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Dysregulated transcriptional responses to
SARS-CoV-2 in the periphery
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SARS-CoV-2 infection has been shown to trigger a wide spectrum of immune responses and

clinical manifestations in human hosts. Here, we sought to elucidate novel aspects of the host

response to SARS-CoV-2 infection through RNA sequencing of peripheral blood samples

from 46 subjects with COVID-19 and directly comparing them to subjects with seasonal

coronavirus, influenza, bacterial pneumonia, and healthy controls. Early SARS-CoV-2 infec-

tion triggers a powerful transcriptomic response in peripheral blood with conserved com-

ponents that are heavily interferon-driven but also marked by indicators of early B-cell

activation and antibody production. Interferon responses during SARS-CoV-2 infection

demonstrate unique patterns of dysregulated expression compared to other infectious and

healthy states. Heterogeneous activation of coagulation and fibrinolytic pathways are present

in early COVID-19, as are IL1 and JAK/STAT signaling pathways, which persist into late

disease. Classifiers based on differentially expressed genes accurately distinguished SARS-

CoV-2 infection from other acute illnesses (auROC 0.95 [95% CI 0.92–0.98]). The tran-

scriptome in peripheral blood reveals both diverse and conserved components of the immune

response in COVID-19 and provides for potential biomarker-based approaches to diagnosis.
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Our understanding of immune mechanisms driving the
varied acute, recovery, and post-infectious manifestations
of COVID-19 continues to evolve1. Recent work has

demonstrated altered mRNA profiles in host cells during SARS-
CoV-2 infection at the site of infection—in respiratory epithelial
cells, BAL, or nasal swab samples—highlighting the dysregulated
immune responses at local sites2–8. However, the manner in
which these signals are modulated (or propagated) beyond the
respiratory microenvironment plays a significant role in the
ability of the host to control these responses, as suggested by
peripheral blood gene expression studies comparing the responses
in subjects with COVID-19 to healthy controls2,9–13. Specific
mechanisms emerging as potential contributors to the patho-
physiology driving more severe disease include dysregulation of
interferon-stimulated pathways8,13,14, modulation of plasmacy-
toid dendritic cells and NK cell function12,15, and hyperactivation
of CD8+ T-cell and B-cell compartments11,15. However, the
manner in which these varied manifestations of SARS-CoV-2
immunity in the periphery differ from those seen in other com-
mon respiratory infections is critical to understanding this
emerging disease. Transcriptional profiling of peripheral blood
samples is an approach that has been shown to elucidate
mechanistic underpinnings of inflammatory responses16 as well
as to identify conserved components of these responses which can
offer diagnostic information17–19. To further define unique
components of the host immune response in subjects with
COVID-19, we performed RNA sequencing on whole blood
samples from 46 individuals with PCR-positive, symptomatic
SARS-CoV-2 infection and compared them directly to subjects
with other respiratory infections and healthy controls.

Results
Brief overview of study. Subjects with COVID-19 were enrolled
when they presented for clinical care, and the time from symptom
onset was recorded for each individual sample collected (range
1–35 days). Samples from subjects with COVID-19 were assigned
to three groups based on time from symptom onset
(early ≤10 days, middle 11–21 days, late >21 days). Fourteen of
the SARS-CoV-2 subjects with mild/moderate disease consented
to sampling at multiple timepoints, and these were each separated
into the appropriate time bin and utilized to control for temporal
dynamics of the host response (see Methods). For comparison,
we profiled banked blood samples from patients presenting to the
emergency department with acute respiratory infection (ARI) due
to seasonal coronavirus (n= 49), influenza (n= 17) or bacterial
pneumonia (n= 23), and matched healthy controls (n= 19).
RNA Sequencing was performed on whole blood samples from
each relevant subject and timepoint (see Methods for details).

