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Oral mucosal melanomas (OMM) are aggressive cancers in dogs, and are good

models for human OMM. Gap junctions are composed of connexin units, which

may have altered expression patterns and/or subcellular localization in cancer cells.

Cell-to-cell communication by gap junctions is often impaired in cancer cells, including

in melanomas. Meanwhile, the upregulated expression of the gap junction protein

connexin 43 (Cx43) inhibits melanoma progression. The α-connexin carboxyl-terminal

(aCT1) peptide reportedly maintains Cx43 expression and cell-cell communication in

human mammary cells and increases the communication activity through gap junctions

in functional assays, therefore causing decreased cell proliferation. The Bowman-Birk

protease inhibitor (BBI), a component of soybeans, induces Cx43 expression in several

tumor cells as a trypsin–chymotrypsin inhibition function, with antineoplastic effects. This

study investigated the effect of aCT1 peptide and BBI treatment, alone or in combination,

on TLM1 canine melanoma cell viability. Cell viability after treatment with aCT1, the

reverse sequence peptide (R-pep), and/or BBI for 5 days was analyzed by PrestoBlue

assay. Immunofluorescence was used to observe Cx43 localization and expression.

aCT1 (200µM) alone did not significantly decrease cell viability in TLM1 cells, whereas

BBI (400µg/ml) alone significantly decreased the TLM1 viability. Combined treatment

with both aCT1 (200µM) and BBI (400µg/ml) significantly decreased cell viability in TLM1

cells. Cx43 expression, as identified by immunostainings in TLM1 cells, was increased

in the cell membrane after the combination treatment with BBI and aCT1. This dual

treatment can be combined to achieve the anticancer activity, possibly by increasing

Cx 43 expression and affecting Cx43 migration to the cell membrane. In conclusion, a

treatment strategy targeting Cx43 with BBI and aCT1 may possibly lead to new effective

therapies for canine OMM.
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INTRODUCTION

Melanoma is an aggressive skin andmucosal cancer that develops
from melanocytes. This tumor arises due to random genetic
mutations, and after themelanoma has spread, it rapidly becomes
life-threatening (1). In humans, the diagnosis of early-stage
melanomas can facilitate their cure by surgical resection, and
approximately 80% of cases are treated in this manner. However,
metastatic melanoma is largely refractory to the existing therapies
and has a very poor prognosis, being the survival rate for 5-
years lower than 15% of the cases (2). Therefore, new treatment
strategies are urgently needed. Continued research into more
effective therapies for melanoma will improve the treatment and
prognosis of these patients.

Canine oral and mucosal melanoma (OMM) are considered
good models of human OMM, because they share many
similarities including morphology, genetic alterations, and
behavior (3–6). OMM is one of the most common oral
malignancies in canines. OMM in dogs are considered extremely
aggressive tumors, with local invasiveness and high metastatic
propensity. The World Health Organization staging scheme for
dogs with OMM is based on the size of the tumors (7). MacEwen
et al. (8) correlated these stages with survival times. Stage I
tumors, with <2 cm diameter has a median survival after surgery
of 17 to 18 months. Stage II OMM are 2 to <4 cm in diameter
tumors, and the survival time is 5 to 6 months. In stage III
tumors of ≥4 cm in diameter and/or lymph node metastasis, the
median survival is 3 months. Stage IV dogs with OMM have
distant metastasis and the prognosis is very poor (9). Therefore,
some factors negatively affect the prognosis including the clinical
stage, tumor size, evidence of metastasis, and reported histologic
criteria for melanoma prognosis. Standardized treatments, such
as surgery, radiotherapy, and chemotherapy, have provided
minimal to modest stage-dependent clinical benefits, and death
in general occurs due to metastasis (9). Notably, most of the
medicines used in veterinary medicine are repurposed from
drugs indicated for human use and are not being developed
specifically for animals. Therefore, it is necessary to intensify
the research focus on veterinary oncology, simultaneously
testing possible therapeutic alternatives in animal studies and
human trials.

