2 reference as a function of the pair energy
threshold (εw). To that end, LMP2 calculations are performed
in which all local approximations are turned off except for the
strong pair criterion of the ED construction. The approx-
imations governed by this threshold are negligible for small
systems and start to operate to a considerable extent for larger
molecules. Besides the correlation energies of such extended
systems (42−81 atoms), the accuracy of three different kinds
of relative energies is also assessed: the vertical ionization
potential (VIP) of testosterone, the radical stabilization
reaction energy (RSE) of vitamin E succinate, and the
singlet−triplet (S−T) gap for artemisinin. The basis set of
aug-cc-pVTZ is used for all species so that the tests will be
performed with a large basis set including diffuse functions
sufficient for realistic applications. Diffuse AOs are more
challenging to handle for local approximations, and con-

Figure 6. MP2 pair correlation energies ( Eδ ) as a function of the real-space distance between the centers of the orbitals separately for DO−DO,
DO−SO, and SO−SO pairs. The left panel plots unscaled Eδ values, while E

f
1

w
δ is plotted in the right panel with 1, 2, and 4

f
1

w
= for the

DO−DO, DO−SO, and SO−SO pairs, respectively.

Figure 7. Relative LMP2 correlation energy (left) and LMP2 energy difference (right) deviations from the DF-MP2 reference for the VIP of
testosterone, the RSE of vitamin E succinate, and the S−T gap of artemisinin as a function of the pair energy threshold, εw.
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sequently, such AOs cannot be omitted in representative
convergence tests.
The relative errors of LMP2 correlation energies obtained

for the open-shell species (left panel) and the corresponding
energy difference deviations (right panel) are depicted in
Figure 7 as a function of εw. Rapid convergence is observed for
all cases, similar to previous findings on closed-shell
systems.38,89 The energy differences are practically converged
already at the default εw = 10−5 Eh setting, and the largest error
of 0.05 kcal/mol is negligible compared to the 217 kcal/mol
VIP of testosterone. The corresponding correlation energies
are also accurate up to 0.03% relative errors with this default
threshold.
Note that this default value of εw = 10−5 Eh corresponds to

the tighter settings employed in ref 38, and it has been
employed also as default in the context of our LNO-CC
approaches89,90 and also with the LMP2 scheme since 2018.
The strong pair selection and ED construction controlled by
εw= 10−5 Eh were found to be similarly accurate previously for
a number of alternative systems containing up to 260 atoms
and for various reaction and interaction energies involving
closed-shell systems.38,89,90,134,135

5.3. Representation of the LMOs. The second most
important threshold determining the tightness of the local
approximations is the BP criterion governing the completeness
of the LMOs in the ED (TEDo). Together with εw, these two
thresholds also determine the number of atoms, AOs, and the
truncation errors of the MOs in the ED.
The convergence tests for the TEDo parameter are performed

for the same open-shell species and energy differences as used
in Section 5.2 for εw. Again, only the local approximation
corresponding to TEDo was active, and all other approximations
were turned off to separate the effect of TEDo.

The relative correlation energy (left panel) and energy
difference (right panel) deviations of Figure 8 again reveal
rapid convergence with increasing TEDo toward the DF-MP2
reference. Both the correlation energies and the energy
differences are converged already at TEDo = 0.9999 (1 −
TEDo = 10−4 in Figure 8), which is chosen as default. We note
again that this value corresponds to the tighter setting
introduced in ref 38, and it is chosen as default also in our
recent closed-shell LMP2 as well as LNO-CC methods.89,90

5.4. Assessment of the Long-Range Spin-Polarization
Approximation. The long-range spin-polarization approx-
imation of Section 3.9 is evaluated both on correlation energies
and on energy differences with respect to LMP2 references
obtained without this approximation. The approach is only
active in EDs, which do not contain any SOMOs as strong
pairs of the ED’s CMO. Thus, reasonably large systems have to
be considered for this test to properly activate the long-range
spin-polarization approximation. Accordingly, seven correla-
tion energies and five energy differences (reaction energies,
spin-state splittings, and one RSE) are benchmarked in Table 2
for systems containing 81−601 atoms. The test cases include
reactions that also involve closed-shell species. For such cases,
error compensation between the reactants and products cannot
occur for this particular source of error because the long-range
spin-polarization approximation affects only the open-shell
species.
The last column of Table 2 collects the ratio of EDs without

SOMOs, that is, the ratio of EDs affected by the
approximation. Even for the smaller vitamin E succinate
system, 54% of the EDs can be treated with the more efficient
closed-shell formulation, while for the spin state of
bicarbonate, more than 90% of the EDs are built without
SOMOs. In light of the relatively large number of EDs where

Figure 8. Relative LMP2 correlation energy (left) and LMP2 energy difference (right) deviations from the DF-MP2 reference for the VIP of
testosterone, the RSE of vitamin E succinate, as well as the S−T gap of artemisinin as a function of the BP completeness criterion, TEDo.