Transcriptional responses in PBMCs during SARS-CoV-2
infection. Regardless of time from symptom onset, SARS-CoV-
2 infection triggered a robust transcriptional response in circu-
lating leukocytes that was markedly different from that seen in
other viral or bacterial infections or healthy controls (Fig. 1). At
early timepoints (≤10 days of symptoms), the response of most
patients was dominated by upregulation of interferon-response
signals that have some similarity to those described for other
common viral ARIs17,19–21 (Fig. 2). Interferon-stimulated genes
(ISGs) were generally expressed at a higher level than in healthy
subjects but were more muted than seen with seasonal cor-
onaviruses (CoV), and much lower than seen in influenza infec-
tion (Figs. 2A and s1, s2). These transcriptional responses were
inversely associated with COVID-19 disease duration and viral
shedding, declining over time more slowly than is seen with other
common viral infections22–24. Importantly, these trends were seen

within individual subjects as well as across the population as a
whole over time (Fig. s2). While many of these ISGs are tightly co-
expressed across seasonal CoV and influenza infections, they
exhibited bimodal expression in SARS-CoV-2 (Fig. 2B, C). Some
ISGs (e.g., OAS2, IFIT3) are upregulated similarly to other infec-
tious states while others were dissociated from the common,
conserved ISG response and appeared relatively over (LY6E,
OASL, IFI27, IFI6) or underexpressed (RSAD2, IFIT2, CCL2,
LAMP3) in SARS-CoV-2 (Fig. 2B). Selective inhibition of Type I
IFNs by SARS-CoV and MERS has been well-described25, and
these observed deviations from what are generally effective
interferon responses in seasonal viral infections may contribute to
the overall permissive state underlying the prolonged disease
course seen with SARS-CoV-2 here and elsewhere14.

These data also demonstrate additional transcriptional mani-
festations of dysregulated biology in COVID-19 subjects relevant
to clinical disease. SARS-CoV-2 infection has been associated
with clinical and sub-clinical thrombotic events, perhaps due to
the hyperinflammatory state26, which has led to recommenda-
tions for enhanced prophylaxis against venous thromboembolism
(VTE) in some hospitalized patients with COVID-1927. Com-
pared to other seasonal CoVs and influenza, we observed marked
dysregulation of a genomic signature of VTE28 (‘thrombosis’,
Figs. 3A and s1–s3) and increased expression of many thrombotic
pathway genes in a subset of early COVID-19 cases including
prekallikrein (KLKB1), Factor 12 (F12), the plasminogen activator
inhibitor (SERPINE1) and others, along with decreased expres-
sion of antithrombotic protein S (PROS). This signal was most
prominent in early disease but persisted in a subset of individuals
for as long as 35 days, and was even more prominent in critically
ill subjects (Fig. 3C). However, further studies of patients with
proven thrombotic or microthrombotic disease will be needed to
ascertain whether these changes are directly associated with
clinical risk of thrombosis.

We next examined whether inflammatory pathways targeted by
putative immunomodulatory therapies demonstrated altered gene
expression in these subjects. In a subset of early mild-moderate
infections, there was marked dysregulation of IL1, JAK/STAT, IL6,
and IL10 signaling pathways compared to other infections
(Figs. 3A and s1, s3). In early COVID-19 there is predominantly
muted expression of these pathways, where expression levels more
closely resemble healthy controls than seasonal coronavirus or
influenza (Fig. s1, s3), which is consistent with permissive
hypoinflammatory responses described elsewhere4–6. Severely ill
subjects exhibited even more marked transcriptional heterogene-
ity, but showed a trend towards greater IL12 and IFN-response
activation along with neutrophil activation, degranulation, and
translation initiation, but muted IL1 and IL6 signaling (Fig. 3C,
D). They also demonstrate further elevation in plasmablasts/
plasma cells compared to mild disease, but decreased proportions
of CD8+ T cells (Figs. 3E and s4). While the small number of
severely ill subjects (n= 12) limits significant conclusion, the
heterogeneity seen in expression of target inflammatory pathways
across these individuals combined with the suboptimal perfor-
mance of potential immunomodulatory agents when broadly
applied29,30, suggests pharmacogenomic approaches to selecting
host-directed therapies should be further explored31.