Teixeira et al. previously found that canine amelanotic OMM
present higher aggressive behavior than their melanotic OMM
counterparts (10). This finding could be partly explained by the
decreased expression of connexin 43 (Cx43), which probably
resulted in an impaired cell-to-cell communication capacity
and, consequently, greater cell proliferation. Regarding cell to
cell communication, the expression of connexins could be an
essential target factor in canine oral melanoma because Cx26 and
Cx43 were significantly reduced in amelanotic melanomas (10).

Connexins are integral membrane proteins that form gap
junctions or channels between adjacent cells, thereby permitting
the bidirectional cytosolic exchange of ions, metabolites, and
secondary messengers (<1,200 Da). These channels assemble
into distinct plasma membrane structures termed gap junctions,
and the intercellular communication at the gap junctions
play important roles in tissue homeostasis and the regulation

of cell growth and differentiation. Additionally, connexins
form functional channels (i.e., hemichannels) in the non-
junctional areas of the plasma membrane. These hemichannels
provide a communication pathway between the intracellular and
extracellularmilieu, critical for autocrine and paracrine signaling.
In addition, connexins present significant channel-independent
roles, including their function as signaling hubs; these may occur
at the plasmamembrane, in the cytoplasm, or even in the nucleus
(11). The connexin protein family in humans has 21 members, in
which Cx43, named because of its molecular weight of 43 kDa,
is the most extensively studied. Very few studies are available on
connexins in canine tissues. Cruciani and Mikalsen (12), found
the 18 “multi-specie” connexin genes (connexins 26,29/31.3, 30,
30.2/31.9, 30.3, 31, 31.1, 32, 36, 37, 39/40.1, 40, 43, 45, 44/46, 47,
50, and 57/62) in dogs. The expression of connexins in canine
cancers has been evaluated in mammary tumors (13–15), bone
tumors (16, 17) testes (18), and OMM (10).

Decreased or diminished expression and/or function of
connexins have been observed in most tumor cell lines and
solid tissue tumors, including melanomas (11). The role of gap
junctions in tumor progression has been studied mainly through
the ectopic reintroduction of connexin genes into tumor cell
lines. The expression patterns of Cx43 have been studied in
several cancer types in humans, and it varies depending on the
cancer type and stage (19). The ectopic expression of Cx43 has
been shown to reduce cell proliferation in many distinct cancer
cells, including in mouse melanoma cell lines (20).

The overexpression of Cx43 reduces the proliferative
and metastatic capacities of melanoma in mice (20), while
the suppression of Cx43 expression by miR-106a promotes
melanoma cell proliferation (21) in human-derived cells in in
vitro studies. Furthermore, Cx43 upregulation is potentially able
to inhibit melanoma progression in mice, as shown in an in
vivo study (22). Therefore, the regulation of Cx43 expression
may lead to the developing of an effective treatment strategy for
melanomas; scientific evidence suggests that connexins could be
an important therapeutic target (11, 19, 23–30).

The alpha-connexin carboxyl-terminal (aCT1) peptide is a
25-amino acid peptide that mimics the carboxyl-terminal of
Cx43. At the molecular level, the aCT1 peptide inhibits the
activity of Cx43 hemichannels by inducing their sequestration
from the perinexus region surrounding the gap junctions, thereby
reducing hemichannel density and availability for activation
within the cell membrane (31). The aCT1 peptide is expected
to clinically improve postsurgical scarring (32). Grek et al.
suggested that using aCT1 peptide for targeting the gap
junctional distribution and activity of Cx43 is an effective
therapeutic strategy in human breast cancer. Furthermore,
they demonstrated that aCT1 peptide enhances the activity
of therapies like tamoxifen and lapatinib, thereby supporting
the clinical potential of combinational strategies, including the
modulation of Cx43 by the aCT1 peptide (33). In addition,
Murphy et al. (34) indicated that combining aCT1 with
temozolomide, an antineoplastic agent, could enhance the
therapeutic responses in human glioblastoma cell lines. These
findings suggest the possibility of a Cx43 targeting therapy,
using aCT1.
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Protease inhibitors are known cancer chemopreventive
agents, because of their well-established in vivo and in vitro
anti-carcinogenic activity in cancer models (35). The Bowman-
Birk inhibitor (BBI) is the most predominant protease inhibitor
in soybeans. It consists of a 71-amino acid protein (8 kDa),
and a serine protease inhibitor, which has both trypsin
and chymotrypsin inhibitory activities (36). BBI is a small
water-soluble protein that is present in soybean and almost
all monocotyledonous and dicotyledonous seeds, and BBI
decreases the proteolytic activities of trypsin, chymotrypsin,
elastase, cathepsin G, chymase, serine protease-dependent
matrix metalloproteinases, urokinase protein activator, mitogen-
activated protein kinase, and phosphoinositide 3 kinase (PI3K),
and upregulates Cx43 expression. BBI was found to be an
efficient suppressor of carcinogenesis (37). BBI has cancer-
protective activities, although its exact mechanism(s) of action is
incompletely understood. In previous studies, it was shown that
Cx43 induction by BBI contributes to the decreased growth of
tumor cells, both in vivo and in vitro (38, 39).

