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Aims Central to the practice of precision medicine in percutaneous coronary intervention (PCI) is a risk-stratification tool to pre-
dict outcomes following the procedure. This study is intended to assess machine learning (ML)-based risk models to predict 
clinically relevant outcomes in PCI and to support individualized clinical decision-making in this setting.

Methods 
and results

Five different ML models [gradient boosting classifier (GBC), linear discrimination analysis, Naïve Bayes, logistic regression, 
and K-nearest neighbours algorithm) for the prediction of 1-year target lesion failure (TLF) were trained on an extensive 
data set of 35 389 patients undergoing PCI and enrolled in the global, all-comers e-ULTIMASTER registry. The data set 
was split into a training (80%) and a test set (20%). Twenty-three patient and procedural characteristics were used as pre-
dictive variables. The models were compared for discrimination according to the area under the receiver operating char-
acteristic curve (AUC) and for calibration.  The GBC model showed the best discriminative ability with an AUC of 0.72 
(95% confidence interval 0.69–0.75) for 1-year TLF on the test set. The discriminative ability of the GBC model for the com-
ponents of TLF was highest for cardiac death with an AUC of 0.82, followed by target vessel myocardial infarction with an 
AUC of 0.75 and clinically driven target lesion revascularization with an AUC of 0.68. The calibration was fair until the highest 
risk deciles showed an underestimation of the risk.

Conclusion Machine learning–derived predictive models provide a reasonably accurate prediction of 1-year TLF in patients undergoing 
PCI. A prospective evaluation of the predictive score is warranted.

Registration Clinicaltrial.gov identifier is NCT02188355.
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Introduction
Precision medicine is personalization of treatment based on an individ-
ual patient’s characteristics and risk factor profile. Central to the prac-
tice of precision medicine is a risk-stratification tool that can predict the 
prognosis or outcome of a patient following different treatments.1

Percutaneous coronary intervention (PCI) is the commonest means 
of achieving coronary revascularization2 and outcomes are influenced 
by co-morbidities, disease extent, procedure complexity, and techni-
ques. While many previous risk-stratification tools have focused on 

mortality, major bleeding complications, or the risk of future major ad-
verse cardiovascular events (MACEs), there are no widely used risk 
scores predicting target lesion failure (TLF), a composite of cardiac 
death (CD), target vessel myocardial infarction (TV-MI), or clinically dri-
ven target lesion revascularization (TLR).3–12 Target lesion failure is a 
frequent primary endpoint of current clinical trials as well as a clinically 
relevant outcome in practice.

Timely recognition of patients at risk for future TLF could identify pa-
tients who would benefit from intravascular imaging during their PCI 
procedure or the use of more potent antiplatelet regimes with a longer 
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duration. Furthermore, such models can be used for benchmarking clin-
ical services at the centre and individual operator levels.

Machine learning (ML) enables computer algorithms to learn and 
perform certain tasks by automatically adapting internal parameters 
based on the input data without the need for human-written rules 
and, in the case of non-parametric ML models, without the need for 
strong hypotheses about the data. These features offer flexibility and, 
in specific cases, better performances than traditional statistical ap-
proaches. Machine learning prediction models have been developed 
in multiple areas of cardiovascular disease, including PCI. With some ex-
ceptions, most models used electronic hospital records with data from 
limited geographic areas, single hospitals, or narrow clinical presenta-
tions.13–24

Given the potential of ML to analyse large data sets with many vari-
ables and grasp numerous non-linear interactions among prognostic 
factors, we sought to generate a risk score for TLF using the data 
from a large, global, all-comers, PCI registry, e-ULTIMASTER.

Methods
Data set
We used the e-ULTIMASTER registry to develop the ML models. The 
e-ULTIMASTER registry (NCT02188355) was an all-comer, single-arm, 
prospective, multicentre study with clinical follow-up at 3 months and 
1 year evaluating the safety and performance of the Ultimaster drug-eluting 
coronary stent system (Terumo Corporation, Tokyo, Japan) in daily clinical 
practice. Apart from general eligibility for PCI, there were no additional ex-
clusion criteria for patient participation in this registry. The investigation 
was conducted worldwide, and 37 198 patients were enrolled between 
October 2014 and June 2018 in 378 hospitals from 50 countries across 
4 continents/regions (Europe, Southeast Asia, South America/Mexico, and 
Africa/Middle East). To account for the wide geographic area and its poten-
tial impact on the outcomes following PCI, the variable ‘region’ correspond-
ing to the above-mentioned regions has been included in the models.