Table 2. Accuracy of the Long-Range Spin-Polarization Approximation Compared to Reference LMP2 Correlation Energies
and Energy Differences Obtained without This Approximationa

error in energy difference

atoms LMOs ELMP2
c error [%] [cal/mol] [%] EDs without SOMOs [%]

vitamin E succinate 81 89 7.8 × 10−7 0.027 2.8 × 10−4 54
FeC72N2H100

5A 175 205 1.7 × 10−5 0.66 1.4 × 10−3 54
3A 204 8.5 × 10−6 54

Cbl radical 179 250 7.7 × 10−6 0.81 1.6 × 10−3 68
bicarbonate 5A 565 789 1.2 × 10−4 3.5 8.7 × 10−3 91

3A 788 1.1 × 10−4 92

DAAO 601 838 2.3 × 10−7 0.078 2.6 × 10−4 76
aSee the text for explanation.
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the approximation is activated, the relative correlation energy
errors of about 10−4−10−7% for all cases are surprisingly small.
This error range is comparable to or even better than that of
any other employed approximation, including the DF
approach. Consequently, most of the energy differences are
also practically unaffected by this approximation being below 1
cal/mol for all but one example.
One should also note the key role of the SOMOs in the

considered reactions, ionizations, and spin-state splittings as
opposed to different possible processes occurring far from the
SOMOs. This suggests that any severe approximation to the
spin-polarization effects would be indicated by the investigated
energy differences.
Interestingly, the quality of the approximated energy

differences is similar for the systems of Table 2 even if
closed-shell species are also involved (cf., vitamin E succinate
RSE, the formation of dAdoCbl from the Cbl radical, and the
DAAO reaction). The case of bicarbonate is somewhat an
outlier in Table 2; however, the error of 3.5 cal/mol (or
0.0087%) observed in the spin-state splitting is still satisfactory,
especially if considering that more than 90% of the ED
contributions are approximated. It is also interesting to point
out that the bicarbonate system is the only one where we had
to rely on QROs due to lack of a converged ROHF reference.
While the QRO approach also provides an Ŝ2 eigenfunction as
the reference, the QRO reference energy, and potentially also
the corresponding unrestricted Fock-matrix elements, may
differ from the completely variationally optimized UHF
solution more than the analogous ROHF-based quantities.
Therefore, the approximation of QRO-based unrestricted
Fock-matrix elements by spin-averaged ones may affect the
interaction of the bicarbonate’s SOMOs with the rest of the
DOMOs in a somewhat more pronounced manner.
The spatial distribution of the EDs in which the

approximation is active is visualized for the quintet state of
bicarbonate in Figure 9. Green spheres denote the centers of
LMOs without a strong SOMO pair (that is, without any spin-
dependent interaction in their EDs), whereas purple spheres
label the centers of LMOs having at least one strong pair
involving a SOMO. Clearly, the EDs including at least one
SOMO, in which complete open-shell treatment is required,
are clustered around the Fe(II) ion, where all four SOMOs are

localized. In this particular case, the SOMOs are located near
the edge of the protein system; thus, the long-range spin-
polarization approximation can be employed for over 90% of
the EDs.

6. BENCHMARKS FOR SMALL AND MEDIUM-SIZED
SYSTEMS

The accuracy of RO-LMP2 correlation energies and energy
differences is also benchmarked against canonical DF-MP2
references. The corresponding reference data is provided in the
Supporting Information. First, statistical measures are
presented for three test sets containing IPs, RSEs, and spin-
state energy differences for molecules of small to medium size.
Next, the accuracy is assessed also on a set of larger systems of
up to 175 atoms to explore the behavior of the employed
approximations with increasing system size.

