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Background: Prediction of the severity of COVID-19 at its onset is important for providing
adequate and timely management to reduce mortality.

Objective: To study the prognostic value of damage parameters and cytokines as
predictors of severity of COVID-19 using an extensive immunologic profiling and unbiased
artificial intelligence methods.

Methods: Sixty hospitalized COVID-19 patients (30 moderate and 30 severe) and 17
healthy controls were included in the study. The damage indicators high mobility group
box 1 (HMGB1), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine
aminotransferase (ALT), extensive biochemical analyses, a panel of 47 cytokines and
chemokines were analyzed at weeks 1, 2 and 7 along with clinical complaints and CT
scans of the lungs. Unbiased artificial intelligence (AI) methods (logistic regression and
Support Vector Machine and Random Forest algorithms) were applied to investigate the
contribution of each parameter to prediction of the severity of the disease.

Results:On admission, the severely ill patients had significantly higher levels of LDH, IL-6,
monokine induced by gamma interferon (MIG), D-dimer, fibrinogen, glucose than the
patients with moderate disease. The levels of macrophage derived cytokine (MDC) were
lower in severely ill patients. Based on artificial intelligence analysis, eight parameters
(creatinine, glucose, monocyte number, fibrinogen, MDC, MIG, C-reactive protein (CRP)
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and IL-6 have been identified that could predict with an accuracy of 83−87% whether the
patient will develop severe disease.

Conclusion: This study identifies the prognostic factors and provides a methodology for
making prediction for COVID-19 patients based on widely accepted biomarkers that can
be measured in most conventional clinical laboratories worldwide.
Keywords: COVID-19, prediction models, artificial intelligence, IL-6, macrophage derived cytokine
INTRODUCTION

The recent emergence of a novel, pathogenic SARS-coronavirus 2
(SARS-CoV-2) in China and its rapid spread caused a global
COVID-19 pandemic affecting more than 165 million people
worldwide. SARS-CoV-2 infects host cells by binding to
angiotensin-converting enzyme 2 (ACE-2) receptor primed by
host transmembrane serine protease 2 (TMPRSS2), a multidomain
type II transmembrane serine protease of the hepsin/TMPRSS
subfamily (1). After passing the initial replication stage, SARS-
CoV-2 causes a disease of varied severity. The disease varies from
an asymptomatic condition in children, teenagers and young
adults to a severe, lethal disease in the elderly (2). COVID-19
infection in a susceptible person can cause hyperinflammatory
syndrome induced by the inappropriate triggering of danger
sensing accompanied by cytokines and chemokines release,
complement activation, and potentially life-threatening failure
of respiratory, renal and hepatic systems, which can lead to
death (3–7).

Importantly, 14−17% of COVID-19 patients develop a severe
form of the disease requiring oxygen support and admission to the
intensive care unit (ICU) (8–10). Underlying medical conditions
such as diabetes, chronic cardiac diseases, chronic kidney diseases
and obesity contribute to the severity of COVID-19 (11, 12).
Moreover, it was recently shown that genetic factors could
predispose to severe disease, including DNA polymorphisms in
ACE2, TMPRSS2 (13) or HLA-I genotype (14). The COVID
Human Genetic Effort has identified mutations in the type I
interferon (IFN) pathway that may account for 14% of severe
COVID-19 cases (2). In this regard, production of type I IFN is
defective in severe COVID-19 patients (15). However, the severity
of the disease in a large group of patients cannot be explained only
by genetic predisposition. Various combinations of inflammatory
cytokines and biochemical factors have been shown to be typical in
more severe COVID-19. For example, IL-6, CRP and Krebs von
den Lungen-6 (KL-6) together have been shown to be indicators of
the severity of COVID-19 (16). Patients admitted to ICU had
higher levels of IL-6, CRP and procalcitonin (17). Moreover, in
severe cases, lymphopenia and higher levels of ALT, LDH, CRP,
ferritin and D-dimer have been detected, as well as higher levels of
IL-6, IL-10, IL-2RA and TNF-a (2).

Prediction of the severity of COVID-19 at its onset is
important for providing adequate and timely management to
reduce mortality. A combination of cytokines has been shown by
using unsupervised principal component analysis to predict
different degrees of severity of COVID-19. That analysis has
org 2
shown the key roles of TNF-a, IL-6, IL-8, IL-1b and type I IFNs
in patients undergoing extracorporeal membrane oxygenation
(ECMO) (18). Notably, less seriously affected patients have been
characterized by a type I IFN response, with increased IFN-a and
IFN-b (18). That finding reconfirmed earlier studies showing
that inborn errors in type I IFN response could underlie the
lethality COVID-19 (19). Moreover, a combination of factors has
been shown to be predictive of increased mortality. Laguna-Goya
et al. have demonstrated that high IL-6, CRP, LDH, ferritin,
D-dimer, neutrophil count, and neutrophil-to-lymphocyte ratio
are all predictive of mortality (20). When a machine learning-
based model was applied, CRP, age, LDH, ferritin and IL-10
turned out to be predictors of COVID-19 related mortality (21).

Severely ill COVID-19 patients often develop multiorgan
damage, including in liver (22), kidney (23) and heart (24); this
damage was associated with coagulation abnormalities and
thrombosis (25). It is well known that virally infected or dying
cells emit endogenous damage-associated molecular pattern
molecules (DAMPs), which serve as danger signals. These
molecules have non-immunological functions inside viable cells
but their emission by dead or damaged cells triggers an immune
response (26). HMGB1, one of the most extensively studied
DAMPs, is correlated with the severity of tissue damage in
patients with numerous lung disorders, including severe
pneumonia (27). In a recent study, COVID-19 patients admitted
to ICU had higher levels of HMGB1 compared to healthy controls
(28). Several other damage molecules, such as LDH, AST and ALT,
are often associated with multiorgan damage and might be used to
estimate the severity of COVID-19 infection (29). However, it is
difficult to predict disease severity in a large group of patients, and a
more complex multifactorial analysis and prediction methods are
needed to predict the development of severe disease upon
hospitalization in order to initiate early treatment and possibly
achieve better outcomes. Therefore, in the current study, we
examined tissue damage markers such as HMGB1, LDH, AST,
ALT and blood coagulation parameters, in combination with the
profile of 47 cytokines, and analyzed them by unbiased machine
learning methods (Logistic Regression, Support Vector Machine
and Random Forest) to identify a combination of factors that could
help to predict severe COVID-19.