The registry followed the Declaration of Helsinki (ISO 14155) and 
country-specific regulatory requirements. All patients signed the informed 
consent form that was reviewed and approved by the Institutional Review 
Board/Ethics Committee in each participating centre. Extensive online and 
risk-based on-site monitoring ensured that the collected data were of high 
quality.25

Outcomes and definitions
The primary outcome measure of the e-ULTIMASTER registry was TLF, de-
fined as a composite of CD, with MI not attributable to a vessel other than 
the TV-MI and TLR at 1-year follow-up. The adverse events throughout the 
study were reported via an electronic web-based database. An independent 
clinical events committee adjudicated deaths, MIs, TLR and TV revascular-
ization, and stent thromboses.

Training and validation process
The population was divided into a training set (80%) and a test set (20%) by 
stratified random sampling preserving the TLF rate, and five-fold cross- 
validation was used on the training set to evaluate the models. This standard 
procedure in ML allowed us to have a more robust estimation of the mod-
els’ performance and fine-tune the algorithms at the validation stage with-
out the risk of creating a feedback loop between the training set and the test 
set, which would have resulted in biased test set performance metrics.

Each classification algorithm was trained on four of the five folds and eval-
uated on the fifth, and the whole process was repeated five times, changing 
the validation fold at each iteration (see Supplementary material online, 
Figure S1). Hence, all the validation metrics are averages over the five folds, 
and the confidence intervals (CIs; for validation only) are computed based 
on the standard deviation (SD) of the performance metrics through the five 
iterations. We present the study following the transparent reporting of a 
multivariable prediction model for individual prognosis or diagnosis report-
ing checklist (https://www.tripod-statement.org/).

Variable selection
Out of the initial 144 database variables, the variables for which the value is 
typically unknown at the time of the procedure were removed, namely 
post-procedural/discharge data (including follow-up). To limit the risk of 
over-fitting and keep a number of variables manageable for potential future 
inference scenarios, we selected only the most important variables based 
on the Gini impurity reduction criterion used to construct a gradient boost-
ing classifier (GBC) model.

Gradient boosting classifier is an ensemble method combining many weak 
learners, typically small decision trees, to produce a more robust predictive 
model. The variables (and variable values) used to create the splits at each 
tree node are chosen based on their ability to separate the different classes 
(event/non-event). The purity of the split is evaluated by using the Gini index:

G = p(1 − p) 

where p is the observed event frequency in the tree node.26 A perfect classi-
fication gives a frequency of 1 (p) in one node and 0 in the other (1 − p), giving 
an impurity of 0, while the maximum impurity is reached for a useless classifier 
(p = 1/2). Each tree is trained to predict the residuals of the previous one and 
gets assigned a weight depending on the overall impurity reduction it achieves. 
The final prediction is obtained by a weighted vote of all the weak learners.

This algorithm offers a very natural method of assessing the importance 
of the predictors for the classification problem. The Gini impurity reduction 
achieved by a given variable weighted by the proportion of the population 
reaching that considered node in the classifier is used as a variable 
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Table 1 Variable (Gini) importance based on a gradient 
boosting classifier for target lesion failure at 1-year 
follow-up prediction

