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Osteogenic Embryoid Body-
Derived Material Induces Bone 
Formation In Vivo
Ken Sutha1, Zvi Schwartz2, Yun Wang1, Sharon Hyzy2, Barbara D. Boyan1, 2 & 
Todd C. McDevitt1, 3

The progressive loss of endogenous regenerative capacity that accompanies mammalian aging 
has been attributed at least in part to alterations in the extracellular matrix (ECM) composition of 
adult tissues. Thus, creation of a more regenerative microenvironment, analogous to embryonic 
morphogenesis, may be achieved via pluripotent embryonic stem cell (ESC) differentiation and 
derivation of devitalized materials as an alternative to decellularized adult tissues, such as 
demineralized bone matrix (DBM). Transplantation of devitalized ESC materials represents a 
novel approach to promote functional tissue regeneration and reduce the inherent batch-to-batch 
variability of allograft-derived materials. In this study, the osteoinductivity of embryoid body-derived 
material (EBM) was compared to DBM in a standard in vivo ectopic osteoinduction assay in nude 
mice. EBM derived from EBs differentiated for 10 days with osteogenic media (+ β -glycerophosphate) 
exhibited similar osteoinductivity to active DBM (osteoinduction score =  2.50 ±  0.27 vs. 2.75 ±  0.16) 
based on histological scoring, and exceeded inactive DBM (1.13 ±  0.13, p <  0.005). Moreover, EBM 
stimulated formation of new bone, ossicles, and marrow spaces, similar to active DBM. The potent 
osteoinductivity of EBM demonstrates that morphogenic factors expressed by ESCs undergoing 
osteogenic differentiation yield a novel devitalized material capable of stimulating de novo bone 
formation in vivo.

Acellular and devitalized tissue therapies have been successfully used to promote endogenous repair to 
treat a variety of traumatic injuries and degenerative diseases. Tissue derived materials lacking viable cells 
but comprised of natural extracellular matrix (ECM) components, such as structural adhesive proteins, 
glycosaminoglycans and bioactive growth factors embedded within the native matrix from the tissue of 
origin, retain potent bioactivity1,2. Demineralized bone matrix (DBM) is perhaps the most well-studied 
devitalized matrix material currently in clinical use due to its well-established capacity to stimulate de 
novo bone formation3. Despite widespread clinical use, DBM is subject to several well-known and inher-
ently unavoidable caveats. The in vivo osteoinductivity of DBM can vary between bone banks, and from 
batch-to-batch within the same bone bank, due to varying processing conditions and the heterogeneity 
of donor tissues4. As with any cadaveric-sourced, allograft tissue, limited donor availability and lack of 
control over donor characteristics, such as age or environmental exposures, can adversely impact the 
quality and potency (i.e. osteoinductivity) of DBM5–7. These limitations of donor tissue-derived therapies 
motivate the need for reproducible and consistent source material(s) for manufacturing of regenerative 
acellular products.

Pluripotent cells, traditionally referring to embryonic stem cells (ESCs)8–10 and, more recently, induced 
pluripotent stem cells11,12, are an attractive source for differentiation of essentially all mammalian cell and 
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tissue types. Pluripotent ESCs, derived from the inner cell mass of blastocyst stage embryos, are capable 
of extensive self-renewal in vitro and differentiation into cell types comprising all three germ lineages 
(ectoderm, endoderm, and mesoderm)13. Due to their pluripotency, these cells are capable of differen-
tiating not only into the osteoblast lineage, but also into associated cell types of the mesoderm lineage, 
such as endothelial and hematopoietic cells, which contribute to bone formation and maintenance14–16. 
Additionally, ESCs are capable of producing trophic factors that not only regulate adult cell responses in 
vitro17 but also support tissue regeneration in vivo18,19, an attribute that is often either severely diminished 
or completely lost by mature somatic cells.

ESCs can be differentiated as three dimensional cell aggregates, commonly referred to as embryoid 
bodies (EBs). We have previously derived different forms of devitalized EB materials (EBM) that retain 
the bioactive factors produced by ESCs undergoing morphogenic differentiation20–22. Though similar fac-
tors could be delivered from viable transplanted cells, the use of a devitalized ESC therapy, such as EBM, 
eliminates the risk of teratoma formation associated with the direct delivery of viable ESCs or primitive 
differentiated cells comprising EBs8.