6.1. Accuracy of Correlation Energies. The accuracy of
the open-shell LMP2 correlation energies using the default
settings were benchmarked on the RSE30, IP21, and AC12 test
sets, containing 128 species of up to 23 atoms, thereby
allowing for the statistical analysis of the correlation energies
compared to the approximation-free DF-MP2 reference.
The accuracies of the LMP2 correlation energies for the

RSE30, IP21, and AC12 compilations are highly satisfactory
(see Tables 3−5, respectively). The relative deviations in the

correlation energies (third column of these tables) are in all
cases below 0.05% and are lower than 0.02% for all species in
the RSE30 and IP21 sets using basis sets of various qualities as
well as CBS extrapolation. The corresponding MAEs of at
most 0.004% for the RSE30 and IP21 and the MAE of 0.03%
for the AC12 set are also excellent. The largest errors are found
for the AC12 test set with the cc-pVDZ basis set in accordance
with the observation that the employed local approximations
perform best for sufficiently flexible, at least triple-ζ-quality
basis sets.90 Furthermore, these somewhat larger deviations in

Figure 9. Structure of bicarbonate in PSII augmented with the spatial
distribution of the centers of CMOs for all EDs. Green (purple)
spheres denote ED centers with (without) active long-range spin-
polarization approximation.

Table 3. Relative Correlation Energy Deviations and
Absolute Errors of the LMP2 Reaction Energies for Radical
Stabilization Energies of the RSE30 Test Set Using the
Default Thresholds

basis
error

measure
error in ELMP2

c

[%]
error in RSE
[kcal/mol]

aug-cc-pV(T + d)Z MAX 0.014 0.041
MAE 0.003 0.010
STD 0.003 0.011

aug-cc-pV(Q + d)Z MAX 0.016 0.065
MAE 0.003 0.029
STD 0.004 0.012

CBS(T,Q) MAX 0.017 0.097
MAE 0.004 0.055
STD 0.005 0.020

Table 4. Relative Deviations of the LMP2 Correlation
Energies and Absolute Errors of the Corresponding
Ionization Potentials for the IP21 Test Set Using the
Default Thresholds

basis
error

measure
error in ELMP2

c

[%]
error in IP
[meV]

aug-cc-pV(T + d)Z MAX 0.016 2.03
MAE 0.004 0.47
STD 0.005 0.60
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the correlation energies are similar for both the triplet and
singlet states of the AC12 set, leading to highly accurate
singlet−triplet energy gaps (see Section 6.4). The observed
STD values being comparable to or even smaller than the MAE
measures for all three test sets also indicate well-balanced
correlation energy errors, which is beneficial for reliable energy
differences. We also find that the CBS-extrapolated LMP2
energies of Table 3 maintain the accuracy of the LMP2
energies obtained with triple- and quadruple-ζ basis sets similar
to our experience with closed-shell systems.90

The relative LMP2 correlation energy deviations are
collected in Table 6 for larger systems of 37−175 atoms.

The relative deviation remains around the 0.05% mark for
almost all entries of Table 6, matching the largest errors
obtained for the smaller and simpler systems. The maximum
error of 0.11% is obtained for both the quintet and triplet
states of the largest FeC72N2H100 complex, but again this
consistency leads to a negligible error in the spin-state splitting.
Considering that the average system size increases by about 10
times when stepping from smaller to larger systems, the size
dependence of the relative accuracy also appears excellent well
above the size range where all approximations start to operate
to their full extent.
All in all, the accuracy of the RO-LMP2 correlation energies

closely matches that of closed-shell LMP2 correlation energies
presented previously for a large number of closed-shell systems
both in the smaller (<36-atom) and in the larger (up to 260-
atom) size range.38 The benchmarks presented here and in ref
38 for the entire size range accessible for efficient DF-MP2
implementations indicate that highly reliable LMP2 correlation

energies can be expected consistently for both open- and
closed-shell systems.
To illustrate the accuracy along a full potential energy

surface (PES), an example was adopted from ref 38, where the
rotational barrier of ethane-1,2-diphenyl was studied using our
closed-shell LMP2 approach (see Figure 2 of the Supporting
Information). Here, a single hydrogen atom is removed from
one of the phenyl rings to make the comparison to our
previous test feasible (see Section S5 of the Supporting
Information for more details). Structures at the two edges of
the PES differ significantly: the phenyl groups interact weakly
in the trans conformation but exhibit stronger π−π interaction
in the cis arrangement. In agreement with our experience on
the closed-shell analogue, we find the deviations with respect
to the exact ROMP2 reference on the PES comparable to the
error established above. Explicitly, the relative error varies in
the narrow range of 0.014−0.029% across the PES with an
MAE of 0.021%.