Variable Label Importance

0 HBR High bleeding risk 0.12222

1 AGE Subject age at baseline 0.09703

2 BBMI Body mass index at baseline 0.08485
3 PLEFN Left ventricular ejection fraction (%) 0.08266

4 DIAB Diabetes melitus 0.05530

5 LM Left main vessel treated 0.04954
6 REGION Geographical region 0.03267

7 PRNLI Number of lesions identified 0.03050

8 PRIMDFL Previous renal impairment disease 0.02963
9 GRF Graft vessel treated 0.02960

10 CREAT Creatinine kinase at pre procedure 0.02895
11 TROPO Troponin pre procedure 0.02482

12 ACSK Killip class for a patient with acute 

coronary syndrome

0.01948

13 PCMALFL Current malignancies 0.01889

14 PPTCAFL Previous PTCA 0.01849

15 STEMITRH Haemodynamic support treatment 
of STEMI before PCI

0.01643

16 PRCTCR Complete revascularization of the 

coronary tree

0.01608

17 STEMILOC Location of the STEMI 0.01588

18 PMIFL Previous MI 0.01567

19 NTVESTR Number of target vessel treated 0.01208
20 LTBIF Bifurcation lesion type treated 0.01181

21 PRETIMI Pre-angiographic—TIMI flow 0.01095

22 ITLBIFT True bifurcation lesion type treated 0.01079
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importance measure. The Gini impurity reduction achieved by all the vari-
ables is then normalized (the importance of all the variables sums to 1). Our 
analysis used this metric to select the predictors to be kept for modelling. 
For all 5 models, we chose to keep all 23 variables with a normalized import-
ance of above 1% (Table 1).

Predictive algorithms and evaluation metrics
Five different predictive models were tested for the ability to discriminate 
between outcome classes: GBC, linear discriminant analysis (LDA), logistic 
regression (LR), Naïve Bayes (NB), and K-nearest neighbours (KNN). 

• The GBC model is an ensemble tree-based classifier that has been 
briefly described in the Variable Selection section.

• The LDA classifier uses a linear decision surface to separate classes. It is 
a simple model with no hyperparameters and a closed-form solution.

• The LR model used in this analysis is the conventional LR.
• The NB algorithm considered here is the Gaussian NB, assuming 

Gaussian distributions for the variables with strong independence.
• The KNN classifier attributes a class to each data point by imple-

menting a vote of the K-nearest points (Euclidian distance).

The models were assessed on their discriminatory ability as reflected by 
the area under the receiver operating characteristic (ROC) curve (AUC). 
The sensitivity and specificity were also computed based on a score thresh-
old maximizing the Youden’s J statistics.27 The CIs were obtained via boot-
strapping of the inference score on the training and the test sets and from 
the SD of the metrics over the cross-validation folds for the validation set. 
The AUC values were then compared pairwise with the DeLong’s meth-
od.28,29 Finally, the calibration of the models was evaluated by computing 
the calibration curves. To assess the calibration, the test set patients 
were categorized into deciles of the predicted risk score (e.g. Decile 1 =  
10% of the population with the lowest predicted risk score, Decile 10 =  
10% of the population with the highest predicted risk score). For each de-
cile, we computed the average predicted risk score (x axis) and the ob-
served event rate (y axis). In the calibration plots, the diagonal line 
represents perfect calibration with a perfect correlation of predicted esti-
mates with observed event rates. Deviations above the diagonal line re-
present a model that underestimates risk, and deviations below the 
diagonal line represent a model that overestimates risk.
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Table 2 Variable importance (raw and normalized score) for pre-selected variables for target lesion failure at 1-year 
follow-up prediction

Variable Normalized importance score (TLF1Y) Raw importance score (TLF1Y)

GBC LDA LR NB KNN GBC LDA LR NB KNN

HBR 0.1133 0.1055 0.0932 0.0943 0.0851 0.1133 0.2996 1.2086 0.3152 0.026
AGE 0.1051 0.0307 0.0523 0.0819 0.0153 0.1051 0.0873 1.117 0.2738 0.0047

BBMI 0.0503 0.0088 0.0103 0.0156 0.0191 0.0503 −0.0248 0.9769 −0.0521 0.0058

PLEFN 0.0718 0.0378 0.0353 0.0424 0.029 0.0718 −0.1072 0.921 −0.1419 0.0089
DIAB 0.0584 0.0017 0.0026 0.0027 0.0075 0.0584 −0.0048 0.9943 0.0092 0.0023

LM 0.0959 0.1149 0.0785 0.0655 0.0855 0.0959 0.3261 1.1757 0.219 0.0261

REGION 0.04 0.0074 0.0057 0.0195 0.0364 0.04 0.021 1.0128 0.0651 0.0111
PRNLI 0.0603 0.0844 0.0954 0.0855 0.0711 0.0603 0.2397 1.2134 0.2858 0.0217

