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Abstract: Foot progression angle (FPA) analysis is one of the core methods to detect gait pathologies
as basic information to prevent foot injury from excessive in-toeing and out-toeing. Deep learning-
based object detection can assist in measuring the FPA through plantar pressure images. This study
aims to establish a precision model for determining the FPA. The precision detection of FPA can
provide information with in-toeing, out-toeing, and rearfoot kinematics to evaluate the effect of
physical therapy programs on knee pain and knee osteoarthritis. We analyzed a total of 1424 plantar
images with three different You Only Look Once (YOLO) networks: YOLO v3, v4, and v5x, to obtain
a suitable model for FPA detection. YOLOv4 showed higher performance of the profile-box, with
average precision in the left foot of 100.00% and the right foot of 99.78%, respectively. Besides, in
detecting the foot angle-box, the ground-truth has similar results with YOLOv4 (5.58 ± 0.10◦ vs.
5.86 ± 0.09◦, p = 0.013). In contrast, there was a significant difference in FPA between ground-truth
vs. YOLOv3 (5.58 ± 0.10◦ vs. 6.07 ± 0.06◦, p < 0.001), and ground-truth vs. YOLOv5x (5.58 ± 0.10◦

vs. 6.75 ± 0.06◦, p < 0.001). This result implies that deep learning with YOLOv4 can enhance the
detection of FPA.

Keywords: YOLO; object detection; foot problems; angle parameter; foot clinic

1. Introduction

Plantar image analysis is an effective tool for assessing pathological gait and reha-
bilitation effectiveness widely used in clinical practice [1]. Plantar pressure patterns and
distributions, such as foot progression angle (FPA), provide detailed information to evaluate
walking abnormalities [2–4]. FPA is defined as the angle made between the line of walking
progression and the long axis of the foot. FPA represents the foot placement angle of the
longitudinal foot axis during gait [5–7]. In-toeing and out-toeing, the most common types
of FPA deviations, are associated with knee pain and fall risk [8,9]. The average values of in-
toeing and out-toeing are established when the FPAs are <0◦ and >20◦, respectively [10,11].
In addition, detecting the FPA can accelerate the rehabilitation process and reduce knee
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pain [12], such as using ranges of modifications in step width with various amplitudes
and gait retraining in everyday walking [13,14] and for in-toeing and out-toeing through
proving the effectiveness of medial-wedge insoles and smart shoes [15,16]. However, FPA
will determine the gait pathology’s treatment progression, and getting the precise FPA will
help the rehabilitation process more efficiently [17,18].

In addition, the impact of FPA may be vital to indicate the plantar pressures changes
that can be attributed to chronic disease [19]. The chronic disease is related to knee injury
due to excessive toe-in or toe-out [20]. Furthermore, externally rotated FPA and increased
medial loading play important roles in flatfoot [21,22]. Moreover, foot placement angle
was the best single predictor of total rearfoot motion, and the FPA may be useful to correct
atypical rearfoot kinematics [23,24]. Classifying the left foot and the right before measuring
the FPA may play an important role in providing information on the postural changes [25].
For example, a decrease in the percentage of body weight on the left heel in asthmatic
patients may be related to the postural changes characteristic of asthma [26].

The successful detection of FPA is required to calculate the abnormality angle [27]. The
FPA abnormality would not be traced with unexperienced clinical experience, especially in
data acquisition and calculation of remote areas [28]. One-dimensional plantar pressure
signals [29,30] and two-dimensional plantar pressure images [31] are two methods to cap-
ture information on pressure patterns. In addition, the pressure patterns provide detailed
information about foot movement [32,33]. Moreover, two-dimensional plantar pressure
images can be used to reliably determine the long axis of the foot during walking [34].
Even though plantar pressure software can identify the FPA with a masking algorithm on a
foot scan, the masking algorithms present some limitations. The plantar pressure software
may not learn the specific classification of foot profiles and detect FPA abnormalities on
in-toeing and out-toeing [35,36]. The limitation is an opportunity for deep learning object
detection to predict the foot profiles and diagonal FPA in plantar pressure images to get an
accurate FPA [37].