Therefore, we aimed to investigate the effect of aCT1 peptide
and BBI on canine OMM cell viability and evaluate the usefulness
of a Cx43-targeting strategy for the treatment of this cancer
in dogs.

MATERIALS AND METHODS

Ethical Statement
The study was submitted and approved by the Committee on
Ethics on the Use of Animals (CEUA) of the School of Veterinary

Medicine and Animal Science of the University of São Paulo,
under protocol number 6968020817.

Reagents
The aCT1 peptide and its reverse sequence peptide (R-pep) were
synthesized by the American Peptide Company (Sunnyvale, CA).
The aCT1 peptide is a short sequence at the Cx43 C-terminus,
and this is linked to an antennapedia internalization sequence
(RQPKIWFPNRRKPWKKRPRPDDLEI). The antennapedia
internalization peptide sequence is RQPKIWFPNRRKPWKK.
The R-pep sequence consists of the reverse sequence of aCT1
attached to an antennapedia sequence for internalization (33).

BBI was obtained from Sigma-Aldrich (#T9777, St. Louis,
MO). All culture reagents were purchased from Thermo Fisher
Scientific (Waltham, MA), unless otherwise indicated. The
primary antibody, Purified Mouse Anti-Connexin 43, was
purchased from BD Transduction Laboratories (#610061, San
Jose, CA). The secondary antibody, Goat anti-mouse IgG (H+L)
linked to Alexa fluor 488, was purchased from Invitrogen
(#A28175, Waltham, MA).

Cell Lines
The TLM1 canine oral melanoma cell line was kindly supplied
by Dr. Jaime F. Modiano, VMD, PhD (University of Minnesota,
Minneapolis, USA). The TLM1 cells originated from a canine
(Gordon setter) oral melanoma. The cell lines were grown
in Dulbecco’s Modified Eagle Medium (DMEM, #12800-058)
supplemented with 10% fetal bovine serum (FBS) and 1%

FIGURE 1 | Scheme of TLM1 cells treatment with aCT1, BBI, BBI+R-pep, and BBI+aCT1, R-prep or control.
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Antibiotic–Antimycotic at 37◦C in a humidified atmosphere with
5% CO2.

Cell Viability Assay
Cells (2 × 103 cells/well) were seeded in culture plates with
96 wells with DMEM, containing 1% FBS, and cultured
for 1 day. After incubation with each of the treatment
reagents (i.e., Control, R-pep, aCT1, BBI, BBI+R-pep, and
BBI+aCT1) for 5 days, cell viability was determined using
PrestoBlueTM Cell Viability reagent (#A13261, Thermo
Fisher Scientific). Non-toxic resazurin in the PrestoBlue
was converted to red-fluorescent dye within viable cells. The
fluorescence at 570 nm was measured using a microplate
reader (Figure 1).