The objective of this study was to determine the osteoinductive potential of a novel material derived 
from devitalized osteogenic differentiated EBs. As we have previously demonstrated, osteogenic differ-
entiation of ESCs can be stimulated by β -glycerophosphate (β GP) treatment23. It was hypothesized that 
bioactive factors enriched within the embryonic-like microenvironment of EBM, in particular bone 
morphogenetic proteins (BMPs), would induce bone formation when implanted in vivo. Moreover, it 
was hypothesized that osteoinductive potential would be enhanced when EBM was derived from EBs 
undergoing osteogenic differentiation in response to β GP stimulation. As an initial assessment of EBM 
preparations in vitro, the levels of osteoinductive and osteopromotive factors, including bone morphoge-
netic protein 2 (BMP-2), bone morphogenetic protein 4 (BMP-4), and vascular endothelial growth factor 
(VEGF) extracted from EBM, were quantified. The osteoinductive potential of EBM was assessed using 
an in vivo mouse intramuscular implantation assay6 by quantifying mineralization and the frequency of 
bone induction, as well as performing histomorphometric measurements of new bone formation in com-
parison with active and inactive DBM. This proof-of-principle work establishes a novel osteoinductive 
therapy exploiting the regenerative potential of ESC-derived materials that may be capable of stimulating 
de novo tissue formation for clinical applications aimed at ameliorating tissue injury or degeneration.

Results
DBM and EBM Characterization.  DBM and EBM were characterized prior to implantation based 
upon general structure, composition, and extractable growth factor content. DBM was macroscopically 
identifiable as a hard, dense, and particulate material, comprised of distinct granular pieces with rough 
edges. In contrast, day 10 EBM exhibited a loosely packed “cotton ball” appearance with handling char-
acteristics similar to that of a dry powder and retained the ultrastructure of individual EBs (Fig.  1a, 
left panel). The differences in material architecture between DBM and EBM were also observed at the 
microscopic level, as revealed by haematoxylin and eosin (H&E) staining. DBM was comprised of solid, 
eosinophilic particles in the size range of 400–1000 μ m, whereas EBM exhibited a less dense structure, 
including some remnant nuclear material, with architecture similar to that of intact individual EBs 
(Fig. 1a center panel). Analine blue staining revealed abundant, positive collagen staining (blue) of DBM 
(Fig. 1a, right panel) whereas EBM exhibited little to no collagen content. In addition, EBM macro- and 
microscopic structures and histological staining were similar regardless of the day of isolation and β GP 
treatment, consistent with previously published results22.

EBM derived from EBs without or with β GP-treatment starting on day 5 of EB formation was har-
vested at D5, D10, and D14. Several key growth factors important in bone development and repair, 
including BMP-2, BMP-4, and VEGF were readily extracted from EBM with Tissue Protein Extraction 
Reagent (T-PER, Pierce). The quantities of extractable BMP-2, BMP-4, and VEGF obtained from both 
untreated EBM and β GP-treated EBM were significantly higher than samples extracted from DBM using 
T-PER (Fig. 1b, P =  0.000 for all the comparisons). Osteogenic differentiation of EBs with β GP treatment 
did not significantly alter the growth factor quantities extracted from day 10 and day 14 EBM; however, 
the production of BMP-2 and BMP-4 was temporally regulated during the course of EB differentiation. 
More BMP-2 was extracted from day 14 + β GP EBM compared to day 5 untreated EBM (P =  0.043) and 
day 10 + β GP EBM (P =  0.026), while BMP-4 content extracted from + β GP EBM was less at day 14 
(P =  0.033 vs day 5 and P =  0.03 vs day 10, respectively). VEGF content did not vary significantly during 
the course of differentiation.

While EBM derived from day 10 and day 14 EBs retained comparable amounts of osteoinductive and 
osteogenic growth factors, day 14 EBs displayed more endogenous mineralization than day 10 EBs, as 
evident by more intensive von Kossa and alizarin red staining (Supplementary Figure S1). Therefore, in 
order to benefit from the morphogen content retained within EBM while minimizing potential interfer-
ence of visible mineral deposits present in day 14 EBM during in vivo mineralization analysis at the site 
of implantation, EBM derived from day 10 of EB culture was chosen for subsequent in vivo evaluation.