PRIMDFL 0.0887 0.0568 0.0395 0.0653 0.0586 0.0887 −0.1612 0.9116 −0.2184 0.0179

GRF 0.0508 0.0674 0.0415 0.0415 0.0617 0.0508 0.1913 1.093 0.1389 0.0188
CREAT 0.0312 0.0541 0.0567 0.0502 0.0314 0.0312 −0.1536 0.8731 −0.168 0.0096

TROPO 0.0283 0.0358 0.0418 0.054 0.053 0.0283 −0.1017 0.9065 −0.1807 0.0162

ACSK 0.0132 0.0463 0.0615 0.0021 0.0493 0.0132 0.1315 1.1376 −0.0072 0.0151
PCMALFL 0.0019 0.0103 0.0083 0.0045 0.0367 0.0019 −0.0293 0.9813 0.015 0.0112

PPTCAFL 0.0487 0.0732 0.0995 0.0636 0.0424 0.0487 0.2079 1.2227 0.2128 0.0129

STEMITRH 0.0254 0.0495 0.0427 0.0295 0.0254 0.0254 0.1407 1.0955 0.0986 0.0078
PRCTCR 0.0216 0.0249 0.0292 0.0507 0.0017 0.0216 −0.0707 0.9347 −0.1695 0.0005

STEMILOC 0.039 0.0662 0.0765 0.0269 0.0703 0.039 −0.1879 0.8288 −0.0901 0.0215

PMIFL 0.0179 0.039 0.0479 0.0558 0.0506 0.0179 0.1108 1.1072 0.1864 0.0154
NTVESTR 0.0037 0.0147 0.0118 0.0372 0.0274 0.0037 −0.0416 0.9735 0.1243 0.0084

LTBIF 0.0132 0.0377 0.0432 0.0503 0.0477 0.0132 0.1071 1.0967 0.1683 0.0146

PRETIMI 0.0143 0.0256 0.0254 0.0266 0.0451 0.0143 0.0728 1.0569 0.0889 0.0138
ITLBIFT 0.0069 0.0073 0.0013 0.0343 0.0496 0.0069 0.0207 1.0028 0.1149 0.0151

INTERCEPT −3.7518 0.0263

GBC, gradient boosting classifier; LDA, linear discriminant analysis; LR, logistic regression; NB, Naïve Bayes; KNN, K-nearest neighbours.
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Table 3 P-values of the variable importance scores 
correlation

GBC LDA LR NB KNN

GBC — 0.005 0.028 0.002 0.172

LDA — 0.000 0.001 0.000
LR — 0.001 0.002

NB — 0.046

KNN —

GBC, gradient boosting classifier; LDA, linear discriminant analysis; LR, logistic 
regression; NB, Naïve Bayes; KNN, K-nearest neighbours.

436                                                                                                                                                                                        M.A. Mamas et al.



To assess the content of the models, we computed the variable importance 
(out of the pre-selected variables) with methods suited for each of the algo-
rithms (LR: odds ratio, GBC: Gini impurity reduction, LDA: linear coefficients, 
NB: inverse coefficient of variation, KNN: permutation importance). As some 
methods assess only the discriminatory importance and not the direction of 
the contribution, the absolute value of the scores has been taken, the scores 
have been normalized, and the variable rank computed to allow for a more ro-
bust comparison across models. Finally, the pairwise correlation of the variable 
importance has been computed for each pair of models along with the asso-
ciated P-value. The results are displayed in Tables 2 and 3.

Individual endpoints
As the 1-year TLF is a composite of three distinct endpoints (CD, TV-MI, 
and TLR), there was the risk of attempting to identify a heterogeneous 

group of patients (with mixed profiles). We expect some models built on 
individual endpoints to perform better, as the targeted patient profile might 
be more specific in such a scenario.

In order to investigate the above question, we re-ran the analysis, focus-
ing on one endpoint (CD, TV-MI, and TLR) at a time. Only the GBC model 
was considered, while the rest of the methodology was unchanged. The 
predictive results of each model for CD, TV-MI, and TLR are given in 
Supplementary material online, Table S1.