Immunofluorescence
In a 24-well plate, round coverslips of 12-mm diameter were
placed in each well and prepared by irradiation using ultraviolet
light for 15min. Each cell line (1 × 105 cells/well) was seeded
in the plate with DMEM, containing 1% FBS, and cultured
at 37◦C in a humidified atmosphere with 5% CO2 for a
day. Following the removal of the culture medium, 0.5ml
DMEM, containing aCT1 peptide or R-pep and/or BBI was
added, and the plate was incubated at 37◦C for 3 days. After
washing with phosphate-buffered saline (PBS) two times, the
cells were fixed by 0.5ml 4% paraformaldehyde solution for
40min at 4◦C. The fixed cell samples were permeabilized
with PBS with Tween 20 (PBS-T), 0.1% Triton X-100 and 5%
Skim milk dissolved in PBS, for 30min at room temperature
(RT). Then, 100 µl/well of primary antibody solution (1:100
dissolved in PBS-T) was added to the cell sample. After
leaving at 4◦C overnight, PBS wash was undertaken three
times. 100 µl/well of the secondary antibody solution (1:100
dissolved in PBS-T) was added to the cell sample. After leaving

FIGURE 2 | Effect of aCT1 peptide on cell viability in TLM1 cells. The cells

were treated with 200µM aCT1 or the reverse sequence peptide (R-pep) for 5

days. Cell viability was evaluated by a PrestoBlue assay. Columns represent

means ± standard deviations (n = 5).

it at RT for 1.5 h in the dark, PBS wash was done three
times. VECTASHIELD Antifade Mounting Medium with DAPI
(#H1200, Vector Laboratories, Burlingame, CA) was dropped
on each glass slide, and coverslips were placed on it. The
slides were left overnight at 4◦C in the dark to dye the cells
with DAPI. Fluorescence microscopy, using ECLIPSE E800
(Nikon, Japan) with a setting of 40× lens, was undertaken, and
stained cytoplasmic membranes and nuclei were imaged (.jpeg),
and the resulting images were merged using Image J software
(Bethesda, MD).

FIGURE 3 | Effect of BBI on cell viability in TLM1 cells. The cells were treated

with indicated concentrations of BBI for 5 days. Cell viability was evaluated by

a PrestoBlue assay. Columns represent means ± standard deviations (n = 6).

**p < 0.01 vs. 0µg/ml, using Dunnett’s test.

FIGURE 4 | Effect of combination treatment of BBI and aCT1 peptide on cell

viability in TLM1 cells. The cells were treated with 400µg/ml BBI and 200µM

aCT1 (or R-pep) for 5 days. Cell viability was evaluated by a PrestoBlue assay.

Columns represent means ± standard deviations (n = 6). *p < 0.05, **p <

0.01, ***p < 0.001, using Tukey’s test.

Frontiers in Veterinary Science | www.frontiersin.org 4 June 2021 | Volume 8 | Article 670451

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Sato et al. aCT1 and BBI Inhibit Melanoma

Statistical Analysis
Differences in group means were analyzed by one-way analysis
of variance (ANOVA) followed by Tukey’s test or Dunnett’s.
The GraphPad Prism 6 (GraphPad Software Inc., San Diego,
CA, USA) was used for these calculations. P-values < 0.05 were
considered significant.

RESULTS

The effects of aCT1 and R-pep on cell viability in TLM1 cells were
evaluated. Vehicle (water) was used to treat the control group. As
shown in Figure 2, aCT1 peptide alone, or the R-prep, showed no
effect on cell viability in TLM1 cells.

FIGURE 5 | Cx43 expression after BBI and aCT1 peptide treatment in TLM1 cells. Cx43 plaques seen as green dots in the membrane of TLM1 cells submitted to

treatment with 400µg/ml BBI and 200µM aCT1 peptide (or R-pep) for 3 days.
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The effects of different concentrations of BBI (0, 200, and
400µg/ml) on cell viability in TLM1 cells were evaluated.
As shown in Figure 3, 400µg/ml BBI treatment significantly
decreased cell viability in TLM1 cells.

Subsequently, the effects of combination treatment with
BBI and aCT1 or R-pep were evaluated. As shown in
Figure 4, combination treatment with BBI and aCT1 significantly
decreased cell viability compared with combination BBI and
R-pep treatment in the TLM1 cells.

Immunofluorescence was carried out to compare the Cx43
localization in BBI and aCT1 treated cells with BBI and R-pep
treated cells. As shown in Figure 5, combination treatment with
BBI and aCT1 increased Cx43 expression compared with the
combination treatment of BBI and R-pep in the cell membrane
in the TLM1 cells, and a strong positivity to connexins was seen
in the cell membranes.