Machine learning algorithms are widely used in medicine,
including the study of COVID-19 (30). Recent studies using
machine learning are devoted to assessing disease severity in
COVID-19 patients based on blood and urine tests (31),
determination of cytokine profiles associated with the severity
and mortality of patients with COVID-19 (18), development of
August 2021 | Volume 12 | Article 715072
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prognostic models for predicting mortality of patients with
COVID-19 (32, 33), analysis of chest computed tomography
(CT) scans (34), identification of novel drug candidates against
COVID-19 (35), and many others. In this study we investigated
the possibility of predicting the severity of COVID-19 by using
cytokines/blood test data. To solve the binary classification
problem, we built a logistic regression model, named Support
Vector Machine and Random Forest, which is widely used to
construct clinical prediction models (36–38).
METHODS

Patients
This prospective study was performed at the University Clinic of
Privolzhsky Research Medical University, Nizhny Novgorod,
Russia. It was conducted in accordance with the Declaration of
Frontiers in Immunology | www.frontiersin.org 3
Helsinki and approved by the local ethics committee of Nizhny
Novgorod State University. Male and female patients aged 18−
85 years old were included in the study on day 1−3 of
hospitalization. All participating patients provided written,
informed consent. Pregnant women and patients with severe
immunodeficiency were excluded. Only hospitalized patients in
whom the presence of SARS-CoV-2 in pharyngeal swabs was
determined by real-time reverse-transcription polymerase chain
reaction (RT-PCR). Between May 2020 and August 2020, 60
COVID-19 patients were enrolled. The healthy controls (n=17)
were contact patients, who had no complaints and were tested
negative by an antigen RT-PCR test. The demographic
characteristics of the patients are provided in Table 1. The
diagnosis of COVID-19 and treatment were made according to
the Ministry of Health of Russian Federation “Temporary
guidelines on the prevention, diagnosis and treatment of
COVID-19” version 7.0 (39). The patients were separated into
TABLE 1 | Demographics and baseline characteristics of patients included in the study.

Demographic characteristics Controls Moderate Severe p -value

(n = 17 ) (n = 30) (n = 30)
Age, years 54,7 ± 19,7 47,7 ± 16,2 59,1 ± 15,9 0,0445*
Gender 7M/10F 7M/23F 11M/19F
Body mass index 25,09 ± 3,6 27,8 ± 4,7 31,6 ± 4,9 0,0228*, 0,0001#

SpO2 at admission (%) 97 ± 1,5 95 ± 1,9 89,9 ± 5,3 <0,0001*, <0,0001#

Respiratory rate (breaths per min) 18 ± 2 20 ± 2 25 ± 6 <0,0001*, <0,0001#

Before admission to the hospital, days 0 9,1 ± 6 9 ± 3,6 ns
Admission to the ICU, days 0 0 15
Oxygen support (n,%) 0 (0) 0 (0) 15 (50%)
Deaths (n,%) 0 (0) 0 (0) 4 (13%)
Symptoms at admission
Fever (n,%)
>38°C 0 (0) 17 (56%) 22 (73%)
<38°C 0 (0) 4 (13%) 1 (3%)
Cough (n,%) 0 (0) 19 (63%) 16 (53%)
Fatigue (n,%) 0 (0) 24 (80%) 25 (83%)
Shortness of breath (n,%) 0 (0) 16 (53%) 23 (76%)
Anosmia (n,%) 0 (0) 17 (56%) 9 (30%)
Chest pain (n,%) 0 (0) 14 (46%) 12 (40%)
Headache (n,%) 0 (0) 16 (53%) 12 (40%)
Myalgia (n,%) 0 (0) 10 (33%) 8 (26%)
Rhinorrhea (n,%) 0 (0) 7 (23%) 10 (33%)
Throat pain (n,%) 0 (0) 6 (20%) 6 (20%)
Diarrhea (n,%) 0 (0) 5 (16%) 6 (20%)
Hemoptysis (n,%) 0 (0) 1 (3%) 0 (0%)
Comorbidity
Any comorbidity (n,%) 7 (41%) 18 (60%) 25 (83%)
Hypertension (n,%) 4 (23%) 16 (53%) 24 (80%)
Diabetes (n,%) 1 (6%) 1 (3%) 13 (43%)
Cardiovascular disease (n,%) 3 (17%) 4 (13%) 14 (46%)
Malignancy (n,%) 0 (0) 4 (13%) 5 (16%)
Stroke (n,%) 0 (0) 1 (3%) 3 (10%)
Chronic lung diseases (n,%) 0 (0) 2 (6%) 2 (6%)
Arrhythmia (n,%) 0 (0) 4 (13%) 1 (3%)
Rheumatoid arthritis (n,%) 1 (6%) 0 (0%) 1 (3%)
Smoking (n,%) 1 (6%) 1 (3%) 0 (0%)
August 2021
*between moderate and severe, #between controls and severe.
The information on the patients included in the study is provided. The number (n) of the patients in each group is provided with description of their symptoms at admission and
comorbidities. For demographic characteristics data are presented as median ± standard deviation. P values comparing the groups of healthy controls, moderate and severe cases are
produced by comparison of the data for normal (Gaussian) distribution (alpha = 0.05) using D’Agostino & Pearson test. The normally distributed data were analyzed by the one-way ANOVA
with Dunnett’s multiple comparisons test. The data, which were not normally distributed, were analyzed by an ANOVA Kruskal-Wallis test with Dunn’s test for multiple comparisons,
ns stands for nonsignificantly different values.
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two groups according to the severity of pulmonary involvement
and the need for oxygen support. Oxygen was supplied through
masks but four patients were mechanically ventilated. Peripheral
blood samples were taken on the day of hospitalization, during
the second week, and in some cases during week seven. The
control group was represented by healthy volunteers of the
corresponding age without acute viral infection.