Results
The e-ULTIMASTER registry enrolled 37 198 patients. The 1-year 
follow-up rate was 95.1%, with 35 389 patients included in the analysis. 
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Table 4 Baseline patient characteristics of patients with 1-year follow-up

Patient characteristics All patients (n = 35 389) Patient without TLF event (n = 34 254) Patient with TLF event (n = 1135)

Age, years 64.3 ± 11.2 64.2 ± 11.2 67.7 ± 11.5

Octogenarians (≥80 years) 8.9 8.7 15.7

Gender, male 75.9 75.9 76.0
Body mass index, kg/m2 27.8 ± 4.6 27.8 ± 4.6 27.6 ± 4.9

≤18.5 0.7 0.7 1.8

18.5–24.9 27.7 27.6 28.2
25–29.9 44.5 44.5 43.9

≥30 27.1 27.2 26.2

Diabetes mellitus 28.3 28.0 38.7
Insulin dependent 20.6 20.3 27.2

Non-insulin dependent 79.3 79.6 72.6

Unknown 0.1 0.1 0.2
Smoking

Never 41.5 41.6 38.8

Previous 32.6 32.4 38.3
Current 25.9 26.0 23.0

Hypertension 67.6 67.5 71.5

Hypercholesterolaemia 59.6 59.5 62.6
Family history of heart disease 35.5 35.7 30.7

Previous MI 22.9 22.6 32.3

Left ventricular ejection fraction (%) 53.8 ± 11.7 53.9 ± 11.6 50.4 ± 14.2
Previous revascularization

Previous PCI 26.1 25.8 36.9

Previous CABG 5.7 5.5 12.8
Atrial fibrillation on OAC 5.7 5.5 10.1

Previous stroke 5.5 5.4 9.5

Peripheral vascular disease 6.7 6.5 13.0
Congestive heart failure 11.3 11.1 16.5

Renal impairment 7.0 6.7 16.6

Clinical presentation
Silent ischaemia 9.2 9.3 8.4

Stable angina 35.8 35.9 33.3

Unstable angina 11.8 11.8 11.5
NSTEMI 23.2 23.1 26.2

STEMI 20.0 19.9 20.6

Data are mean ± SD for continuous variables or % for categorical variables. Renal impairment: estimated glomerular filtration rate <60 mL/min/1.73 m2. 
CABG, coronary artery bypass graft; MI, myocardial infarction; (N)STEMI, (non)ST-segment elevation myocardial infarction; OAC, oral anticoagulants; PCI, percutaneous coronary 
intervention.
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The mean age of patients was 64.3 (SD = 11.2) years, and the majority 
were males (76.0%), 28.3% had diabetes (of which 20.6% insulin de-
pendent), 67.6% had hypertension, and 59.6% hypercholesterolaemia. 
A history of MI, PCI, coronary artery bypass grafting, peripheral artery 

disease, and stroke were present in 22.9, 26.1, 5.7, 6.7, and 5.5% of the 
patients, respectively. Patients had on average 1.8 (SD = 1.1) lesions, 
20.5% classified as the American College of Cardiology/American 
Heart Association Class C, and 46.1% had multivessel disease. More 
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Table 5 Performance metrics for gradient boosting classifier, linear discriminant analysis, logistic regression, Naïve 
Bayes, and K-nearest neighbours on training, validation, and test sets

Model AUC (95% CI) Specificity (95% CI) Sensitivity (CI 95% CI) Threshold

Training GBC 0.73 (0.72–0.75) 0.8 (0.79–0.8) 0.56 (0.53–0.59) 0.0409
LDA 0.69 (0.67–0.71) 0.75 (0.74–0.75) 0.53 (0.50–0.57) 0.0319

LR 0.69 (0.67–0.71) 0.75 (0.75–0.76) 0.53 (0.49–0.56) 0.0356

NB 0.68 (0.66–0.69) 0.65 (0.64–0.66) 0.61 (0.57–0.64) 0.0041
KNN 0.71 (0.69–0.72) 0.64 (0.63–0.64) 0.65 (0.62–0.68) 0.0250

Validation GBC 0.70 (0.69–0.71) 0.72 (0.66–0.77) 0.60 (0.55–0.65) 0.0409

LDA 0.68 (0.67–0.69) 0.69 (0.61–0.77) 0.59 (0.51–0.67) 0.0319
LR 0.68 (0.67–0.69) 0.73 (0.69–0.78) 0.55 (0.49–0.61) 0.0356