In addition to altered interferon and other inflammatory
responses, subjects with early symptomatic COVID-19 exhibited
marked upregulation of B-cell activation (CD79A/B) and a broad
diversity of immunoglobulin genes (IGHG1, IGHV2-5, IGHV3.30,
IGLV3-19, IGLV3-25, and others) compared to other infectious
states (Fig. 4). This distinct transcriptional manifestation of
humoral activation occurred as early as 1 day after symptom onset
and was highest during the first 7 days before gradually declining
throughout the recovery phase of illness (Fig. 4A). This signal

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21289-y

2 NATURE COMMUNICATIONS |         (2021) 12:1079 | https://doi.org/10.1038/s41467-021-21289-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


corresponded to serum IgA expression as early as the first day of
clinical disease, and specific serum IgG expression by day 8 as seen
here and elsewhere32, and to an early rise in the proportion of
plasmablasts/plasma cells relative to other viral infections (Fig. 4B,
C). As opposed to the marked heterogeneity seen in inflammatory
responses, early B-cell activation was much more tightly conserved,
and was magnified further in severely ill subjects (Figs. 3C and s1).
Higher antibody titers have been paradoxically associated with
disease severity in COVID-1933,34 despite evidence for possible
therapeutic effect of early administration of exogenous immuno-
globulin35. It remains to be determined whether these SARS-CoV-2
specific transcriptional findings represent effective early immunity
or are part of the virus-induced dysregulation that seems to drive
early disease8,12,15.

Discriminatory ability of transcriptomic signatures for
COVID-19. Given the strength of the SARS-CoV-2 specific sig-
nals, we next explored utilizing linear regression modeling to
develop diagnostic signatures for COVID-19. A conserved mul-
tivariate transcriptomic signature emerged that differentiated
subjects with SARS-CoV-2 infection from all others with a high

degree of accuracy (auROC 0.95 [95% CI 0.92–0.98]), regardless
of duration of disease or degree of symptoms at the time
(Fig. 4D). This 139-gene signature simultaneously identified
influenza infection (auROC 0.98 [95% CI 0.96–1]), seasonal
coronavirus infections (auROC 0.97 [95% CI 0.95–0.99]), and
bacterial pneumonia (auROC 0.99 [95% CI 0.98–1]) without
regard for disease severity (Fig. 4D and s5). The SARS-CoV-2
component of this signature was heavily weighted towards Ig-
associated genes and transcriptional activation (Table s4). Next,
given the uniquely dysregulated interferon response in SARS-
CoV-2 infection, we queried the performance of interferon-
related gene sets in peripheral blood that have previously been
shown to accurately identify viral ARI across a broad array of
seasonal viruses17,21. One such previously reported “panviral”
signature accurately identifies subjects exposed to respiratory viral
pathogens prior to symptom onset, often before detectable viral
shedding is present36. In the current dataset, a 23-gene regression
model built from these genes classified the presence or absence of
symptomatic SARS-CoV-2 infection with a high degree of accu-
racy (cross-validated auROC 0.94 [95% CI 0.90–0.97], Fig. 2D).
With a change in the relative weights and coefficients of the
model, measurement of these 23 mRNAs can also be utilized to

Fig. 1 Transcriptomic responses to SARS-CoV-2 in peripheral blood. Heatmap of the top 100 most differentially expressed genes between COVID-19
(n= 46) and all other groups (influenza (n= 17), seasonal coronavirus (n= 49), bacterial pneumonia (n= 23), and healthy controls (n= 23, A)). These
represent the 100 genes with the lowest Benjamini–Hochberg adjusted p values calculated when comparing COVID-19 to All Others combined. A Venn
Diagram demonstrates the number of overlapping genes differentially expressed between COVID-19 subjects and each other infection, healthy controls, or
all others combined (B, genes shown represent those with adjusted p values of < 0.05)). Volcano plot of DEGs in subjects with COVID-19 compared to
patients with influenza (C, top) and seasonal coronavirus (C, bottom).
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diagnose and differentiate COVID-19, seasonal coronavirus, or
influenza infections (Fig. 2D, E, and Table s3), consistent with
prior work19. As with the 139-gene signature, diagnostic accuracy
was preserved throughout the prolonged course of COVID-19 in
these subjects despite heterogeneity of ISG expression over time,
in large part due to the dissociation of some ISGs from one
another. Critically, when applied to publicly available data from a
separate cohort9, both the 23-gene and 139-gene signatures also

accurately differentiated SARS-CoV-2 infection from healthy
controls (p < 0.001, Fig. s6).