Cytokine Analysis
Peripheral blood samples were collected in weeks 1, 2 and 7 by
venous puncture and sera were stored at −80°C until analysis of
cytokines. The analysis was performed on serum in which there
was no hemolysis. The sera were thawed, spun (3000 rpm,
10 min) to remove debris and incubated with antibody-
immobilized beads overnight at 2−8°C. Assays were run
according to the manufacturer’s instructions using a human
cytokine/chemokine/growth factor 47-plex panel and a
Millipore kit for Luminex (Merck KGaA, Darmstadt,
Germany). The following were analyzed: sCD40L, epidermal
growth factor (EGF), eotaxin, fibroblast growth factor 2
(FGF-2), Fms-related tyrosine kinase 3 ligand (FLT-3L), fractalkine,
granulocyte colony-stimulating factor (G-CSF), granulocyte-
macrophage colony-stimulating factor (GM-CSF), growth-regulated
oncogene) - alpha (GRO-a), IFN-a2, IFN-g, IL-1a, IL-1b, IL-1RA,
IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p40), IL-12
(p70), IL-13, IL-15, IL-17A, IL-17E/IL-25, IL-17F, IL-18, IL-22, IL-27,
IP-10, monocyte chemoattractant-1 (MCP-1), MCP-3, macrophage
colony-stimulating factor (M-CSF), MDC, MIG, macrophage
inflammatory protein 1a (MIP-1a), MIP-1b, platelet-derived
growth factor (PDGF-AA), PDGF-AB/BB, TGF-a, tumor
necrosis factor (TNF-a), TNF-b, vascular endothelial growth
factor (VEGF-A). Measurements and data analyses were
performed using the standard set of programs Magpix (Milliplex
MAP). Serum LDH activity was analyzed using a kinetics method
according to the manufacturer’s instructions (DDS in vitro
Solutions, Pushchino, Russia).

Biochemical studies (glucose, creatinine, C-reactive protein,
AST, ALT) were performed on an Indiko automatic biochemical
analyzer (ТhermoScientific, Finland) using the manufacturer’s
reagents. Control materials were produced by RANDOX
(Randox Laboratories, UK). Coagulation parameters
(fibrinogen, D-dimer) were analyzed on coagulation analyzer
ACL TOP 500 (Instrumentation Laboratory, USA) using the
manufacturer’s reagents.

HMGB1 Analysis
Serum HMGB1 was assayed by using an ELISA kit according to the
manufacturer’s instructions (IBL International, Hamburg, Germany).

Dataset and Pre-Processing for Building
AI Models
To build prediction models for COVID-19 severity, we
considered 30 moderate and 30 severe cases. We chose only 19
cytokines and blood markers (MDC, glucose, creatinine,
fibrinogen, CRP, IL-6, TNF-a, IL-8, MIP-1b, IL-18, MIG, IP-
10, ALT, LDH, APTT, D-dimer, HMGB1, neutrophil counts,
monocyte counts) for which the differences between controls and
Frontiers in Immunology | www.frontiersin.org 4
patients and/or between severe and moderate were statistically
significant. We focused on the results of cytokines/blood tests
carried out during the first days after hospitalization (week 1).

The resulting dataset was pre-processed for use of machine
learning algorithms. The missing values were replaced with the
average value for the respective group. Since most algorithms
depend on data scaling, the data were normalized by z-score
normalization, also known as standardization. The values of each
attribute were transformed using the following formula X 0 = x−m

s ,
where µ and s are the mean and the standard deviation of the
feature values, respectively. To solve the problem of binary
classification, patients with a moderate course of COVID-19 were
assigned to class 0, and those who had severe disease to class 1.

Prediction Algorithms
We used three classification algorithms to predict the severity of
COVID-19. Logistic regression is a model in which the response
is a categorical variable denoting a patient class (40). Logistic
regression using a logistic function allows estimation of the
probability of a binary response based on predictor variables.

Support Vector Machine, and in particular Support Vector
Classifier, is an algorithm based on finding a hyperplane in a
feature space that best separates data points belonging to
different classes (41). The aim is to define the optimal
hyperplane that has the maximum margin, i.e., the maximum
distance between data points in the two classes. Margin
maximization is performed so that future data points can be
classified with more confidence.

Random forest is an ensemble of concurrently trained
independent decision trees (42). Each individual tree from the
ensemble predicts the class of a patient, and then the class with
the most votes becomes the prediction of the Random Forest
Classifier. Decision tree is a tree-structured classifier in which
nodes represent certain decision rules, which allows splitting the
feature space into parallelepipeds containing objects of only one
class (43).

A cross-validation approach was used to select the model
hyperparameters (the regularization parameter in logistic
regression and support vector machine models, as well as the
number of decision trees in random forest). Since the dataset is
small and there is no way to divide it into two independent
datasets for training and testing, then the cross-validation was
used to develop predictive models and measure their
performance. In particular, we used leave-one-out cross-
validation approach, which is preferred for small datasets:
machine learning algorithms are trained N times on N - 1
objects from the sample and then tested on the remaining one.
Here, N is the total number of considered objects in the sample.
The final performance measure is defined as the average of the
values computed for each partition. The prediction abilities of
the models were compared using the classification accuracy
(ratio of true predictions to all predictions).