In Vivo Mineralization Analysis.  Osteoinductivity was evaluated by implantation into the gastroc-
nemius muscle of the hindlimb of nude athymic mice, a common model for the evaluation of DBM 
potency24–26 that is accepted as the ASTM standard for the evaluation of osteoinductive materials6. 
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Heat-inactivated DBM was used as a delivery vehicle for EBM; thus only half the quantity of EBM was 
implanted compared to DBM (per mass basis) in order to implant a total of 15 mg of materials in each 
experimental group.

Mineralization associated with the DBM and EBM implant sites was detectable by both X-ray (Fig. 2a, 
top panel) and μ CT (Fig. 2a, bottom panel) 35 days post implantation. Multiple areas of mineralization 
were present around the site of implantation in all of the hindlimbs implanted with active DBM. In 
contrast, fewer but more concentrated areas of mineralization were observed in EBM implanted animals, 
with 7 out of 8 limbs implanted with + β GP EBM exhibiting mineralization compared to only 3 out of 8 
limbs and 1 out of 8 limbs implanted with -β GP EBM and inactive DBM, respectively. Consistent with 
X-ray results, μ CT quantification of ectopic mineralization in the same limbs showed a significantly 
higher volume of mineralized tissue with implantation of both + β GP EBM (0.93 ±  0.47 mm3, P =  0.022) 
and active DBM (3.59 ±  1.20 mm3, P =  0.000) compared to inactive DBM alone (0.06 ±  0.04 mm3) 
(Fig.  2b). In contrast, the mineralized volume in the –β GP EBM group (0.41 ±  0.19 mm3) was similar 
to that of the inactive DBM group (P =  0.619), and was significantly lower than that of the active DBM 
group (P =  0.002).

Histological Assessments and New Bone Formation.  The persistence of residual implanted 
materials within the gastrocnemius muscle was examined following tissue retrieval and histological sec-
tioning. As shown in Fig. 3, consistent with their distinct histological appearance by in vitro characteri-
zation (Fig. 1a), the remaining implanted DBM (inactive and active) appeared as a dense pink structure 
by H&E and stained positively (blue) for collagen content by MMAB. In contrast, residual EBM was 
readily distinguished from co-delivered inactive DBM based upon its looser structure and lack of blue 
staining for collagen.

Figure 1.  Characterization of DBM and EBM. DBM and day 10 EBM structure and composition were 
examined macroscopically (left panel, scale bar =  1 mm) and microscopically (center panel: H&E and right 
panel: modified MMAB, scale bar =  100 μ m) to reveal their material architectures and collagen content (a). 
EBM derived from EBs without or with β GP-treatment started on day 5 of EB formation was harvested at 
D5, D10, and D14. Growth factors extracted from both EBM and DBM were quantified by ELISA (b). The 
error bars represent standard error of the mean. n =  3 samples, Box-Cox transformation, ANOVA, Tukey’s 
post-hoc test, ***p <  0.005 compared to DBM, #p <  0.05 for marked comparison, %p <  0.05, %%p < 0.01 
compared to Day 14 + β GP EBM. ND: not detectable.
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The formation of ossicles, characterized by the presence of new bone, the interface at which the 
amalgamation of new bone with residual implanted material, and the formation of associated new mar-
row space were also evaluated by H&E stained sections from each implant site. Limbs from both EBM 
implanted groups exhibited a single large ossicle per section, as much as three times larger than the 
total ossicle area observed in any of the active DBM-implanted samples. The residual EBM was often 
localized within or immediately adjacent to the largest ossicles and was also embedded in newly formed 
bone constituting the large ossicles. In contrast, active DBM implanted samples evoked multiple smaller 
ossicles, located within a large region of residual DBM (Fig. 3a).

New bone was distinguished from residual implanted EBM and DBM by the distinct mottled staining 
pattern evidenced via H&E staining (Fig.  3b, top). MMAB analysis confirmed these results, exhibiting 
dark blue staining for collagen deposition, indicative of bone formation, surrounding areas consistent 
with mottled regions (Fig. 3b, bottom). New bone integrated along the EBM boundaries in direct appo-
sition to the devitalized material (Fig. 3c), similar in appearance to what was observed at the interface 
of new bone and active DBM. In many cases, newly deposited bone matrix appeared to be amalgamated 
with residual EBM based upon positive Analine blue staining engulfing the red-stained acellular material.