6.2. Radical Stabilization Energies. The radical stabiliza-
tion reactions investigated in this section are taken from the
RSE30 compilation94 and can be written as

R H CH R CH3 4− + • → • + (16)

where R• denotes various radicals containing C, N, O, F, P,
and S atoms. The MAEs of the LMP2 RSEs collected in Table
3 are below 0.03 kcal/mol for the aug-cc-pV(X + d)Z basis set
with both X = T and X = Q, while the CBS extrapolation
slightly increases the MAE to 0.05 kcal/mol. The correspond-
ing MAX errors of 0.04, 0.06, and 0.10 kcal/mol at the triple-ζ,
quadruple-ζ, and CBS(T,Q) levels, respectively, are still well
within the intrinsic accuracy of MP2. The STD values of 0.01−
0.02 kcal/mol underline the reproducibility of the excellent
accuracy. One can also compare the accuracy of the present
LMP2 results to those obtained with PNO-ROMP2 in ref 65
for the same structures and with the same aug-cc-pV(T + d)Z
basis set. The two approaches perform similarly well; in terms
of the MAX and MAE measures compared to the respective
references, LMP2 is somewhat more accurate than PNO-
ROMP2 and slightly worse than the explicitly correlated PNO-
ROMP2 variant.
For this test set, the SCS-LMP2 energies were also assessed

(see Table S4 of the Supporting Information) to demonstrate
that the accuracy of the local approximations is consistent also
for spin-scaled MP2 methods. As expected, the accuracy of
both the SCS-LMP2 correlation and reaction energies matches
that of LMP2; in fact, the SCS-LMP2 results are slightly but
consistently better. The same trend was also observed for
closed-shell systems38 and can be understood from the
theoretical perspective because the approximations do not
distinguish between the same and opposite spin terms of the
SCS scheme.11

6.3. Ionization Potentials. The accuracy measures of
ionization potentials are collected in Table 4. Compared to the
RSE30 compilation in Table 3, both the correlation energies
and the IPs obtained for the IP21 set are almost identically
accurate. This excellent performance can partly be attributed to
the fact that the reactants and products of the radical
stabilization reactions, as well as the natural and ionized
structures of the ionization processes are relatively similar and
therefore some cancellation of local errors can occur. One
major difference is, however, that the IPs lying in the range of
about 8−14 eV (184−323 kcal/mol) are significantly larger
than the RSEs. Thus, the relative deviations of the IPs

Table 5. Relative Deviations of the LMP2 Correlation
Energies and Errors of the Corresponding Singlet−Triplet
(S−T) Gaps for the AC12 Test Set Obtained with Default
Threshold Settings

basis
error

measure
error in ELMP2

c

[%]
error in S−T gap

[kcal/mol]

cc-pVDZ MAX 0.04 0.13
MAE 0.03 0.06
STD 0.01 0.04

cc-pVTZ MAX 0.04 0.13
MAE 0.02 0.05
STD 0.01 0.04

Table 6. Accuracy of the LMP2 Correlation Energies and
Energy Differences for Medium to Large Systemsa

molecule atoms
no. of
AOs

ELMP2
c

error [%]
ΔE error
[kcal/mol]

timeb

[min]

glutathione ion 37 1320 0.05 −0.05 21
artemisinin 3A 42 1426 0.04 −0.05 70
testosterone ion 49 1610 0.05 −0.01 77
borrelidin ion 78 2599 0.08 0.12 256
vitamin E succinate 81 2553 0.05 0.01 89
[Th−(CH2)50−
Th]2+

166 2508c 0.05 5

FeC72N2H100
5A 175 2939c 0.11 0.005 180
3A 0.11 186

aUnless otherwise noted, the calculations were carried out with the
aug-cc-pV(T + d)Z basis set. bWall-clock times measured on an 8-
core 3 GHz Intel Xeon E5-1660 processor. cThe def2-TZVP basis set
was utilized.
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compared to those of the RSEs are considerably better. Similar
to the case of the RSEs, the LMP2 IP deviations are again
almost twice as small as the corresponding PNO-ROMP2
errors of ref 65 with the same basis set, and LMP2 performs
almost as well as the explicitly correlated PNO-ROMP2
method.65