Discussion
Analysis of transcriptional responses in peripheral blood from
patients with SARS-CoV-2 infection reveals that SARS-CoV-2
triggers inflammatory and humoral immune response pathways in

Fig. 2 Interferon-related transcriptional signatures. Heatmap of expression of interferon-related genes from a 23-gene signature across all subjects in the
study. A A number of interferon-stimulated genes are relatively over- or under-expressed in Early (<10 days of symptoms) or all COVID-19 subjects
compared to seasonal coronavirus (CoV) or influenza infections (flu, B). For comparisons of relative proportions of ISG expression, a logged ratio of per-
cohort means was computed for each normalized gene expression value between subjects with COVID-19 and subjects in other groups. Model coefficients
(median ± 1.5 times IQR presented, C) derived from these relative changes demonstrate the impact of SARS-CoV-2 specific differential ratios of gene
expression on overall ISG signature strength (C). The 23-gene signature comprised of interferon-stimulated genes discriminates COVID-19 (n= 46) from
influenza (n= 17), seasonal coronavirus (n= 49), bacterial pneumonia (n= 23), and healthy controls (n= 19) across all time points (D), while
simultaneously identifying seasonal CoV and influenza infections in similar fashion (median probability ± IQR, with whiskers representing 1.5 x IQR, E).
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ways that are distinct from those seen in other common respira-
tory infections. These SARS-CoV-2 specific signals further support
the growing body of evidence that dysregulated immunity likely
contributes to early viral shedding8 and progression to severe
disease9,37,38. The marked heterogeneity seen in many inflam-
matory pathways underscores the potential importance of defining
the pathophysiology of infection at the individual level, especially
when considering immunomodulatory therapy31. However,
despite observed heterogeneity in many immune responses, these
data show that some components of the host transcriptional
response to SARS-CoV-2 infection are highly conserved. The
potential for a diagnostic approach based on these findings is
profound, as they raise the possibility that measurement of
expression levels of a small set of genes could detect SARS-CoV-2
infection as well as simultaneously providing information about
the presence of other viral (or even bacterial) infections. Also,
since signatures built on similar genes have been shown to

accurately detect early, even pre-symptomatic influenza and sea-
sonal coronavirus infections, it is possible that tests measuring
these signatures may similarly detect COVID-19 in exposed
individuals9. When combined with emerging nucleic acid detec-
tion platforms that offer sample-to-answer times measured in
minutes, successful demonstration of pre-symptomatic COVID-
19 detection could contribute to real-time outbreak surveillance
and quarantine decisions for asymptomatic but potentially con-
tagious hosts that drive much of the spread of this disease39. These
results further support the growing body of literature demon-
strating the efficacy of measurement of the host transcriptome as
an adjunct diagnostic approach for respiratory infections17,36,40,41,
although they will clearly require additional validation in larger
cohorts of subjects with COVID-19 as they become available.
Given the wide array of existing and emerging RT-PCR-based
platforms capable of measuring host gene expression, the dis-
covery of multiple high-performing transcriptomic signatures in

Fig. 3 Dysregulated biological pathways in COVID-19. Log2FC and significance of changes in relevant curated biological pathways in subjects with
COVID-19 (n= 46) compared to other infections (n= 89, A) and in moderate (n= 34) vs severe disease (n= 12, C). Gene Set Enrichment Analysis of the
top differentially expressed genes between SARS-CoV-2 (n= 46) and other infections (n= 89, B) and moderate vs severe SARS-CoV-2 (D). Relative
change in cell type subsets between subjects with moderate and severe COVID-19 was determined through cell type deconvolution of gene expression
data, with CIBERSORTx, where linear-mixed models accounting for the multiple-per-subject measurements were used (median proportion ± IQR with
whiskers representing 1.5 x IQR is presented, �p= 0.004, Wilcoxon 2-sided signed rank test, E).
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Fig. 4 Adaptive immunity and cellular responses to SARS-CoV-2. Indicators of early B-cell activation and immunoglobulin genes are highly upregulated in
SARS-CoV-2 compared to other infections (A heatmap). Anti-SARS-CoV-2 antibody levels (IgA and IgG) are detectable in a high proportion of subjects
with COVID-19 even early in COVID-19 (B). These correspond to early elevation of the relative proportion of plasmablasts in SARS-CoV-2 infection (n=
77 samples) compare to influenza (n= 17), seasonal coronavirus (n= 59), bacterial pneumonia (n= 23), and healthy controls (n= 19, median probability ±
1.5 times IQR presented, C). Linear regression was performed to characterize the change of cell-type proportions with respect to time as calculated using
CIBERSORTx (C, shaded bands represent 95% confidence intervals around trendline, adjusted P values: � < 0.05, �� < 0.001: ��� < 0.0001.). A 139-gene
signature, weighted toward immunoglobulin and other genes, similarly discriminates SARS-CoV-2 infected patients (n= 46, across all times) from seasonal
coronavirus (n= 49), influenza (n= 17), and bacterial infections (n= 23, D).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21289-y