This study is intended to examine the effectiveness of deep learning performance
on FPA measurements which can be beneficial in excessive in-toeing, or out-toeing foot
rotation which alters gait appearance [38]. A more out-toeing gait might reduce pain
in patients with knee osteoarthritis. Furthermore, extreme out-toeing reduces patients’
ankle power, potentially mitigating the forces and knee adduction moment, reducing gait
speed and efficiency [39]. However, the in-toeing of the FPA induces the reduction of the
knee adduction moment. In-toeing is responsible for increasing the knee flexion angle.
Therefore, the variation in the in-toeing with the knee flexion angle should be monitored
because increasing the knee flexion angle has undesirable effects on knee osteoarthritis
progression [36].

Using deep learning for object detection is widely used in biomedical applications [40–42].
For example, the deep learning model can identify plantar pressure patterns for early abnormal
detection of foot problems [43]. In addition, deep learning-based approaches have presented
a state-of-the-art performance in image classification, segmentation, object detection, and
tracking tasks [44]. Object detection is suitable to determine where objects are located in a
given image and which category each object belongs to [45]. Object detection has become
more streamlined, accurate, and faster as the technology has progressed from Region-based
Convolutional Neural Network (R-CNN) to Region-based Fully Network (R-FCN). However,
these algorithms are region-based [46]. Therefore, image proposals should be created to begin
implementing these algorithms. You Only Look Once (YOLO) is not a region-based algorithm
and can provide an end-to-end service that makes it more efficient in measuring the FPA.
YOLO uses a single neural network design to forecast bounding boxes and class probabilities
directly from entire images that may be essential to classifying the left and right foot [47].
Kim et al. found that YOLO outperforms faster than R–CNN, Fast-RCNN, and single-shot
detector (SSD) [48]. In addition, YOLO showed good performance in two-dimensional signal
detecting medical images [49].



Sensors 2022, 22, 2786 3 of 18

YOLO is a deep learning model commonly used to predict image data such as plantar
images [50,51]. YOLO is one of the most powerful and fastest object identification algo-
rithms based on deep learning techniques in providing fast and precise solutions in medical
image detection and classification [52,53]. The YOLO networks have several versions
that can help accurately detect the FPA. Considering the need for precise results of the
FPA, calculations with minimum error values are essential. Therefore, several versions
of YOLO networks need to be compared to determine their performance in detecting the
FPA in this study. The YOLO network is a one-stage object detection algorithm that can
calculate the classification results and position coordinates [54]. Clinical examination of
the FPA by the human eye was beneficial to evaluate the in-toeing and out-toeing that
related to the basis of postural information [18]. However, evaluating the in-toeing and
out-toeing is essential for knee pain information and provides information on the knee pain
rehabilitation effect [20]. In addition, changes in FPA affect rearfoot eversion of rearfoot
kinematics normalization [55]. This study uses deep learning in object detection for FPA
object localization coordinates. Deep learning may improve precision from reported clinical
screening results and human accuracies by 10–27% [56]. The precision detection of the FPA
can provide information with in-toeing [38], out-toeing [57], and rearfoot kinematics [55] to
evaluate the effect of physical therapy programs on knee pain and knee osteoarthritis [5].

2. Materials and Methods

Data used to prepare this article were obtained from the AIdea platform provided by
Industrial Technology Research Institute (ITRI) of Taiwan (https://aidea-web.tw, accessed
on 21 February 2021). This study used 1424 plantar pressure images as datasets, with each
image of 120 pixels × 400 pixels. A professional data annotator from the data provider
labeled the dataset to classify the foot axis point coordinates in the plantar pressure dataset.
The image data were divided into a training set with 900 images, a validation set with
100 images, and a prediction test with 424 images. The labeled prediction test images were
used as the ground-truth dataset in this study. However, the ground-truth dataset only
provided the front and rear points of the foot axis in pixel coordinates.