NB 0.67 (0.66–0.68) 0.63 (0.55–0.72) 0.64 (0.54–0.74) 0.0041

KNN 0.65 (0.65–0.66) 0.74 (0.67–0.82) 0.48 (0.41–0.56) 0.0250
Test GBC 0.72 (0.69–0.75) 0.80 (0.79–0.81) 0.53 (0.47–0.6) 0.0409

LDA 0.70 (0.66–0.73) 0.75 (0.74–0.76) 0.55 (0.49–0.61) 0.0319

LR 0.70 (0.66–0.73) 0.76 (0.75–0.77) 0.54 (0.48–0.61) 0.0356
NB 0.70 (0.67–0.73) 0.66 (0.65–0.67) 0.64 (0.57–0.69) 0.0041

KNN 0.70 (0.66–0.73) 0.64 (0.63–0.65) 0.66 (0.60–0.72) 0.0250

AUC, area under the curve; CI, confidence interval; GBC, gradient boosting classifier; LDA, linear discriminant analysis; LR, logistic regression; NB, Naïve Bayes; KNN, K-nearest 
neighbours.

Figure 1 Receiver operating characteristic curves and performance metrics on test sets. AUC, area under the curve; GBC, gradient boosting clas-
sifier; LDA, linear discriminant analysis; LR, logistic regression; NB, Naïve Bayes; KNN, K-nearest neighbours; ROC, receiver operating characteristic; 
TLF1Y, target lesion failure at 1-year follow-up.
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than half (56.8%) of patients presented with acute coronary syndrome 
(Table 4). More than three-quarters of the procedures (82.8%) were per-
formed via radial access, while intravascular imaging was rarely used 
(6.2%). A 1-year TLF occurred in 1135 patients (3.2%), 455 (1.3%) had 
CD, 316 (0.9%) suffered a TV-MI, and 591 (1.7%) underwent TLR.

Predictive models for the primary 
composite endpoint
The discriminatory ability of different models for the primary compos-
ite endpoint of 1-year TLF is presented in Table 5 and Figure 1. Gradient 
boosting classifier showed the best AUC values in both the training, 
0.73 (95% CI 0.72–0.75) and test 0.72 (95% CI 0.69–0.75) sets, outper-
forming other ML models in which AUC values were in the range of 
0.68–0.70 in training and 0.70, for all, in the test set. The LR showed 
similar AUC, the training set 0.69 (95% CI 0.67–0.71) and the test 
set 0.70 (95% CI 0.66–0.73). A comparison of the AUC values by the 
fast DeLong’s algorithm on the test set showed a significantly better dis-
criminatory ability for GBC (Table 6). The overall accuracy was the high-
est for the GBC model (0.79) with slightly lower scores for LR (0.75) 
and LDA (0.74) (see Supplementary material online, Table S2).

The calibration test showed large differences in the different ML 
models (Figures 2 and 3; Supplementary material online, Figure S2). 
The GBC model showed good calibration until the last two deciles, in-
dicating an underestimation of the risk by 1.5–2% for patients at higher 
risk. Conventional LR showed a similar pattern, although with better 
calibration in the highest-risk decile.

The variable importance scores given by the different models are sig-
nificantly correlated (P < 0.05; Table 6), except for GBC–KNN. 
Gradient boosting classifier shows the strongest differences in variable 
importance, giving more weight to DIAB, BBMI, PLEFN, PRIMDFL, and 
less to ACSK than LR. The top 3 most agreed-upon variables are HBR, 
LM, and PRNLI, with an average importance rank of 1.8, 2.6, and 3.2, 
respectively.

Predictive models for individual endpoints
The GBC models on CD and TV-MI showed better performances des-
pite the limited number of events to learn from (AUC 0.82 and 0.75, 
respectively). The TLR model is less performant than the composite 
endpoint model, with an AUC of 0.68 in the test set (see 
Supplementary material online, Table S1).

Discussion
The present findings represent the first report of ML models to develop 
a predictive score for 1-year TLF in contemporary PCI practice derived 
from a global population of patients across Europe, South East Asia, 

South America/Mexico, and Africa/Middle East. The main findings of 
the study are: (i) the GBC demonstrated accurate discriminative cap-
ability in predicting 1-year TLF with improved performance when com-
pared with the other models; (ii) the GBC prediction ability was 
improved for CD and TV-MI, while the performance for TLR was lower 
than the composite endpoint (TLF); (iii) the calibration of the GBC 
model was comparable with LR, and both models showed good calibra-
tion until the last two risk deciles.