6 NATURE COMMUNICATIONS |         (2021) 12:1079 | https://doi.org/10.1038/s41467-021-21289-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


peripheral blood based on different aspects of the unique host
response to SARS-CoV-2 reinforces the promise of developing
stable, reproducible, and flexible point-of-care host response
assays to aid in detection and control of COVID-19.

Together with prior studies4,6,9, these data demonstrate that the
transcriptional landscape of the host response to SARS-CoV-2
infection is robust, can elucidate key biological mechanisms of dis-
ease, may prove useful for therapeutic drug selection, and contains
conserved components which show promise for a new generation of
host-based diagnostics to combat this devastating disease.

Methods
Institutional review board approvals. The relevant protocols were approved by
the IRBs of participating institutions, and were conducted in accordance with the
Declaration of Helsinki, applicable regulations and local policies.

Clinical cohort enrollment. Patients with confirmed SARS-CoV-2 infection were
identified through the Duke University Health System (DUHS) or the Durham
Veterans Affairs Health System (DVAHS) and enrolled into the Molecular and
Epidemiological Study of Suspected Infection (MESSI, Pro00100241) with clinical
data compiled into REDCap. RT-PCR testing for SARS-CoV-2 was performed at
either the North Carolina State Laboratory of Public Health or through the clinical
laboratory at either DUHS or DVAHS. Subjects with COVID-19 were divided into
early, middle, and late disease based on time from reported symptom onset
(early ≤10 days, middle 11–21 days, late >21 days), and were divided into severity
categories based on degree of illness (“mild/moderate” for outpatients and “severe”
for subjects requiring hospitalization). Fourteen subjects with SARS-CoV-2 infec-
tion (all outpatients with mild/moderate disease) also consented to sampling at
multiple time points (day of enrollment, day 7 and day 14 from enrollment).
Subjects with acute respiratory illness of alternative etiologies including seasonal
coronavirus, influenza, or bacterial etiologies were prospectively enrolled from a
Duke University undergraduate cohort (Predicting Health and Disease,
Pro00082317); emergency departments at DUHS, DVAHS, Henry Ford Hospital,
or University of North Carolina as part of the CAPSOD (Community-Acquired
Pneumonia and Sepsis Outcome Diagnostics, ClinicalTrials.gov NCT00258869),
CAPSS (Community-Acquired Pneumonia and Sepsis Study), or RADICAL (Rapid
Diagnostics in Categorizing Acute Lung Infection) studies (Tables s1, s2). Written
informed consent was obtained from all subjects or legally authorized repre-
sentatives. All subjects enrolled in CAPSOD, CAPSS, and RADICAL underwent
clinical adjudication to determine the etiology of infection19. Multiplex viral PCR
testing was performed for all subjects using the ResPlex 2•0 viral PCR multiplex
assay (Qiagen), xTAG RVP FAST 2 (Luminex), or NxTAG Respiratory Pathogen
Panel (Luminex).

RNA sequencing. Peripheral blood was collected in PAXgene™ Blood RNA tubes
(PreAnalytiX), and total RNA extracted using the PAXgene™ Blood miRNA Kit
(Qiagen) employing the manufacturer’s recommended protocol. RNA quantity and
quality were assessed using Nanodrop 2000 spectrophotometer (Thermo-Fisher)
and Bioanalyzer 2100 with RNA 6000 Nano Chips (Agilent). RNA sequencing
libraries were generated using NuGEN Universal mRNA-seq kit with AnyDeplete
Globin (NuGEN Technologies, Redwood City, CA) and sequenced on the Illumina
NovaSeq 6000 instrument with an S4 flow cell (50 million paired-end read clusters
per sample with 100 bp read length; performed through the Duke Sequencing and
Genomic Technologies Core). Antibody response testing was performed using the
anti-SARS-CoV-2 IgG ELISA assay (EUROIMMUN Medizinische Labordiagnos-
tika AG, Lübeck, Germany) according to the manufacturer’s instructions. Test
results were evaluated by calculating the ratio of the OD (optical density) of the test
sample over the OD of the calibrator sample. Ratio of <0.8 was interpreted as
negative and ratio of 1.1 or greater as positive (ratio of 0.8 to <1.1 as indeterminate
and not utilized in phenotyping).