The above algorithms were implemented using Python v3.7.5
and scikit-learn package v0.23.1. The data were visualized by
principal component analysis performed using R v4.0.2 with the
prcomp function from stats package and fviz_pca_biplot function
from factoextra package. Principal component analysis is a
August 2021 | Volume 12 | Article 715072
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technique used to identify strong patterns in a dataset and
transform high-dimensional data to low-dimensional data (2D
or 3D) so that it can be visualized easily (44). The new subspace is
defined to maximize data variability in the orthogonal projection
onto the subspace.

Most Important Feature Selection
An advantage of the classification algorithms adopted here is that
they quantify the importance of features. The larger this number,
the greater the influence of the marker on the prediction of the
target variable. If there is an evaluator that assigns weights to
features, we can perform recursive features selection in order to
leave the most significant markers. Additionally, the removal of
some features from consideration can improve the classification
accuracy. We used the recursive feature elimination strategy
(RFE function from scikit-learn Python package) together with
each classifier to eliminate the redundant features and to select
the most important ones.

Statistical Analysis
P values comparing moderate to severe cases are produced by
comparison of the data between the two groups for normal
(Gaussian) distribution (alpha = 0.05) using D’Agostino &
Pearson test for the demographics and baseline characteristics
of patients. The normally distributed data were analyzed by the
unpaired parametric test, while unpaired non-parametric data
were analyzed by Mann-Whiney test. The levels of inflammatory
mediators, damage parameters and biochemical parameters in
the sera of patients (severe, moderate and healthy controls) were
analyzed by one-way ANOVA and Kruskal-Wallis test for
multiple comparisons. The significance of the p-values are as
follows: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
Following analysis for Gaussian distribution, Pearson correlation
coefficient and two-tailed p values were calculated for the
selected datasets using GraphPad Prism 9.0.
RESULTS

Characteristics of the Patients
All the patients in the study were hospitalized with COVID-19.
The diagnosis ofCOVID-19 and treatmentweremade according to
the Ministry of Health of Russian Federation “Temporary
guidelines on the prevention, diagnosis and treatment of COVID-
19” version 7.0” (39). Their demographic characteristics are
summarized in Table 1. The most common complaints were high
fever, cough, muscle weakness, shortness of breath, anosmia, chest
pain, headache, and muscle ache. Less common were throat pain
and diarrhea. The patients were hospitalized for amedian of 9.1 ± 6
days to 9 ± 3.6 days for severely and moderately ill patients,
respectively. At admission, severely ill patients had a higher
breathing rate than patients with moderate COVID-19.
Peripheral capillary oxygen saturation (SpO2) reached 95.2 ±
1.9% in moderate cases and was lower in severe cases (89.9 ±
5.3%). Fifteen patients with severe COVID-19 received non-
invasive oxygen support, while those with a moderate form of the
disease did not require oxygen support.
Frontiers in Immunology | www.frontiersin.org 5
Lung damage as assessed by computed tomography reached
more than 75% in 27 out of 30 severely ill patients, and two more
patients progressed to 75% lung damage in week two. One
patient had 50% lung damage. Only 10% of the patients with
moderate COVID-19 had 75% lung damage, 27% had about
25%, and in 63% lung damage exceeded 25%. Lesion volume in
both lungs was scored on a semi-quantitative scale according the
to the Russian national guidelines (45, 46) from CT-0 to CT-4
with a 25% step (CT-0: 0%, CT-1: 25%, CT-2: 50%, CT-3: 75%,
CT-4: 100%). Half of the severely affected patients were admitted
to the ICU for 9 ± 3.6 days. All four deceased patients were
mechanically ventilated and died from acute respiratory distress
syndrome and endotoxic shock.

Most of the severely affected COVID-19 patients had
comorbidities (80%). The most common comorbidities in
severely ill patients were arterial hypertension (80%), diabetes
(43%), malignancy (16%), and chronic lung diseases (6.6%).
However, only 60% of the moderate cases had comorbidities, and
the most common was arterial hypertension (53%, Table 1). All
patients had pneumonia with typical ground glass opacities in
computed tomography (CT) scans of the lungs. Thromboembolic
events occurred in 56% of the patients with severe disease but in
only 16% of patients with moderate disease.

Inflammatory Markers
The cytokine and chemokine levels were analyzed in serum of
patients at admission, two weeks after admission, and in week
seven. In agreement with previously published studies (17, 47–
49), we observed a hyperinflammatory syndrome in severe cases,
which required oxygen support. In serum of patients with severe
COVID-19, the levels of IL-6, MIG, TNF-a, IL-8, IL-18 and IP-
10 were higher than in the healthy controls (Figures 1A–G),
while in moderate disease only the levels of IL-18, IL-8 and IP-10
were higher. At hospital admission, only three cytokines were
different between the severe and moderate groups, namely IL-6,
MIG andMDC. IL-6, a cytokine that was attributed mostly to the
cytokine storm (48), was significantly increased in severe cases in
weeks 1 and 2, while patients with a moderate form of the disease
did not show an increase in IL-6 levels (Figure 1A). In week 1,
MIG was lower in severely ill patients than in patients with
moderate disease (Figure 1E). MDC was significantly lower in
severe than in moderate disease in weeks 1 and 2. TNF-a levels
were strongly increased in moderate and severe disease in week 1,
but in week 7 it was at the detection limit. MIP-1b significantly
increased in week 2 in both moderate and severe disease. IL-8 and
IL-18were increased inmoderate and severe disease duringweeks 1
and 2, but the levelswere normalized inweek 7. IP-10was increased
in both severe and moderate disease in week 1, it was higher in
moderatedisease inweek1, andnormalized starting fromweek2. In
severe cases, the IP-10 levels remained high inweek 2 but byweek 7
it diminished to control values (Figure 1B).

IL-17 levels were not different between the two severity
groups, with the exception of two patients with severe disease
in whom IL-17 increased in week 2 and remained elevated in
week 7 (Figure 1H).