6.4. Singlet−Triplet Energy Gaps. The energy gaps
between the singlet and triplet spin states are also
benchmarked for 12 aryl carbenes of 13−23 atoms taken
from the AC12 compilation.131 Inspecting the numerical data
of Table 5, the accuracy of LMP2 for S−T gaps is found
similarly gratifying as for the RSEs and IPs. The MAE (MAX)
measures of 0.06 (0.13) kcal/mol corresponding to the S−T
gaps are again well within both the chemical accuracy and the
intrinsic accuracy of MP2. It is worth noting the small
improvement in accuracy observed for the more suitable cc-
pVTZ basis set.
Benchmark calculations were also performed for the AC12

set using the B2PLYP16 functional to demonstrate the accuracy
of DH density functionals approximated via our LMP2
scheme. Here, we denote the resulting method as LB2PLYP,
highlighting that the second-order correlation energy con-
tribution of B2PLYP is replaced by a corresponding LMP2
term evaluated with Kohn−Sham orbitals. Since the weight of
the second-order correlation energy contribution is 0.27 for the
B2PLYP functional, the accuracy of the LB2PLYP gaps is
expected to be even better than that of the LMP2 gaps because
the local errors are also scaled by 0.27. The numerical data of
Table S9 of the Supporting Information verifies this expect-
ation. The LB2PLYP S−T gaps are indeed found to be at least

3.71
0.27

= times more accurate, exhibiting 0.01 (0.04) kcal/

mol MAE (MAX) values for both basis sets. In other words,
the presented local approximations operate similarly well with
HF and KS orbitals in accordance with our experience for the
closed-shell local DH density functional theory (DFT) variants
utilizing the LMP2 method.38 Consequently, the LMP2
algorithm may greatly accelerate the most demanding steps
in many DH density functionals with a negligible loss of
accuracy.

6.5. Energy Differences for Larger Systems. Large-scale
benchmark calculations are also presented for systems of 37−
175 atoms using sufficiently large AO basis sets [aug-cc-pV(T
+ d)Z and def2-TZVP]. These molecules represent more
faithfully the expected targets of LMP2 in practice.
Furthermore, by observing potential trends in accuracy with
increasing system size, one can reasonably estimate the
expected deviations for even larger systems for which a
reference DF-MP2 calculation becomes unfeasible. The test
cases are selected so that both the pair and the domain
approximations can take effect, and the domain sizes already
saturate for the largest two examples.
The six energy differences collected in Table 6 include three

IPs of the three ions, an RSE for vitamin E succinate, and two
spin-state energy differences for artemisinin and the
FeC72N2H100 complex. It is reassuring that none of the RSE
or spin-state gap errors exceed the corresponding MAEs
obtained for the same properties but with much smaller
systems. Regarding the IPs, only the still highly acceptable 0.12
kcal/mol error of borrelidin exceeds the inaccuracies obtained
for the IP test compilation. Thus, as expected from the
underlying accurate LMP2 correlation energies, we do not find
any increase in the inaccuracy of the inspected energy
differences in spite of the considerable growth in system size.

Table 7. Average (Maximum) Domain Sizes, Orbital Space Dimensions, DF-HF and Correlation Energies (in Eh), Wall-Clock
Times (in min)a, and Memory Requirements (in GB) for LMP2 Computations of Large Molecules

molecule FeC72N2H100 Cbl radical bicarbonate DAAO

atoms 175 179 565 601
LMOs 205 250 788 837 838
SOMOs 4 1 4 0 2
AO basis def2-TZVP def2-TZVP def2-SVP’ def2-TZVP def2-TZVP
basis functions 2939 3369 5434 10 560 11 006
auxiliary functions 7306 8379 17 782 26 064 27 071
strong pairs [%] 25 21 6.3 6.8 5.9 5.9

E ( )δ [%] 0.19 0.19 0.28 0.25 0.25 0.25

atoms in ED 114 (165) 116 (169) 138 (317) 132 (295) 124 (268) 137 (353)
AOs in ED 2086 (2854) 2342 (3278) 1376 (3195) 2634 (6015) 2449 (5408) 2693 (6943)
PAOs in ED 1020 (1812) 1017 (1828) 481 (1052) 973 (2037) 864 (1884) 902 (2930)

type of reference ROHF ROHF QRO (UHF) RHF ROHF
DF-HF energy −4156.159945 −5878.796625 −15182.8673c −15197.9344c −14740.9398 −14740.9040
LMP2 energy −12.3329 −16.4723 −43.2442 −52.3847 −55.3431 −55.3319

