
Commentary
Viruses are the most abundant and genetically diverse 
biological entities on earth as demonstrated by recent 
metagenomic studies [1]. Unlike cellular life forms that 
all possess the same basic mechanism of genome repli­
cation and expression based upon double-stranded (ds)
DNA genome and positive-strand messenger (plus) RNA, 
viruses use all forms of genetic material (positive-strand, 
negative-strand and dsRNA, single-stranded (ss)DNA, 
dsDNA) and execute virtually all conceivable genomic 
strategies (RNA or DNA replication and transcription, as 
well as reverse transcription of RNA to DNA). In particu­
lar, viruses with RNA genomes that do not go through a 
DNA stage in their reproduction are the simplest genetic 
elements, reminiscent of the putative primordial RNA 
world.

Owing to their (relatively) small genomes and often 
rapid reproduction, diverse viral genomes were charac­
terized in the early days of genomics, and many 

unexpected evolutionary relationships have been revealed 
between viruses with different genomic strategies that 
infect widely different hosts. A small set of virus hallmark 
genes encoding proteins essential for virus replication 
and morphogenesis form different combinations in 
diverse viruses but are absent from cellular genomes [2]. 
Along with lineage-specific genes present in subsets of 
viruses, the hallmark genes account for a rich network of 
evolutionary connections against the background of the 
extreme diversity of viruses. In the last few years, new 
technologies, in particular the rapid progress of meta­
genomics (indiscriminate sequencing of environmental 
DNA samples), have revealed many surprising novelties 
in the virus world. Perhaps the prime example is the 
discovery of giant viruses and their parasites, the viro­
phages [3]. However, unexpected findings with substan­
tial implications are also being reported for the much 
smaller and simpler RNA viruses.

In a recent BMC Evolutionary Biology article, Huiquan 
Liu and colleagues [4] report the genomes of two novel 
dsRNA viruses from fungi and proceed to place these 
viruses in the overall context of dsRNA virus evolution. 
dsRNA viruses have been isolated from animals, plants, 
protists and bacteria but are particularly characteristic in 
fungi where they constitute the majority of the known 
viruses. Some of the dsRNA viruses form typical virions 
with genomes encased in a capsid whereas others are 
capsid-less, plasmid-like genetic elements. On the whole, 
there is little doubt that dsRNA viruses make up a 
polyphyletic assemblage, with different members having 
evolved from different lineages of positive-strand RNA 
viruses on multiple, independent occasions [5]. For 
instance, three families of capsid-less dsRNA viruses that 
reproduce in fungi, plants or fungal mitochondria clearly 
originate from three distinct groups of positive-strand 
RNA viruses: Hypoviridae infecting plant pathogenic 
fungi from plant potyviruses [6]; Endornaviridae from 
alphavirus-like superfamily positive-strand RNA viruses 
of plants [7]; and fungal mitochondrial narnaviruses from 
bacterial positive-strand RNA viruses (Leviviridae) [8]. 
The origins of the rest of the dsRNA viruses are murkier, 
although the families Totiviridae and Partitiviridae have 
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been tentatively linked to different groups of picorna­
virus-like positive-strand RNA viruses [6].

The only gene that is conserved in all dsRNA viruses 
along with positive-strand RNA viruses is the RNA-
dependent RNA polymerase (RdRp), and most of the 
conclusions on evolution of RNA viruses are based on 
RdRp phylogeny supplemented by phylogenies of other 
genes that are conserved in subsets of viruses and com­
parative analysis of genome organization [6]. Huiquan 
Liu and colleagues [4] present the most complete 
phylogeny so far of the RdRp for dsRNA viruses and 
overlay the tree with the data on genome organization, 
virion structure and host range of the respective viruses. 
The result is fascinating: several clades of RdRps encom­
pass viruses infecting diverse hosts (fungi, plants, protists 
and insects); viruses with and without capsids; and 
viruses with different numbers of genomic segments. As 
long as the RdRp phylogeny is adopted as the scaffold for 
evolutionary reconstruction [6], the mosaic of these 
other key characteristics of viruses implies complex 
processes of multiple loss of ancestral genes (in particular, 
those for capsid proteins), gene exchange between distant 
viruses and transfer of viruses between distant hosts 
(such as fungi, plants, animals and protists, but possibly 
also between bacteria and fungi, even if only via endo­
symbiosis) [9].