Statistical analysis. RNA Sequencing data was normalized using the frozen RMA
method42. The sequencing reads were trimmed and aligned to the human reference
genome GRCh38 and a count matrix obtained utilizing STAR v2.7.1a43. Genes with
counts per million greater than 1 in fewer than 20% of samples were dropped along
with three samples with a high proportion of lowly expressed reads. The data was
normalized using trimmed mean normalization44 and then log2 transformed.

We first performed univariate testing between the COVID-19 subjects and all
others (healthy, Influenza, CoV other, Bacterial), both as COVID-19 against a
single other group and as COVID-19 against all other groups at once. Additionally,
we repeated these analyses with the COVID-19 subjects divided into early, middle,
and late disease by time since symptom onset. Generalized linear models for
univariate testing were implemented using the limma package in R45 and this was
utilized to account for correlations between multiple measurements from the same
individual over time. For each comparison, we report multiple hypothesis testing
corrected p values (Benjamini–Hochberg).

Next, we identified differentially expressed pathways between the groups of
interest by repeating the above comparisons and performing a similar univariate
testing procedure. Gene pathway and upstream regulator analysis was performed
with EnrichR. The normalized expression of the genes in each pathway was
summarized as their first principal component (PC). These PCs were then used for
univariate testing. We computed coordinates of our samples with respect to the
first PC to obtain a dataset of pathway “expressions”, exactly analogous to the gene
expressions previously tested.

Finally, we trained a statistical model that predicts the group label that a subject
belongs to. We fit a sparse multinomial logistic regression model to the data46. We
performed parameter selection and performance estimation via a nested leave-one-
out cross validation procedure on the subjects. We used the glmnet package in R46

for the basis of our implementation. Performance was estimated in terms of area
under the curve (AUC) of the receiving operating characteristic (ROC) for binary
comparisons involving COVID-19 vs other groups.

Validation cohort. We further evaluated performance of the two primary gene
expression signatures using a publicly available peripheral blood single cell RNA
(scRNA) sequencing dataset9 containing eight samples from subjects with COVID-
19 and six healthy age-matched controls (NCBI Gene Expression Omnibus
#GSE150728). We pre-processed droplet-based scRNA data (count matrices were
built from the BAM files using dropEst 0.8.6) and filtered out low quality cells and
genes (cells that had fewer than 1000 UMIs or greater than 15,000 UMIs, as well as
cells that contained greater than 20% of reads from mitochondrial genes or rRNA
genes were considered low quality and removed from further analysis). A gene by
sample matrix was generated by summing raw expression of the cells (without
scaling and transformation) from each sample. Expression of the genes whose
median coefficient values (from the model) are non-zero for COVID-19 in both the
139-gene signature and the 23-gene signature were compared across clinical phe-
notypes in the validation dataset using the Mann–Whitney U test.

Analysis of estimated cell type proportions. The CIBERSORTx method was
used to estimate cell-type proportions and perform batch correction for platform
differences47. A validated signature matrix (LM22) derived from microarray data
with 22 human hematopoietic populations was used. Estimated cell types were
grouped into primary categories. A linear-mixed model was used to test for dif-
ferences in etiologies, time from symptom onset, and hospital-admission status.
The model accounted for the multiple-per-subject measurements. P values were
adjusted for multiple comparisons using the Benjamini–Hochberg method.
Additionally, appropriate samples were available for a small subset of SARS-CoV-2
subjects (n= 12) for flow cytometric analysis for comparison to the calculated
COVID-19-associated changes in cell type proportions from RNA Sequencing data
(Fig. s7, Supplemental Methods).

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA Sequencing datasets generated during and/or analyzed during the current
study are publicly available through the National Center for Biotechnology Information
Gene Expression Omnibus, accession# GSE161731.
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