HF (1 iteration) 28 43 29b 183b 152b 157b

localization 0.1 0.3 4.8 4.3 2.8 3.4
pair energies 1.2 8.7 38 4.8 11 48
integral trf. 56 157 188 451 374 639
amplitudes & ELMP2

c 38 98 18 100 54 213
total LMP2 95 264 245 557 439 900

memory req. 9.8 10 4.6 17 6.7 45
aUsing a 20-core 1.3 GHz Intel Xeon Gold 6138 CPU. bUsing the default local fitting domain size. The final iteration with larger fitting domains
took about 3.5−4.8 times longer. cDF-HF energies calculated with semicanonical QRO orbitals.
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Moreover, except for the Q−T gap of the FeC72N2H100
complex, the remaining energy differences involve both open-
and closed-shell species. Consequently, the performance of
LMP2 is balanced irrespective of the presence of SOMOs,
allowing for the investigation of chemical processes involving
both open- and closed-shell species.
Finally, representative timings are also given in the last

column of Table 6 using a six-year-old, 8-core CPU. The
measured runtimes of 3−4 h or less prove that RO-LMP2 is
routinely applicable merely as a laptop calculation up to a few
hundred atoms while maintaining the intrinsic accuracy of
MP2.

7. REPRESENTATIVE APPLICATIONS AND
COMPUTATIONAL REQUIREMENTS

The capabilities and detailed computational requirements of
the open-shell LMP2 algorithm are also illustrated for even
larger molecules. The four systems collected in Table 7 can be
arranged into two groups. The FeC72N2H100 complex and the
Cbl radical of 175−179 atoms and of about 3000 AOs
constitute the first group, as these systems are close to the
capability limits of efficient open-shell DF-MP2 implementa-
tions. An additional similarity is that both systems contain a
transition-metal atom, and the corresponding SOMO(s) are
located close to the center of the molecule, resulting in a large
number of strong pairs involving SOMO(s). The 21−25%
strong pair ratio is indeed noticeably higher than the 16%
obtained for the closed-shell vancomycin molecule of the same
size (176 atoms) with the same settings.38 The corresponding
EDs containing on an average (at most) about 115 (167)
atoms are also significantly larger than the EDs of vancomycin
built with 72 (129) atoms.
Considering the wall-time measurements, it is reassuring

that the complete LMP2 calculation took less than the time
required for three to six HF iterations; thus, the LMP2
correlation energy computation is clearly not the bottleneck in
these cases. It is worth noting that compared to DF-ROHF and
LMP2, the formally cubic-scaling orbital localization takes
negligible time even for the largest systems of Table 7. The
nonlinear-scaling steps of the LMP2 computation (see the
“pair energies” line of Table 7 measuring the time of the PAO
construction and the pair energy computation) are similarly
efficient. As expected from the measurements performed for
the closed-shell algorithm,38 the integral transformation and
the amplitude evaluation steps dominate the time requirement
of RO-LMP2 too. While the operation count required for the
former is comparable to that of the closed-shell algorithm
because of the use of restricted intermediate bases, the relative
cost of the latter is somewhat higher for the open-shell case.
The bicarbonate and DAAO species represent the second

group of examples in Table 7 consisting of 565 and 601 atoms
and 10−11 thousand AOs with the def2-TZVP basis set. To
the best of our knowledge, these are currently the largest three-
dimensional open-shell systems for which correlated quantum
chemical computations have ever been presented, at least on a
single CPU. The 6−7% strong pair ratio obtained for both
systems appears to be representative for protein systems of a
similar size (cf. the 6% strong pair ratio for the crambin protein
of 644 atoms89). While the average (maximum) ED sizes of
bicarbonate and the closed-shell DAAO species in columns 4−
6 of Table 7 are similar to or only slightly larger than the EDs
of crambin holding 128 (270) atoms, the largest domain of the
triplet DAAO system reaches an unprecedented size of 353

atoms. A closer inspection reveals that the CMO of this ED is a
SO LMO, which expands over the entire flavin moiety close to
the center of the protein. In comparison, the closed-shell
singlet DAAO system has well-localized MOs and at most 268
atoms in its largest domain.
The fact that the ED computation with 353 atoms and

almost 7000 AO takes only about 40 min highlights the
importance and efficiency of the elaborate local approximations
employed within each ED. Without exploiting the locality of
the LMOs, local DF domains, the restriction of the external
space to ED PAOs, the redundancy-free MP1 amplitude
computation, etc., it would not be possible to compute the
correlation energy contribution of several EDs reaching over
300 atoms and 6000 AOs. However, as a consequence of the
delocalized SO LMO, the open-shell calculation took twice as
long as its closed-shell counterpart for the analogous singlet
DAAO structure of the same size. In this case, the time of
integral transformation for the triplet species is longer because
of the larger EDs, which would be even worse without the
efficiency provided by the restricted intermediate basis.
In parallel with our experience with the closed-shell LMP2