Thus, the severely sick patients had higher levels of TNF-a,
IL-6, IL-8, IL-18, MIG and IP-10 than the healthy controls, while
August 2021 | Volume 12 | Article 715072
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A B C

D E F

G H I

FIGURE 1 | The levels of inflammatory mediators IL-6 (A), IP-10 (B), IL-8 (C), MIP-1b (D), MIG (E), IL-18 (F), TNF-a (G), IL-17F (H) and MDC (I) in the sera of
patients with moderate or severe COVID-19. Cytokines were analyzed in healthy controls (n = 17) and in moderate or severe COVID-19 cases in week 1 (W1), week
2 (W2) and week 7 (W7) by Luminex. The data from moderate COVID-19 cases in W1 (n = 30), W2 (n = 18) and W7 (n = 13), and in severe cases in W1 (n = 29),
W2 (n = 15) and W7 (n = 8) are presented as scatter plots of each individual value with a line at the median. The data were analyzed by one-way ANOVA and
Kruskal-Wallis test for multiple comparisons. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
Frontiers in Immunology | www.frontiersin.org August 2021 | Volume 12 | Article 7150726
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in patients with moderate disease only IL-8, IP-10 and IL-18
were significantly higher than in healthy controls. In both groups,
the cytokine levels returned to control levels by week 7.
Noteworthy is that the levels of 18 of the 47 cytokines tested
were above the detection limit. The levels of cytokines that were
not different between the groups are presented in Figure E1.

Organ Damage Markers
The classical organ damage parameters, including LDH and
ALT, were significantly higher in weeks 1 and 2 in severe cases
than in healthy controls, but were fully normalized in week 7
(Figures 2A, B). The levels of creatinine showed the same trend
(Figure 2D). In contrast, HMGB1, a damage-associated
molecular pattern, was also increased from week 1 but
remained high in moderately and severely ill patients up to
Frontiers in Immunology | www.frontiersin.org 7
week 7 (Figure 2F). AST was not different between the
groups (Figure 2C).

The CRP levels were high at admission and normalized by
week 7 (Figure 2E). Notably, we observed a strong correlation of
LDH with CRP (Figures E2A, B). In week 2, a correlation existed
between LDH and HMGB1 (Figure E2C). Moreover, ferritin
(Figure 3E), fibrinogen and D-dimer levels (Table 2) were
higher in the severe cases than in moderate cases.

Monocyte Activation in Severe COVID-19
Patients
The patients with moderate disease had normal counts of white
blood (WBC), neutrophils and lymphocytes in their peripheral blood
throughout the course of the disease (Figure 3). However, the
monocytes were significantly upregulated from the first week in
A B C

D E F

FIGURE 2 | Damage parameters in serum of patients with a moderate or severe form of COVID-19. Lactate dehydrogenase (LDH) (A), alanine aminotransferase (ALT) (B),
aspartate aminotransferase (AST) (C), creatinin (D), C reactive protein (CRP) (E) and high mobility group box 1 (HMGB1) (F) were analyzed in sera from controls (n = 17)
moderate COVID-19 cases in W1 (n = 30), W2 (n = 18) and W7 (n = 13), severe cases in W1 (n = 29) andW2 (n = 15), and severe cases in W7 (n = 8) are presented as
scatter plots of each individual value with a line at the median. The data were analyzed by one-way ANOVA and Kruskal-Wallis test for multiple comparisons. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001.
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moderately ill patients but normalized by week 7. In severe cases, the
numbers of WBC were increased during weeks 1 and 2 (Figure 3A)
but returned to normal, with the exception of two patients who
continued to have elevated WBC counts. Remarkably, monocytes
were strongly increased in severely ill patients in weeks 1 and 2 but
returned to normal in week 7 (Figure 3C). In severely ill patients,
neutrophils increased steeply in weeks 1 and 2. One patient
maintained high neutrophil count up to week 7 (Figure 3B).
Again, the number of monocytes were strongly increased in weeks
1 and 2 in severe cases but returned to normal in week 7. The patients
with severe disease have shown lymphopenia at week 1 while the
lymphocyte numbers in moderate cases were comparable to controls.

The increase in peripheral monocyte count in severe cases
was accompanied by higher levels of IL-6, IL-8, MIG and IP-10.
This could be indicative of the previously reported aberrant
monocyte activation in severely ill patients (50). The number of
Frontiers in Immunology | www.frontiersin.org 8
monocytes in peripheral blood correlated with the IL-6 levels and
with damage parameters such as CRP, LDH, ALT and creatinine
(Figure 4) but no correlation was found between those
parameters and neutrophil numbers (Figure E3). Of interest,
although HMGB1 significantly increased in severely ill patients,
it was not correlated with monocyte or neutrophil numbers
(Figures 4F, E3F). The increase in peripheral monocyte numbers
in the severe cases compared to the moderate cases was
accompanied by higher IL-6 and MIG and significantly lower
MDC levels in serum (Figure 1). The levels of MDC were
significantly reduced in patients with severe COVID-19
compared to moderate disease during weeks 1 and 2. In week
2, patients with moderate disease showed induction of MDC in
blood, while in severely affected patients it remained
downregulated. All these features could be indicative of
aberrant monocyte activation in severe COVID-19 disease.
A B C

D E F

FIGURE 3 | The peripheral blood counts (A–D), serum ferritin (E) and glucose levels (F) from healthy controls (n = 17), moderate COVID-19 cases in week 1 (W1) (n = 30),
week 2 (W2) (n = 18) and week (W7) (n = 13), and in severe cases in W1 (n = 29), W2 (n = 15) and W7 (n = 8) are presented as scatter plots of each individual value with a line
at the median. The data were analyzed by one-way ANOVA and Kruskal-Wallis test for multiple comparisons. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Artificial Intelligence Predicts
Severity of COVID-19
We considered various machine learning algorithms to build a
predictive model of the severity of COVID-19: logistic regression
(LR), Support Vector Machine (SVM) and Random Forest (RF).
First, we used grid search to find the best hyperparameters for
classifiers. For the LR model, we determined the optimal
regularization parameter (C = 0.014). The SVM model was
configured with linear kernel and optimal regularization parameter
(C = 0.035). The optimal number of decision trees in the RF ensemble
was nestimators=48. We evaluated the constructed models using
leave-one-out (LOO) cross-validation accuracy and obtained 82%,
83% and 82% for LR, SVM and RF, respectively. Thus, the severity of
COVID-19 can be predicted with good accuracy on the basis of
19 markers.