Osteoinductivity Scoring.  Semi-quantitative scoring of ossicle formation was performed to com-
pare the osteoinductivity of each experimental group (Fig.  4). Both + β GP EBM (score =  2.50 ±  0.27) 
and active DBM (score =  2.75 ±  0.16) groups had higher osteoinduction (OI) scores compared to the 
inactive DBM negative control (score =  1.13 ±  0.13, P =  0.00 and P =  0.00, respectively) and -β GP EBM 
(1.5 ±  0.19, P =  0.01 and P =  0.00, respectively). Moreover, the OI scores of + β GP EBM and active DBM 
were not statistically different (P =  0.80).

Histomorphometric Analysis of New Bone.  Histomorphometric characterization of the extent of 
osteoinduction and the composition of new bone was consistent with the overall OI scoring results. 
Ossicle formation was frequently detected in both active DBM and + β GP EBM groups (Fig. 5a). Ossicle 
area, as well as the area of new bone and marrow space were all larger with + β GP EBM implants 
compared to inactive DBM (P =  0.007, P =  0.005, and P =  0.006, respectively) and similar to meas-
ures observed in the active DBM-implanted gastrocnemius muscles (Fig.  5b-d, P =  1.000, P =  0.999, 
and P =  0.999, respectively). Additionally, the histomorphometric values of the -β GP EBM group were 

Figure 2.  Evaluation of mineralization in vivo. DBM and EBM formulations were evaluated in a mouse 
intramuscular osteoinduction model. Mineralization associated with the material implant sites was visualized 
by X-ray and the # of limbs with mineralization detectable by x-ray/total number of limbs per group was 
reported. (a, top). Mineralization was further visualized by μ CT and the # of limbs with mineralization 
detectable by μ CT (mineral volume >  0.05% of total limb volume [0.10 mm3])/total number of limbs per 
group was reported (a, bottom). The total mineral volume per limb was quantified by μ CT (b). The error 
bars represent standard error. n =  8 samples, Box-Cox transformation, ANOVA, Tukey’s post-hoc test, 
*p <  0.05 compared to inactive DBM alone, #p <  0.05 compared to –β GP EBM.
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comparable to those of inactive DBM (P =  0.770, P =  0.602, and P =  0.758) and were consistently less 
(but not statistically significant) than those of + β GP EBM (P =  0.063, P =  0.097, and P =  0.064, respec-
tively) and active DBM groups (P =  0.062, P =  0.097, and P =  0.064, respectively).

Discussion
In the current study, we demonstrate for the first time that ESC-derived materials contain osteoinductive 
and osteogenic factors (BMP-2, BMP-4, and VEGF) capable of inducing new bone formation in vivo. 
The osteoinductivity of + β GP EBM derived from osteogenic differentiated EBs was comparable to that 

Figure 3.  Evaluation of ossicle formation in vivo. H&E staining of representative sections from each 
implant group (a: low magnification, 2x and top panel in b: high magnification, 20x) and modified Mallory 
aniline blue (MMAB) staining of adjacent sections (bottom panel in b: low magnification, 20x) were used 
to identify residual DBM and EBM. Higher magnification images (c, 40x) of MMAB stained section from 
a + β GP EBM implanted limb was used to demonstrate the new bone formation pattern in + β GP EBM-
implanted group. Residual DBM (*), new bone (^), marrow space ($), and residual EBM (+ ).
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of active DBM, a commercially available and widely used osteoinductive material, by measures of min-
eralization, histologic osteoinduction score, and quantitative histomorphometry. Interestingly, the similar 
osteoinductivity of EBM to that of active DBM was attained despite the delivery of half the amount of 
EBM, suggesting a greater osteoinductive potency of EBM over DBM (on a per mass basis), which may 
be attributed to the higher content and accessibility of osteogenic growth factors retained in EBM. Of 
note, no teratoma formation was observed with EBM implantation within the duration of this study. 
Thus, the current proof-of-concept study establishes an effective and safe strategy for devitalized pluri-
potent stem cell-based tissue specific morphogenic therapies.

Figure 4.  Osteoinduction scoring. Osteoinduction scores were calculated based on a semi-quantitative 
assessment of ossicle formation in the H&E stained sections. The error bars represent standard error of the 
mean. n =  8 samples. ANOVA, Tukey’s post-hoc test, *p <  0.05 compared to inactive DBM alone, #p <  0.05 
compared to –β GP EBM.