scheme,38,89 the relative cost of the integral transformation
compared to that of the amplitude evaluation increases with
system size. Since the operation-count requirement of the
integral transformation is expected to be similar for open- and
closed-shell systems with comparable domain sizes, we
anticipate that the SCF iterations remain the bottleneck also
for RO-LMP2. It is important to be aware of the potential cost
increase with highly delocalized SO LMOs, but we think that
most of the practical applications will behave considerably
better in this respect than in the challenging case of DAAO
with its LMO spreading over the entire flavin moiety.
All in all, the RO-LMP2 computations of the largest systems

required only about the time of three to six HF iterations, even
if local DF is used to accelerate the HF step, and thus LMP2 is
not rate-determining. Unfortunately, for such open-shell
systems, the SCF procedure could take a considerably higher
number of iterations than for closed-shell molecules, especially
if transition-metal atoms are also involved. In many cases, one
has to explore a number of options including ROHF, UHF,
various density functionals, basis sets, SCF algorithms, and
convergence accelerators to find a qualitatively satisfactory
SCF solution. In the present study, the optimization of the
quintet and especially the triplet state of the bicarbonate
proved to be particularly challenging. All of our attempts for
the two states accumulate into several hundreds of SCF
iterations. In comparison, the triplet ROHF computation of
DAAO can be considered relatively routine if accelerated with
local DF domains.
It is also important to point out the benefits of the

completely integral-direct and hence practically disk I/O-free
LMP2 algorithm. The corresponding minimal memory
requirements collected in the last row of Table 7 are also
exceptionally low, being in the range of 10−20 GB for all cases
except for the 45 GB allocation needed for the largest DAAO
calculation. The minimal memory needed for our SCF
program with local DF is also at most about 10 GB for the
systems considered, but it is always beneficial to allow more
memory to speed up the SCF iteration. Consequently, at least
for systems accessible by current HF implementations, we do
not foresee severe data bottlenecks up to the LMP2 level.
Finally, the LMP2 energy differences of the four largest

examples are collected in Table 8. The quintet−triplet gap of
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2.030 eV obtained for the FeC72N2H100 complex with both
RO-LMP2 and the corresponding DF-MP2 reference is in
good agreement with the 2.018, 1.852, and 2.120 eV values
reported with PNO-RMP2,65 NEVPT2,120 and CASPT2,136

respectively. It is interesting to realize that the LMP2/def2-
TZVP value of 1.759 eV obtained for the quintet−triplet gap
of bicarbonate is considerably lower because of the markedly
different ligand field of its Fe(II) center. While the slow basis
set convergence issue of electron correlation calculations is
well-known, the insufficient level of AO basis completeness
provided by double-ζ-quality basis sets should still be pointed
out as frequently as possible.

8. SUMMARY AND CONCLUSIONS
A high-spin open-shell local MP2 (RO-LMP2) method is
presented using restricted open-shell Hartree−Fock (ROHF)
or Kohn−Sham (ROKS) reference determinants. The
efficiency of the open-shell LMP2 approach matches that of
our previous closed-shell LMP2 algorithm38,89 because
restricted orbitals are used for the most demanding integral
transformation step. The amplitudes and correlation energy
contributions are evaluated using a relatively simple,
unrestricted formulation, but the corresponding computational
overhead is largely mitigated by a novel approximation of long-
range spin-polarization effects in the correlation energy.
For closed-shell systems, the present method is identical to

our closed-shell LMP2 approach. The RO-LMP2 algorithm is
also especially operation-count and memory-efficient, integral-
direct, OpenMP-parallel, and requires negligible hard disk use.
Spatial symmetry, checkpointing, and near-linear-dependent
basis sets can also be utilized.89,90 Usually, the entire RO-
LMP2 computation takes the time of about three to six ROHF
iterations; thus, even if accelerated with local approxima-
tions,38,107,108 the SCF optimization remains the main
bottleneck, especially for large systems and/or with tran-
sition-metal atoms.
The errors caused by the local approximations are mostly

below 0.1 kcal/mol and thus negligible compared to the
intrinsic accuracy of MP2 as demonstrated for reactions of
radicals, spin-state energy gaps, and ionization potentials. The
accuracy of local spin-scaled MP2 variants is similarly excellent,
while even better performance is found for double-hybrid
(DH) functionals because their second-order energy contri-
bution is usually downscaled. As an additional use case, local
MP2-based corrections are often suggested to decrease the
basis set incompleteness of (local) CC methods, such as local
CCSD(T).90,135,137 The RO-LMP2 algorithm also provides
important components to our high-spin open-shell LNO-
CCSD(T) and higher-order LNO-CC implementations, which
are currently under extensive benchmarking.
The capabilities of the RO-LMP2 implementation are