Further, to improve the performance of predictive models and
determine the most important markers, we performed recursive
feature elimination (RFE) with each classifier. As a result, based on
the weights of the features assigned by the LR model, we identified
a subset of 10 markers (Table 3, first column) for which the
prediction accuracy calculated using the LR model was the highest
of all subsets (83%). Using RFE together with SVM, we defined a
subset of 10 features (Table 3, second column) for which the
accuracy reaches a maximum of 87%. Finally, by performing
feature selection based on the importance that the RF classifier
calculated, we found an optimal subset of 12 markers (Table 3,
third column) with a prediction accuracy of 85%. Eight important
markers were highlighted by all three algorithms: MDC,
fibrinogen, creatinine, glucose, MIG, monocytes, CRP and IL-6.
The prediction accuracy using only these features was 83%, 85%
and 80% for LR, SVM and RF, respectively. To visualize the space
Frontiers in Immunology | www.frontiersin.org 9
of the eight obtained features, we performed principal component
analysis (PCA) among COVID-19 moderate and severe patients
only, and projected the data on the first two principal components,
PC1 and PC2. The data depicted in the plane of the principal
components are shown in Figure 5. The results show that the
group of severe cases was characterized by an increase in
creatinine, glucose, MIG, monocytes, fibrinogen, IL-6 and CRP,
and a decrease in MDC.

Prediction Model Based
on Logistic Regression
It is important to develop a convenient clinical decision model to
predict the severity of COVID-19. To do this, we used a LR
model that can provide a clear practical interpretation.
According to this classification algorithm, we can calculate the
value of the logistic function and determine the patient’s class:

f xð Þ = 1
1 + e−x

where

x = b0 + b1 · MDC + b2 · Fibrinogen + b3 · Creatinine + b4 · Glucose

          + b5 · MIG + b6 · Monocytes + b7 · CRP + b8 · IL − 6

is a linear combination of the values of 8 features
under consideration.

The coefficients b were obtained from our trained LR model:

b0 = 0:0106657, b1 = −0:15047358, b2 = 0:12728877,

b3 = 0:12279092, b4 = 0:10936836, b5 = 0:10746877,

b6 = 0:1040643, b7 = 0:10321838, b8 = 0:09186946
TABLE 2 | The analysis of blood coagulation parameters in peripheral blood at admission (week 1) and at week 2.

Controls Week 1 Week 2

Moderate Severe Moderate Severe

APTT, sec 28 ± 2,3 30,2 ± 3,9 32,7 ± 15 30,35 ± 3.92 32,8 ± 6,9
ns ns ***p = 0,0006 ***p = 0,0006

INR, units 1,0 ± 0,1 1,12 ± 0,1 1,11 ± 0,1 1,12 ± 0,1 1,06 ± 0,1
ns ns ns ns

0-dimer,ng/ml 136 ± 50 752 ± 1165 1051 ± 20 306 ± 180 452 ± 229
****p = < 0,0001 ****p < 0,0001 **p = 0,0061 ****p = < 0,0001
**p = 0,0036 creatinine + *p = 0,0131

Anti-thrombin 3, % 94 ± 17 98 ± 24 107 ± 20 98,38 ± 24,36 99 ± 14
ns **p = 0,0034 ns ns

*p = 0,0107
Prothrombin time, sec 11,6 ± 0,43 12,52 ± 2 13,6 ± 1,9 12,5 ± 1,17 12,2 ± 1,37

****p < 0,0001 ****p < 0,0001 *p = 0,0145
**p = 0,0033
§§§p = 0,0006

Fibrinogen,g/L 2,8 ± 0,5 4,56 ± 1,46 6,4 ± 1,8 4,52 ± 1,5 3,6 ± 1,2
***p = 0,0005 ****p = < 0,0001 ns ns

####p < 0,0001
§p = 0,0384 §§§§p < 0,0001
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The activated partial thromboplastin time (APTT), the international normalised ratio (INR), D-dimer, antithrombin-3, prothrombin, and fibrinogen were analyzed. Data are presented asmean ± standard
deviation. The data were first analyzed for normal (Gaussian) distribution (alpha = 0.05) using D’Agostino & Pearson test. The normally distributed data were then analyzed by the one-way ANOVAwith
Dunnett’s multiple comparisons test. While the data that were not normally distributed were analyzed by an ANOVA Kruskal-Wallis test with Dunn’s test for multiple comparisons. The paired values
between the samepatients at week 1 andweek 2were analyzed byWilcoxonmatched -pairs signed rank test (&p <0.05). The adjusted p values are provided, where the p valueswere less than < 0.05
compared to healthy controls (*), between the groups with different disease severity (#) and in the same patients tested at week 1 and week 2 (&), ns stands for nonsignificantly different values.
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FIGURE 5 | Distinct markers associated with COVID-19 severity. PCA of
eight most important markers measured in COVID-19 patients at week 1.
PC1 and PC2 explain 39.5% and 14.7% of the variation between patients,
respectively, and segregate the patients by severity groups. Ellipses represent
the 70% confidence interval of patient distribution in each group.
TABLE 3 | The most important markers of COVID-19 severity identified by
recursive feature elimination (RFE) in conjunction with machine learning algorithms
such as Logistic Regression (LR), Support Vector Machine (SVM) and Random
Forest (RF).