Figure 5.  Quantitative histomorphometry. A representative H&E-stained section per animal was evaluated 
for osteoinduction scoring and histomorphometric measurements, for a total of n =  8 sections (dotted line 
in a) per group. The number of ossicles (a), total ossicle area (b), new bone area (c), and new marrow space 
area (d) were quantified for each implant group. Error bars represent standard error of the mean. n =  8 
samples, Kruskal-Wallis non-parametric ANOVA, Tukey’s post-hoc test, *p < 0.05 compared to inactive 
DBM.
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Pluripotent stem cells have shown much therapeutic promise because of the inherent regenerative 
potential of immature, less differentiated embryonic environments27,28; however, the clinical use of 
ESC-derived therapies has thus far been limited by safety concerns, such as the potential risk of teratoma 
formation upon implantation if efficient differentiation is not achieved29,30. In fact, when equal numbers 
of viable day 10 EBs, either with or without β GP treatment, were implanted in parallel with the devital-
ized samples described here, teratoma formation was readily observed by 28 days post-implantation, as 
demonstrated in supplementary Figure S2. In contrast, no teratomas formed within 35 days of implan-
tation of EBM, which can likely be attributed to the complete abrogation of cell viability during the 
devitalization process. Therefore, the delivery of ESC-derived morphogenic molecules and growth fac-
tors represents a safe alternative to harness the therapeutic benefits of the regenerative, embryonic-like 
microenvironment created by ESCs for in vivo applications.

Demineralized bone matrix (DBM) is a natural material capable of harboring osteoinductive and 
osteogenic growth factors, and remains a leading molecular therapy to induce bone formation. The oste-
oinductivity of DBM has long been known to be due in large part to its BMP-2 content3,31,32. BMP-2 is 
osteoinductive, and as such, recombinant human BMP-2 is employed clinically as a single factor therapy 
to promote bone growth and regeneration5. In addition to being directly osteoinductive33, BMP-4 is crit-
ical during early stages of development, including gastrulation and mesoderm formation34 and therefore 
may prime endogenous host cell populations to become responsive to osteoinductive stimuli35,36. DBM 
also contains other osteopromotive factors such as the angiogenic growth factor VEGF, which is vital to 
bone formation, as it promotes neovascularization allowing for the recruitment of the mesenchymal pro-
genitor cells that are induced by BMP-2 to form new bone37–39. However, the osteoinductive bioactivity 
of DBM is confounded by significant donor and lot variability5,7,40,41.

Previous studies have measured highly variable quantities of osteoinductive factors within DBM, in 
both a bone bank-to-bank and batch-to-batch manner5,42. Measured levels of BMP-2, BMP-4 and VEGF 
range from 2-120 pg/mg, 0.04-0.4 pg/μ g and 0-8 pg/mg DBM5,42,43, respectively. In this study, the quanti-
ties of morphogens extracted from DBM were much lower than what have been reported in the literature 
because a mild extraction reagent (T-PER) was used in lieu of 4 M guanidine-HCl. The actual content of 
osteoinductive morphogens including BMP-2 present in the DBM used in the present study was likely 
much larger than what was extracted with T-PER, explaining its greater in vivo osteoinductivity. It should 
be noted that the positive and negative control DBM batches we used were previously validated using the 
ASTM standard6, supporting our present in vivo observations.

Importantly, employing a relatively mild extraction reagent, we were able to readily obtain osteoin-
ductive and osteopromotive factors from devitalized EBM that are essential for regulating bone forma-
tion. More importantly, the quantity of these factors extracted from EBM was significantly higher than 
that from DBM, suggesting greater accessibility of these morphogens in EBM than in DBM. Additionally, 
the growth factor content of each batch of EBM was very consistent and much more so than different 
lots of DBM. Our defined EB culture system with uniform sized EBs and standardized EB culture plat-
form44, along with the simple formulation of osteogenic media (β GP only)23 successfully minimized 
batch-to-batch variation and yielded consistent growth factor content of different EBM batches – much 
more so than independent lots of DBM.

In preliminary studies, EBM alone was delivered in vivo to examine its osteoinductivity. However, the 
inability to identify sites of implantation a month later made it technically challenging to perform ectopic 
osteoinductivity analyses. Therefore, inactive DBM was used as a vehicle for in vivo delivery of EBM 
in the present study to facilitate the localization of implants due to the unique histological structure of 
DBM. Although mixing the EBM with inactive DBM readily enabled subsequent analyses, it admittedly 
complicates the interpretation of the results. Thus, it remains possible that EBM activity is impacted  
by the presence of inactive DBM. However, the lack of osteoinductivity of HI-DBM alone, strongly 
suggests that the ectopic bone formation observed in EBM-treated groups is due to the osteoinductive 
properties of EBM. Future studies of bone repair both with and without inactive DBM or other mate-
rials (e.g. collagen scaffold or gel) should elucidate any potential consequences of mixing the EBM with 
carrier materials.