Using a contemporary database of >35 000 patients from almost 
400 hospitals worldwide, we generated 5 different ML risk models to 
predict TLF events at 1-year post PCI and identified the most robust 
algorithm. This analysis suggests that ML is a valuable tool to generate 
a prediction model for TLF after PCI and offers the potential to include 
imaging data and physiological parameters in future iterations. The re-
sults of the present study are comparable with previously reported pre-
dictive scores in PCI derived by ML,15–21 but with the potential 
advantage of the inclusion of a general PCI population and wide geo-
graphic distribution from 50 countries across 4 continents.15–21

Therefore, these findings may have a broader applicability to different 
healthcare systems in patients treated within them.

Apart from GBC, other models in the test set had an AUC of 0.70, a 
conventionally used threshold for acceptable performance. Several fac-
tors could influence performance. First, the TLF event rate was low in 
this study and even with large population sizes and advanced modelling 
algorithms, predicting rare events is fundamentally complex. Second, 
TLF is a composite endpoint of CD, TV-MI, and TLR, all of which might 
have different underlying risk factors making the development of a sin-
gle model to predict a composite of these outcomes complex. Also, the 
data originate from a global registry with different clinical practices 
around revascularization, intravascular imaging, and post-intervention 
pharmacological management across different heterogeneous popula-
tions. Nevertheless, this is a strength of our analysis as it represents 
real-world practice, applicable to a wider geographical area and poten-
tially provides greater utility in the real world.

The calibration of the GBC model showed a good agreement be-
tween predicted and observed events in the first eight deciles, with 
an underestimation in the highest risk deciles. In clinical practice, both 
physician and patient are primarily concerned about the accuracy of a 
prognostic estimate of a risk model. Therefore, calibration plays an 
equally important role as discrimination. A poorly calibrated model 
may over or underestimate the risk. Our model’s calibration was well 
aligned in lower risk categories but the accuracy decreased in the high-
est two deciles. Whether the calibration performance in the highest risk 
categories represents an obstacle for risk score use requires additional 
consideration. Nevertheless, similar phenomena have been observed in 
other national PCI risk scores.11,12

Previous studies aiming to generate a predictive score for composite 
endpoints such as MACEs, which include death, MI, and TLR, using con-
ventional statistical methods have shown moderate discriminatory ability. 
A study comparing 6 conventional risk scores used frequently in daily 
clinical practice found that AUC for MACE varied between 0.53 and 
0.63, and the best AUC for mortality only was 0.76.30 At the same 
time, the risk for TLR was not reliably predicted by any of the scores. 
The authors concluded that clinical factors are of reduced utility for pre-
dicting MI and TLR, although they are critical in predicting mortality.

Given these competing aspects, when outcomes are combined to 
derive TLF, creating a well-performing risk score may be challenging. 
Other studies reported similar results when assessing the performance 
of risk scores for composite PCI-related endpoints. The study by Garg 
et al.31 validated well-established clinical [age, creatinine, and ejection 
fraction (ACEF)], anatomical [syntax score (SX)], and combined clinic-
al/anatomical [clinical syntax score (CSX)] scores on an all-comers pa-
tient population. The authors report that purely clinical ACEF score 
had a low discriminatory ability for predicting TLF with an AUC of 
0.59. In contrast, the SX and CSX scores had slightly better 
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Table 6 Comparison of the areas under the receiver 
operating characteristic curves by the fast DeLong’s 
algorithm on the test set

GBC LDA LR NB KNN

GBC — <0.001 <0.001 0.02 0.01

LDA — 0.98 0.71 0.94

LR — 0.73 0.94
NB — 0.82

KNN —

GBC, gradient boosting classifier; LDA, linear discriminant analysis; LR, logistic 
regression; NB, Naïve Bayes; KNN, K-nearest neighbours.
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discriminative power with an AUC of 0.62 and 0.63, respectively. Both 
scores with clinical predictors had high discrimination in predicting CD 
(0.84 ACEF and 0.71 CSX), while the CX score only modestly pre-
dicted TLR with an AUC of 0.63. Compared with those results, the 
ML model created in the current analysis could be more helpful in iden-
tifying the patients at higher risk of developing TLF.