Certainly, the phylogeny of the RdRps only reflects the 
evolutionary history of this gene that is congruent with 
the histories of other genes only in some limited, tight 
groups of viruses, but by no account the evolutionary 
history of viruses themselves. A comprehensive history 
should integrate the histories of individual genes and can 
only adequately be conceptualized as a network of multiple 
evolutionary connections at the level of genes or even 
parts of genes encoding distinct protein domains. Huiquan 
Liu and colleagues have made an interesting new 
contribution to unfolding the network of evolutionary 
relationships between diverse groups of dsRNA viruses 
that all have been shown to contain the S7 RNA-binding 
domain within distinct multidomain proteins (Figure 1). 
This finding implies that gene transfer between RNA 
viruses is even more pervasive than previously suspected 
and further suggests that acquisition of the S7 domain is 
beneficial for the replication of diverse dsRNA viruses.

Gene exchange that can lead to the emergence of new 
groups of viruses is not limited to viruses with the same 
type of genome structure. A recently described group of 
plant positive-strand RNA viruses, the ourmiaviruses, 
possess a tripartite genome (Figure  1). One of the 
segments encodes a predicted RdRp that belongs to a 
clade that includes the RdRps of fungal narnaviruses and 
their apparent ancestors, the bacterial leviviruses, 
whereas the other two segments encode a capsid protein 
and a movement protein related to the respective 

proteins of plant viruses, most likely of the family Tombus­
viridae [10]. Thus, in this case, a distinct group of viruses 
evolved via reassortment of genomic segments derived 
from extremely diverse viruses, one of which is (at least 
nominally) a capsid-less dsRNA virus-like replicon 
whereas the other is a regular positive-strand RNA virus.

Metagenomics, a new major avenue of biological 
discovery, delivers even more unexpected viral genome 
arrangements. A recent metagenomic study of the virome 
of a geothermal lake in California revealed a small 
circular genome that combines, within one ssDNA 
segment, genes encoding a capsid protein clearly related 
to that of plant positive-strand RNA tombusviruses and a 
rolling circle replication initiation endonuclease homolo­
gous to those of ssDNA circoviruses and nanoviruses 
(Figure 1) [11]. This putative virus - in metagenomics the 
genome sequence comes before the organism or virus is 
characterized  - seems to be the first ever discovered 
hybrid between an RNA and a DNA virus (hence 
appropriately named RNA-DNA Hybrid Virus, or 
RDHV). In this particular case, the genome is in the DNA 
form and the replication machinery derives from a DNA 
virus whereas the capsid is of RNA viral origin. It remains 
to be seen what other surprising chimeras pop up when 
diverse habitats are explored deeply and systematically.

Beyond discovering strange chimeras, metagenomics 
has the potential to change the existing fundamental 
ideas on the evolution of RNA viruses. Almost all 
extremely diverse RNA viruses infect various eukaryotes. 
The only two known families of bacterial RNA viruses, 
Leviviridae and Cystoviridae, might not even have a 
common origin with the majority of eukaryotic RNA 
viruses [6], the evolutionary relationship between 
Leviviridae and Narnaviridae notwithstanding. So where 
does the bulk of RNA viruses come from? A hypothesis 
has been proposed that the RdRp was derived from the 
reverse transcriptase of a bacterial retro-transcribing 
element and the other genes from different bacteriophage 
and bacterial sources [6]. However, metagenomics has 
recently offered a viable alternative: positive-strand RNA 
viruses might have pre-existed in archaeal ancestors of 
eukaryotes. The first putative archaeal RNA virus has 
been isolated from near-boiling, archaea-dominated geo­
thermal springs at Yellowstone Park [12]. This novel virus 
does not belong to any known viral group but encodes a 
predicted RdRp and capsid protein (Figure 1) that might 
be ancestral to the respective proteins of eukaryotic 
positive-strand viruses. Again, in metagenomics, the 
genome comes before characterization of the virus and 
its host range, but if the archaeal host is confirmed, the 
impact of these findings on our understanding of RNA 
virus evolution will be dramatic.

We are probably only starting to scratch the surface of 
the virosphere. An unbiased sampling of the viral habitats 
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(and these span the entire biosphere), which with modern 
technologies is becoming realistic, is expected to result in 
a major expansion of the networks of virus evolution.
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