Despite the fact that only half the quantity of EBM was implanted compared to DBM (per mass basis), 
comparable osteoinduction scores and mineralized tissue amounts were achieved. Moreoever, histomor-
phometric analysis revealed distinct differences with respect to the distribution, localization, and com-
position of newly formed ossicles and associated mineralization in response to implanted EBM. Within 
both EBM groups, new bone and ossicle formation were observed in sections from all regions in which 
mineralization was visualized by X-ray, whereas in contrast, regions of mineralization in DBM samples 
did not always correspond directly with ossicle formation. Additionally, in both EBM groups, new bone 
tissue usually formed one large ossicle and consisted of a larger marrow space, compared to multiple 
smaller ossicles induced by active DBM. The increased availability of BMP-2 and BMP-4 in EBM com-
pared to DBM may have yielded the differences in ossicle morphology observed in EBM-implanted 
muscles, whereby a large area of marrow space was surrounded by a thin layer of cortical bone, versus 
multiple small ossicles induced by DBM. Similar large ossicle formation has previously been observed in 
response to direct administration of high doses of recombinant BMP-2 within the same intramuscular 
osteoinduction model employed in this study31. The development of marrow space to support the newly 
formed bone is important for its maintenance, as it provides a pool of mesenchymal and osteoprogenitor 
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cells that support the continued remodeling of the bone; however, the establishment of marrow is inher-
ently dependent upon the formation of new bone45,46. Ossicle formation with robust marrow space that 
resulted from EBM implantation may be advantageous for the establishment of extramedullary bone 
marrow niches, with potential applications for promoting hematopoietic cell engraftment following bone 
marrow transplantation. Taken together, the current formulation and dosage of EBM was osteoinduc-
tive at a level equal to, if not greater than, the active DBM that was used as a positive control for this 
intramuscular osteoinduction assay.The similar quantity of extractable osteoinductive and osteogenic 
morphogens from –β GP EBM and + β GP EBM as indicated by ELISA, might explain why similar levels 
of ectopic bone formation were achieved by these two groups. However, both x-ray and histological anal-
ysis indicated a higher frequency of mineral tissue formation for EBM produced with + β GP treatment 
compared to -β GP EBM, with 7/8 in + β GP EBM group vs. 3/8 in -β GP EBM group exhibiting positive 
mineralization by x-ray and 7/8 in + β GP EBM group vs. 4/8 in -β GP EBM group containing ossicles. 
The most striking difference between EBM formulations was that the osteoinductive score of + β GP EBM 
was significantly greater than that of the -β GP group. These results suggest that molecular composition 
of the β GP-treated and untreated groups may be related to differences in the osteogenic differentiation 
of EBs at the time of devitalization (e.g. 10 days in this study). While the growth factors measured in 
this study including BMP-2 are believed to be the primary osteoinductive morphogens found in EBM, 
this study can’t exclude that EBM may contain additional morphogens that also contribute to the ectopic 
bone formation observed in vivo.

As demonstrated here, ESC-derived material can yield de novo bone formation by inducing local cellu-
lar and tissue morphogenic responses with several potential advantages over adult, allograft-derived ther-
apies. Motivated by the current EBM results, stem cell-derived biomaterials are amenable to controlled 
production through bulk stem cell culture and bioprocessing, removing donor-to-donor variability that 
frequently hampers current therapies dependent on cadaveric sourced tissues, such as DBM31,47. Ex vivo 
cell manufactured materials could potentially reduce the need for donor allograft tissue, a long-term goal 
of tissue engineering and regenerative medicine strategies that has yet to be achieved for many tissues. 
Future studies to systematically vary culture and differentiation parameters can be performed to further 
improve the osteoinductive potency or to derive alternative forms of EBM intended for the regeneration 
of other tissues and treatment of degenerative disorders.

In conclusion, EBM derived from osteogenic ESC microenvironments exhibits potent osteoinduc-
tivity, based on its ability to stimulate new bone formation in an ASTM standard evaluation model. 
The results demonstrate that the osteogenic microenvironment created by differentiating ESCs can be 
transformed into a cell-derived, osteoinductive biomaterial. This novel finding demonstrates that a devi-
talized, tissue-specific therapy derived from pluripotent ESCs stimulates directed in vivo tissue responses, 
thereby providing a unique platform to directly translate the regenerative potential of ESCs into clinical 
therapeutics and motivating the development of ESC-derived materials for a broad array of regenerative 
medicine applications.