More than half of the patients with a TLF in the present study had 
TLR (1.7%), while 1.3 and 0.9% of patients had CD or suffered 
TV-MI. Considering that different, often competing, factors influence 
TLR and CD and that some patients experienced multiple events, ML 
obtained scores’ discriminatory ability appears acceptable. Although 
the model performance was moderate, similar models are lacking and 

Figure 2 Probability calibration curves on the test set. GBC, gradient boosting classifier; LDA, linear discriminant analysis; LR, logistic regression; NB, 
Naïve Bayes; KNN, K-nearest neighbours; TLF1Y, target lesion failure at 1-year follow-up.
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this study offers other potential advantages (large population size, wide 
geographic region, and advanced modelling algorithms) that should al-
low its applicability to real-world population undergoing PCI. For the 
individual endpoint analysis with the GBC model in the test set, we pro-
duced the highest performance for CD (AUC 0.82), TV-MI (AUC 0.75), 
and the lowest for TLR (AUC 0.67). Those results point towards the 
different predictors for different events and perhaps the high impact 

that procedural factors (excluded from the current analysis) play in de-
veloping TLR and TV-MI events.

The present analysis identified patients with the highest risk for TLF. 
Those patients experienced a 10–15 times higher event rate when 
compared with patients within the lowest risk category. Recognizing 
patients at a higher risk of adverse events would facilitate informed dis-
cussion between the patient and physician, a joint decision about the 

Figure 3 Predicted vs. observed frequency of events per risk deciles. Decile 1 represents 10% of the population with the lowest predicted risk score, 
Decile 10 represents 10% of the population with the highest predicted risk score. GBC, gradient boosting classifier; LDA, linear discriminant analysis; LR, 
logistic regression; NB, Naïve Bayes; KNN, K-nearest neighbours; TLF1Y, target lesion failure at 1-year follow-up.
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most appropriate treatment option, and better counselling for those 
patients.

Timely recognition of patients at a higher risk of adverse events could 
be actioned, highlighting patients who may benefit from intravascular 
imaging use, use of more potent antiplatelet regimes, or treatment 
with dual antiplatelet therapy for more prolonged durations. 
Machine learning risk models could support individualized clinical 
decision-making in this setting. Although many efforts are invested in 
developing, implementing, and refining ML models in medicine, there 
is still a lack of standards to evaluate those tools and safeguard patients 
against unintended consequences.32 Nevertheless, ML models can pro-
cess many variables, assimilate new data in real-time when linked with 
electronic hospital records, and continuously improve their predictive 
accuracy. Furthermore, imaging modalities, unstructured text, and 
other data carriers could be incorporated, something not currently 
possible with conventional methods.

Limitations
The current study has several limitations. First is the absence of data 
outside the e-ULTIMASTER study for external validation. However, a 
large number of patients, five-fold cross-validation, and random data 
split into derivation and test cohorts may partly address this limitation. 
Second, the e-ULTIMASTER registry did not capture data on optimal 
stent deployment or intravascular imaging that would provide import-
ant information about the tendency towards the development of TLF. 
The analysis did not include antithrombotic management of patients 
post PCI and secondary prevention, with the potential impact on sur-
vival and stent thrombosis with a consequent MI and TLR. However, 
these are modifiable factors that are not known when treatment deci-
sions are taken. The selection of predictors using only a GBC is another 
limitation as it could bias other models. However, the features of GBC 
are highly advantageous for this purpose, and the probability of bias is 
minimal. The LR produced better results than in many prior scores, in-
dicating that the key could be the selection of parameters. 
Furthermore, the analysis did not include other potentially advanta-
geous models such as the ‘random forest’ model, but this was carefully 
outweighed by the authors during the initiation phase of the study. 
Finally, this study encompassed patients with only one specific type of 
bioresorbable polymer drug-eluting stent, and therefore, a wider appli-
cation of these results to other stent platforms becomes questionable.

Conclusions
The ML-derived predictive models provided a reasonably accurate pre-
diction of 1-year TLF in an all-comer patient population undergoing 
PCI. A prospective evaluation of the predictive score is warranted, in-
cluding its external validation, to better understand the clinical implica-
tions of these findings.
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