RFE + LR
accuracy = 83%

RFE + SVM
accuracy = 87%

RFE + RF
accuracy = 85%

MDC MDC Creatinine
Fibrinogen Glucose CRP
Creatinine Creatinine MIG
Glucose IL-6 Monocytes
MIG Fibrinogen Fibrinogen
Monocytes MIG MDC
CRP CRP TNFa
IL-6 LDH IL-6
LDH AHTV IL-18
TNFa Monocytes Glucose

ALT
D-dimer
In each column the markers are arranged in descending order of their importance,
determined by the corresponding algorithm.
A B

C D

E F

FIGURE 4 | Correlation of monocyte numbers with selected damage parameters IL-6 (A), lactate dehydrogenase (B), C-reactive protein (C), creatinine (D), alanine
aminotransferase (E) and high mobility group box 1 (F) in peripheral blood of COVID-19 patients. Following analysis for Gaussian distribution, Pearson correlation
coefficient and two-tailed p values were calculated for the selected datasets using GraphPad Prism 9.0.
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Prediction of disease severity of a particular patient, with an
average accuracy of 83% (the accuracy of the LR model), is based
on the value of the logistic function. If f(x)>0.5, the patient has
severe COVID-19; if f(x)<0.5, it is a moderate condition.

Thus, we have constructed a practical model for predicting
the severity of COVID-19 based on eight cytokines/blood
markers. This model could support clinicians’ decision-making
and triage of COVID-19 patients. All the models we constructed
enable accurate prediction of COVID-19 severity based on the
values of eight factors as input, and as output classifying the
patient as moderately ill (0) or severely sick (1).
DISCUSSION

Identifying patients who will develop a severe form of COVID-19
and multiple organ damage remains a puzzle. In this study, we
analyzed tissue damage markers such as HMGB1, LDH, AST, ALT
and blood coagulation parameters, as well as the cytokine profile,
to identify a combination of parameters that would accurately
foresee the development of severe forms of the disease. In our
cohort of moderately and severely sick hospitalized COVID-19
patients, IL-6, MIG, TNF-a, IL-8, IL-18 and IP-10 were highest in
patients with severe COVID-19.

Indeed, several studies have reported a significant increase in
the levels of cytokines and chemokines in severe COVID-19
patients, including VEGF, hepatocyte growth factor, TNF-a,
MIP 1-a, MCP-1, IP-10, IFN-g, GM-CSF, G-CSF, M-CSF, IL-
17, IL-13, IL-12, IL-10, IL-7, IL-6, IL-1, IL-2 and IL-4 (51).
Interestingly, it has been reported that SARS-CoV-2 infection
also elevates the secretion of anti-inflammatory cytokines (IL-4
and IL-10) (52). In our study, the levels of seven cytokines in
COVID-19 patients (IL-6, IP-10, IL-8, MIG, MIP-1b, IL-18,
TNF-a) were different from those in healthy controls, while
M-CSF, MCP-1, FLT-3, VEGF, IL-1RA, EGF, eotaxin and MCP-1
were not different. Other cytokines (Table E2) remained below the
detection limit in two independent measurements. In contrast to a
study by Zhu et al., we did not find increased levels of anti-
inflammatory cytokines such as IL-4 and IL-10 (9).

Increased IL-6 levels are an important hallmark of the
cytokine storm, which is produced in response to infection and
tissue damage. Several studies have correlated increased IL-6
levels with COVID-19 severity and mortality (53–55). Therefore,
IL-6 was considered as an attractive target for the treatment of
COVID-19 (56, 57). Moreover, there is a link between the
hyperinflammatory syndrome and aberrant monocyte
activation in COVID-19 patients, which was demonstrated by
the dysregulated balance in monocyte populations with a
preference for inflammatory CD14+ monocytes expressing IL-
1b, JUN, FOS, JUNB, KLF6, CCL4 and CXCR4 in the circulation
(58). Therefore, the circulating activated monocytes could
further support the hyperinflammatory syndrome in COVID-
19 patients (58). Importantly, in COVID-19 patients requiring
ICU admission, significantly higher numbers of IL-6 producing
monocytes have been reported (59). Surprisingly, in our study
the levels of MDC were significantly lower in severely ill patients
compared to patients with a moderate form of the disease. MDC
Frontiers in Immunology | www.frontiersin.org 11
signals through the CCR4 receptor and functions as a potent
chemoattractant for Th2 lymphocytes, monocytes, monocyte-
derived dendritic cells, and natural killer cells (60). It has been
shown that MDC acts as a pro-inflammatory cytokine in
cigarette smoke-induced pulmonary inflammation and sepsis
(60). In the type-2 inflammatory response, especially in
asthmatic patients, antigen exposure leads to up-regulation of
the CCR4 ligands of MDC and TARC/CCL17 (61). Therefore,
looking at all these findings together, in COVID-19 patients
MDC could might act as a protective cytokine to counterbalance
the massive type 1 biased inflammatory response.

We have shown that the damage parameters (i.e., DAMPs) such
as LDHhave a strong correlation with CRP in COVID-19 patients.
It should be noted that targeting HMGB1 and its receptor RAGE
was considered an attractive treatment strategy for COVID-19
infection (62). Also, a recent study reported increased HMGB1
levels in serum of COVID-19 patients (63). The authors reported
that at ICU admission, the plasma levels of HMGB1 and IL-6
correlated with D-dimer and C-reactive protein levels (28).
However, in our study, despite a clear increase in HMGB1 levels
in severe COVID-19, no correlation between HMGB1 and other
parameters could be found. Moreover, our machine learning
models did not show any prognostic value of HMGB1 in
predicting the severity of COVID-19.