DISCUSSION

Cell viability assays were carried out to evaluate the effects of
aCT1 peptide in canine OMM TLM1 cells by treating them with
200µM aCT1 peptide or R-pep. aCT1 peptide alone showed no
effect on cell viability in the TLM1 cells. Additionally, we pre-
tested the different treatment periods (2–4 days) of the peptide,
and there were no significant differences on the cell viability
(data not shown). An assay tested different concentrations of
aCT1 peptide (0–400µM), but the outcomes were similar to
Figure 1 (data not shown). It is reported that aCT1 peptide
(200µM) inhibited human breast cancer cell proliferation in
an in vitro study (33). The effect of aCT1 peptide may depend
on the cell types. Murphy et al. (34) have also reported the
possibility that different effects of aCT1 are shown in several
cell lines. It was thought that in the absence of or with minimal
Cx43 expression in the cell membrane, the aCT1 peptide could
not exert its effect. In this context, Alaga et al. (40) revealed
that Cx43 was detected in intracellular compartments, but not
assembled in the gap junctions, and they suggested that the
melanocytes do not form the Cx43 homocellular gap junctions.
Although Cx43 levels increase during melanoma progression,
connexin rarely assembles in gap junction structures (40).
Therefore, we focused on a component, BBI, which may induce
Cx43 expression.

BBI induced the expression of Cx43 genes in mice with
M5076 ovarian tumor and decreased the tumor growth in this
in vivo model (38). A similar effect of BBI was demonstrated
in an osteosarcoma cell line (39). Tang et al. reported that
treatment of prostate cancer cells (LNCaP) with 500µg/ml BBI
resulted in the inhibition of viability as measured in WST-1
assays, with the induction of Cx43 and expression of cleaved
caspase-3 protein (41).

As shown in Figure 2, BBI treatment decreased cell viability
in TLM1 cells at a pharmacological concentration (400µg/ml).
The mechanism has not been elucidated in detail in this study;
however, it is known that BBI might improve the cell-to-
cell communication because of its trypsin and chymotrypsin
inhibitory activities. Furthermore, BBI has implications for

Cx43 expression and induces apoptosis via factors such
as a VEGF secretion inhibitory effect (42), besides the
mitochondrial impairment and oxidative damage following
proteasome 20S inhibition (43). These are reasons why BBI has
been shown to have strong anti-carcinogenic activity in animal
carcinogenesis model systems compared to other potential cancer
chemopreventive agents in soybeans (44). Interestingly, a phase
II clinical trial in patients with oral leukoplakia demonstrated a
dose-dependent reduction in the oral lesion size after a 1-month
treatment with BBI concentrates at doses of up to 1,066 CI units
(45), and BBI is expected to prevent oral cancer (46). These
findings have a potential for application in the development of
new oral melanoma therapies.

Notably, as shown in Figure 3, the suppression effect
of cell viability through the combination treatment of
BBI and aCT1 peptide in TLM1 cells was remarkable.
Moreover, immunofluorescence staining demonstrated that
the combination treatment of BBI and aCT1 peptide induced
a high expression of Cx43 in the cell membrane in TLM1
cells (Figure 4). These results indicate that Cx43 is important
for canine OMM cell growth. Overall, the possibility of an
enhancement effect of anticancer drugs by aCT1 peptide was
emphasized similarly as in previous reports (33, 34); although
further studies are needed to validate this finding. A finding
that resveratrol enhances chemosensitivity in mouse melanoma
model through Cx43 upregulation (47) supports this suggestion.
Thus, Cx43 may influence the response of tumor cells to cancer
therapies by facilitating the spread of antitumor drugs or death
signals between neighboring tumor cells.

In conclusion, the findings of this study suggest that Cx43
upregulation may be useful for OMM treatment and warrants
further research.

CONCLUSIONS

In this study, it has been shown, for the first time, that the
combined treatment with aCT1 peptide and BBI decreases cell
viability in TLM1 canine melanoma cell line, which can possibly
be used as a new therapy for canine oral melanomas.
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