Methods
Mouse ESC Culture.  Undifferentiated mouse ESCs (D3 cell line) were expanded on 0.1% gelatin 
coated tissue culture dishes in ESC growth medium containing DMEM (Mediatech, Herndon, VA) sup-
plemented with 15% FBS (Hyclone, Logan, UT), 2 mM L-glutamine (Mediatech), 1x non-essential amino 
acids (Mediatech), 100 U/ml penicillin/ 100 μ g/ml streptomyocin/ 0.25 μ g/ml amphotericin (GIBCO, 
Carlsbad, CA), 0.1 mM β -mercaptoethanol (Fisher, Fairlawn, NJ), and 103 U/mL of leukemia inhibi-
tory factor (LIF, Chemicon, Temecula, CA). Media was fully exchanged at least once every 2 days, and 
cells were passaged using 0.05% trypsin/0.53 mM EDTA every 2-3 days before reaching 70% confluence 
(GIBCO).

EB Formation and Osteogenic Differentiation.  EBs were formed by forced aggregation using 
Aggrewell™ inserts48 with 1000 cells per EB (Day 0). After 24 hours of microwell culture (Day 1), EBs 
were transferred to 100 mm bacteriological Petri dishes (~2500 EBs/dish; 10 ml), and maintained on a 
rotary orbital shaker (Lab Rotator, Model #2314, Barnstead International, Dubuque, IA) at 40 rotations 
per minute continuously in 10 ml of ESC growth media without LIF44. Osteogenic differentiation of EBs 
was initiated by addition of 10 mM β -glycerophosphate (β GP, MP Biomedical, Solon, OH) to the media 
beginning at day 5 and continued until day 14.

DBM Source and Inactivation.  DBM derived from donated, human cadaveric tissue (Musculoskeletal 
Transplant Foundation, Edison, NJ) and previously validated to possess high osteoinductive potency was 
used as a positive control for in vivo ectopic bone formation studies. Inactive DBM was prepared by 
heating DBM from the same lot to 105 °C for 24 hours to denature osteoinductive factors present within 
the DBM and used as a negative control for in vivo experiments49.

Preparation of EBM.  EBM was derived from EBs at days 5, 10, and 14 of differentiation by lyophili-
zation, as described previously22, from untreated EBs (-β GP) as well as osteogenic EBs (+ β GP)23. Briefly, 
cell spheroids in each group were harvested (~2 x 103 EBs per EBM sample), washed in PBS and resus-
pended in sterile, deionized water. After pelleting, tubes were frozen in water at -80 °C overnight and 
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then lyophilized overnight to generate equal aliquots of devitalized material without any additional enzy-
matic or solvent treatments.

Characterization of Devitalized Material.  To assess gross morphology and physical character-
istics, images of DBM and EBM were acquired using a dissecting stereomicroscope equipped with a 
digital camera (Nikon SMZ1500). Morphology was assessed microscopically by routine hematoxylin 
and eosin (H&E) staining (Leica AutoStainer XL) of formalin-fixed, paraffin-embedded sections. The 
presence of collagen within the devitalized materials was further evaluated by modified Mallory aniline 
blue (MMAB) staining50.

Growth factor retention within EBM and DBM was evaluated by enzyme linked immunosorbent 
assays (ELISA) using BMP-2 (PeproTech, Rocky Hill, NJ), BMP-4 and VEGF-A ELISA kits (R&D 
Systems, Minneapolis, MN;) per manufacturer’s instructions. EBM and DBM materials were solubilized 
at 3 mg/ml in Tissue Protein Extraction Reagent (T-PER; Pierce, Rockford, IL) for one hour at 4 °C by 
continuous rotational mixing. Experimental measurements were compared to a standard curve generated 
from known concentrations of individual proteins reconstituted in TPER buffer. Prior to implantation, 
EBM was screened to ensure low endotoxin levels (< 0.5 EU/mL; QCL-1000, Lonza, Walkersville, MD).