Multiorgan damage occurs in severe cases of COVID-19. For
example, it has been recognized that early kidney injury is an
important complication of COVID-19 and is accompanied by
increased serum creatinine, hematuria and proteinuria. The
kidney injury in severely ill patients was strongly associated
with increased mortality (64). Moreover, several large studies in
the USA have identified acute kidney injury in up to 50% of
hospitalized COVID-19 patients (65). Thus, it is important to
stress that multiorgan injury is the result of induction of a
massive, regulated cell death associated with the release of
several DAMPs, including HMGB1. Notably, HMGB1 is
released from cells undergoing apoptosis (66), necroptosis (67)
or ferroptosis (68). Thus, it is conceivable that in patients with
severe COVID-19, multiorgan damage results from the
induction of one or a combination of regulated cell death
modalities. In this context, a case study has reported the
presence of lipid peroxides, the major executors of ferroptosis
(69), in the kidneys of a patient who died from COVID-19 (70).
Massive apoptosis and necroptosis have also been shown in
postmortem lung sections of deceased COVID-19 patients, and
the cell death was associated with inflammatory cell infiltration
and pulmonary interstitial fibrosis (71). The release of HMGB1
was increased in serum of patients with severe COVID-19 (54,
63), which is in line with the results of our cohort of patients.

It has been shown that COVID-19 is associated with activation
ofNLRP3 inflammasome andwas linked to themore severe formof
COVID-19 (72). IL-18 was correlated with markers of the severity
of COVID-19, such as IL-6 and LDH (72). However, in our study,
upregulation of IL-18 was observed in moderately and severely ill
patients during weeks 1 and 2 but it returned to normal in week 7.

We investigated a dataset of confirmed COVID-19 patients
collected from Nizhniy Novgorod, Russia and used machine-
learning algorithms to predict the severity of the disease. We built
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three predictionmodels having an accuracy of over 80%. In addition,
we identified eight important cytokines and blood markers that
differentiate to a great extent severe from moderate disease.

Nevertheless, this study has the following limitations 1) the
predictive models were constructed based on a relatively small
sample size (60 patients) therefore the interpretation of ourfindings
might be limited; 2) we only used leave-one-out cross-validation
rather than external validation.However, thismethodwas shown to
be a valuable tool for building the prediction models (73). But
despite this, the selected factors that allow determination of the
severity of COVID-19 are consistent with those previously known
in the literature and as more data become available, the whole
procedure can easily be repeated to finetune the predictionmodels.

Insummary,ourstudyshowsthatexaggeratedmonocyteactivation
correlates with excessive organ damage hyperinflammatory syndrome
and predicts the severity of COVID-19 by artificial intelligence with
a precisionof over 80%. Future studies should focus particularly on the
practical clinical value of damage parameters, including developing a
scoring system with plasma biomarkers for early recognition of
COVID-19 patients at risk of developing severe disease. The use of
the described prediction models across different clinical settings
and populations will gain more insights into progression of
COVID-19 disease.
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The XY pairs were correlated between each other and the Pearson coefficient
and a two-tailed p value were calculated for the selected datasets using GraphPad
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72. Rodrigues TS, de Sá KSG, Ishimoto AY, Becerra A, Oliveira S, Almeida L, et al.
Inflammasomes Are Activated in Response to SARS-CoV-2 Infection and Are
Associated With COVID-19 Severity in Patients. J Exp Med (2021) 218(3):
e20201707. doi: 10.1084/jem.20201707.

73. Sardar R, Sharma A, Gupta D. Machine Learning Assisted Prediction of
Prognostic Biomarkers Associated With COVID-19, Using Clinical and
Proteomics Data. Front Genet (2021) 12:636441. doi: 10.3389/fgene.2021.636441

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Krysko, Kondakova, Vershinina, Galova, Blagonravova,
Gorshkova, Bachert, Ivanchenko, Krysko and Vedunova. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that
the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.
August 2021 | Volume 12 | Article 715072

https://doi.org/10.1371/journal.pone.0244628
https://doi.org/10.1080/22221751.2020.1770129
https://doi.org/10.1073/pnas.2018587118
https://doi.org/10.1097/CM9.0000000000000744
https://doi.org/10.1056/NEJMoa2001017
https://doi.org/10.1016/S2213-2600(20)30600-7
https://doi.org/10.1016/j.heliyon.2021.e06155
https://doi.org/10.1038/s41598-020-78710-7
https://doi.org/10.1016/j.biopha.2020.110698
https://doi.org/10.1016/j.biopha.2020.110698
https://doi.org/10.1016/j.cytogfr.2020.05.009
https://doi.org/10.1038/s41421-020-00187-5
https://doi.org/10.1002/JLB.4HI0720-470R
https://doi.org/10.1172/JCI12655
https://doi.org/10.1016/j.cyto.2021.155496
https://doi.org/10.1016/j.heliyon.2020.e05672
https://doi.org/10.1038/s41581-020-00381-4
https://doi.org/10.1101/2020.05.04.20090944
https://doi.org/10.1038/nm1622
https://doi.org/10.1016/j.celrep.2016.03.037
https://doi.org/10.1136/jitc-2020-001369
https://doi.org/10.1038/s41568-019-0149-1
https://doi.org/10.1002/ehf2.12958
https://doi.org/10.1038/s41392-020-00334-0
https://doi.org/10.1084/jem.20201707
https://doi.org/10.3389/fgene.2021.636441
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Artificial Intelligence Predicts Severity of COVID-19 Based on Correlation of Exaggerated Monocyte Activation, Excessive Organ Damage and Hyperinflammatory Syndrome: A Prospective Clinical Study
	Introduction
	Methods
	Patients
	Cytokine Analysis
	HMGB1 Analysis
	Dataset and Pre-Processing for Building AI Models
	Prediction Algorithms
	Most Important Feature Selection

	Statistical Analysis

	Results
	Characteristics of the Patients
	Inflammatory Markers
	Organ Damage Markers
	Monocyte Activation in Severe COVID-19 Patients
	Artificial Intelligence Predicts Severity of COVID-19
	Prediction Model Based on Logistic Regression

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