illustrated on three-dimensional protein models containing
up to 601 atoms and 11 000 atomic orbitals with triple-ζ basis
sets. The quintet−triplet gap in the bicarbonate protein of

photosystem II63 is relatively complicated because of the
nontrivial electronic structure around the Fe(II) ion in the
triplet state. The second large-scale example involving the
reduction of O2 via D-amino acid oxidase is also challenging
because of a poorly localized SOMO spreading over an entire
flavin moiety. We anticipate that the common target
applications of RO-LMP2 will be significantly simpler.
However, it is satisfactory that such complicated systems
have also become routinely available, especially if the single-
node (20-core) RO-LMP2 runtimes of 9−15 h are considered.
Consequently, the presented local approximations extend the
reach of open-shell MP2 as well as of spin-scaled MP2 and DH
DFT methods to systems of 500−600 atoms with reasonable
basis sets. Except for potential bottlenecks in the ROHF/
ROKS optimization, RO-LMP2 should also be applicable for
even larger molecules approaching the limit of our closed-shell
LMP2 and LNO-CCSD(T) codes, which is currently about
1000−2000 atoms and 45 000 atomic orbitals.89,90
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Table 8. DF-HF and LMP2 Reaction Energies and Spin-State Gaps in kcal/mol for the Four Largest Representative Examples

def2-SVP def2-TZVP

HF ΔELMP2
c ΔELMP2

total HF ΔELMP2
c ΔELMP2

total

FeC72N2H100
5A−3A gap 57.52 −8.92 48.60 57.56 −10.73 46.82

bicarbonate 5A−3A gap 52.62 −12.35 40.26 52.67 −12.11 40.56
Cbl + Ado → dAdoCbl −43.38 99.84 56.46 −50.41 102.13 51.73
DAAO 20.46 8.71 29.17 22.44 7.08 29.52

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00093
J. Chem. Theory Comput. 2021, 17, 2886−2905

2901

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00093?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00093/suppl_file/ct1c00093_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Miha%CC%81ly+Ka%CC%81llay"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-1080-6625
http://orcid.org/0000-0003-1080-6625
mailto:kallay@mail.bme.hu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pe%CC%81ter+R.+Nagy"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-6692-0879
http://orcid.org/0000-0001-6692-0879
mailto:nagyrpeter@mail.bme.hu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="P.+Berna%CC%81t+Szabo%CC%81"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-1824-8322
http://orcid.org/0000-0003-1824-8322
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jo%CC%81zsef+Cso%CC%81ka"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00093?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00093?rel=cite-as&ref=PDF&jav=VoR


Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

Helpful discussions with Qianli Ma regarding the structures
used for the RSE test set, with Masaaki Saitow and Ashutosh
Kumar regarding the bicarbonate SCF computations of refs 63
and 98, and with Dóra J. Kiss regarding the DAAO structures
are gratefully acknowledged. The authors are grateful for the
financial support from the National Research, Development,
and Innovation Office (NKFIH, Grant No. KKP126451). The
research reported in this paper and carried out at BME has
been supported by the NRDI Fund (TKP2020 IES, Grant No.
BME-IE-BIO) based on the charter of bolster issued by the
NRDI Office under the auspices of the Ministry for Innovation
and Technology. The work of PRN is supported by the
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Universitaẗ Stuttgart, 2011.
(131) Ghafarian Shirazi, R.; Neese, F.; Pantazis, D. A. Accurate Spin-
State Energetics for Aryl Carbenes. J. Chem. Theory Comput. 2018, 14,
4733.
(132) Wick, C. R.; Smith, D. M. Modeling the Reactions Catalyzed
by Coenzyme B12 Dependent Enzymes: Accuracy and Cost-Quality
Balance. J. Phys. Chem. A 2018, 122, 1747.
(133) Kiss, D. J.; Ferenczy, G. G. A detailed mechanism of the
oxidative half-reaction of D-amino acid oxidase: another route for
flavin oxidation. Org. Biomol. Chem. 2019, 17, 7973.
(134) Paulechka, E.; Kazakov, A. Efficient Estimation of Formation
Enthalpies for Closed-Shell Organic Compounds with Local Coupled-
Cluster Methods. J. Chem. Theory Comput. 2018, 14, 5920.
(135) Sylvetsky, N.; Banerjee, A.; Alonso, M.; Martin, J. M. L.
Performance of Localized Coupled Cluster Methods in a Moderately
Strong Correlation Regime: Hückel-Möbius Interconversions in
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