Preparation of Implants.  For intramuscular implantation, DBM and EBM were loaded into 
UV-sterilized, size 5 gelatin capsules (Torpac, Fairfield, NJ). 15 mg of DBM (active or inactive) was loaded 
into each capsule for positive and negative controls, respectively. 7.5 mg of EBM (-β GP EBM, + β GP 
EBM) was mixed with 7.5 mg of inactive DBM before loading into individual capsules. Inactive DBM 
was used as a delivery vehicle for EBM implants due to its unique histological features and non-bioactive 
nature, enabling us to readily identify the sites of implanted EBM without interfering with the bioactivity 
of EBM.

Implantation of DBM and EBM.  All animal procedures were carried out in accordance with the 
approved guidelines for animal research at Georgia Institute of Technology. The experimental protocols 
were reviewed and approved by the Georgia Institute of Technology Institutional Animal Care and Use 
Committee. Sixteen male athymic Nu/Nu mice (Harlan, Indianapolis, IN) were randomly divided into 
four different groups: inactive DBM, -β GP EBM, + β GP EBM, active DBM. Different material formula-
tions were implanted into the gastrocnemius with one implant per limb and the incision closed by wound 
clips. Each mouse received two of the same implant, to reduce systemic effects that influence response to 
an implant of a different type in the contralateral limb51, for a total of eight implants per experimental 
group. Mice were housed for 35 days under sterile conditions suitable for their immunocompromised 
state and provided food and water ad libitum.

Evaluation of Mineralization – X-ray and Micro-computed Tomography (μCT).  Animals were 
euthanized at 35 days post-implantation by carbon dioxide asphyxiation for evaluation of mineralization 
and new bone formation. Hind limbs were removed and fixed in 10% neutral buffered formalin prior  
to X-ray examination to assess gross mineralization (Faxitron, Lincolnshire, IL). Mineralization at the 
site of implantation was further evaluated by μ CT in air using a μ CT 40 scanner (Scanco Medical, 
Brüttisellen, Switzerland) at 55 kVp, 145 μ A, 200-ms integration time, and a voxel size of 30 μ m in a 
30 mm scanning tube. Evaluation of μ CT scans used sigma, support and threshold values set at 3.3, 2, 
and 70, respectively. A minimum threshold (0.05%, 0.10 mm3) of absolute mineral volume per hindlimb 
volume (estimated from limb measurements) was established, above which limbs were scored as positive 
for mineralization by μ CT.

Histological Evaluation.  Following analysis of mineralization, hind limbs were decalcified in 14% 
EDTA (Sigma, St. Louis, MO) in water (pH 7) for two weeks, with the progression of decalcification 
monitored daily by X-ray before proceeding to paraffin embedding and sectioning. New bone formation 
was evaluated histologically by semi-quantitative scoring and histomorphometric measurements, as pre-
viously described4. Three consecutive cross sections (5 μ m) were collected at three different levels in the 
region of the implant along the longitudinal axis of the limb and stained with H&E (Leica AutoStainer 
XL). One complete section (of the nine total) per implant exhibiting the greatest amount of ossicle for-
mation and residual DBM was selected for scoring and histomorphometric analysis. Due to the selection 
of the section containing residual DBM and the most new bone, the results were positively biased toward 
success for each implant type. Residual EBM and DBM within the implant site were evaluated by MMAB 
staining, as described previously, on sections adjacent to those chosen for scoring and histomorphomet-
ric evaluation. No residual EBM or DBM was included in the measurement of new bone.

For osteoinduction scoring, the entire section was evaluated by two independent blinded observers 
and graded according to a previously published semi-quantitative rating system4,6 (Supplementary Table 
1). The same histological sections used for osteoinduction scoring were also evaluated by quantitative 
histomorphometric analysis using Metamorph™ software (v. 7.5, Molecular Devices, Sunnyvale, CA) to 
individually measure the total ossicle area (marrow space and associated new bone), as well as new bone 
and new bone marrow (distinct from DBM and limb bones).
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Statistical Analyses.  Results are presented as mean and standard error, with n being the number of 
implant sites (n =  8), unless otherwise noted. For data not approximating a normal distribution, the data 
were normalized using a Box-Cox power transformation prior to statistical analysis52. For histomorpho-
metry data that were not normally distributed even after transformation, Kruskal-Wallis non-parametric 
analysis of variance (ANOVA) and Tukey’s post-hoc tests were used to determine significant differences 
using MATLAB (Mathworks, Natick, MA). Otherwise, statistically significant differences were deter-
mined by one-way ANOVA followed by Tukey’s post-hoc test using Systat 12 (Chicago, IL). p <  0.05 
was considered significant.
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