Furthermore, the FPA could be calculated using the arctangent formula. All calcu-
lations were performed using computer equipment with the following hardware: Core
I7-10700 CPU, 32 GB RAM, NVIDIA RTX 3080 10 Gb. This study was reported according
to STROBE guideline recommendations [58] for reporting observational studies that were
applied during study design, training, validation, and reporting of the prediction model.

YOLO is a state-of-the-art deep learning framework for real-time object recognition.
YOLO supports real-time object detection significantly faster than earlier detection net-
works [50]. This model can run at various resolutions, ensuring both speed and precision,
which can be beneficial in measuring the FPA. YOLOv3 became one of the state-of-the-art
object detection algorithms [59]. Instead of utilizing mean square error to calculate the
classification loss, YOLOv3 uses multi-label classification and binary cross-entropy loss for
each label. YOLOv3’s backbone is DarkNet-53, which replaces DarkNet-19 as a new feature
extractor. The entire DarkNet-53 network is a chain of many blocks with some strides
and 2 convolution layers in between to decrease dimension. Each block has a bottleneck
structure of 1 × 1, followed by 3 × 3 filters with skip connections [60]. Alexey has intro-
duced YOLOv4, the next version of YOLOv3, which runs twice as quickly as EfficientDet
while providing equivalent performance [61]. Rather than using darknet-53 layers for
feature extraction, YOLOv4 uses a modified version of CSPdarknet-53 as a backbone, with
cross-stage-partial connections (CSP) employed to split the feature extraction connection
into two pieces [62]. Instead of the leaky ReLU function used in YOLOv3 and YOLOv4-tiny,
the Mish activation function is utilized in the YOLOv4. YOLOv5 was initially uploaded
on GitHub in May 2020, and the maintainer gave the network the name YOLOv5 to avoid
confusion with the previous release of YOLOv4 [63]. Implementing the state-of-the-art for
deep learning networks, such as activation functions and data augmentation, and the usage
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of CSPNet as its backbone, are the key new features and enhancements in YOLOv5 [64].
This study used YOLOv3, YOLOv4, and YOLOv5 for measuring the FPA.

The training images were inserted into the YOLO model and processed for training
purposes. The information of the predicted bounding boxes could be obtained based
on the anchor boxes in the YOLO model. This study compared three different versions,
i.e., YOLOv3, YOLOv4, and YOLOv5x, which solved object detection efficiently and
straightforwardly [65]. The model’s hyperparameters were as follows: The batch size and
mini-batch size were 16 and 4, respectively; the momentum and weight decay were 0.9
and 0.0005, respectively; the initial learning rate was 0.001; the epoch model was 300. The
detectors were based on Python 3.7.6, PyTorch 1.7.0 (used in YOLOv5x models), and the
Darknet framework (used in YOLOv3 and YOLOv4 models) Windows 10.

2.1. Regular FPA Detection Procedure

We conducted five steps to get the FPA (Figure 1) from the data training into calculating
the angles. First, we needed to determine the foot profile because the diagonal FPA direction
of the left and right foot was different. Second, we trained the diagonal FPA using a
bounding box to get the angle-box. The box itself has four corner points in its detection.
Third, detecting four angle-box corner points in the diagonal FPA requires acquiring two
points (front and rear foot axis points) selected according to the left foot or right foot profiles.
Fourth, we used the diagonal FPA to calculate the angle of the FPA using the arctangent
formula. Fifth, to confirm our two-foot axis point coordinate predictions, we checked the
distance between the predicted and ground-truth points.
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2.1.1. Determine the Left and Right Foot Profiles Categories 

Figure 1. Flowchart illustrating the proposed method of foot progression angle (FPA) detection using
YOLOv3, YOLOv4, and YOLOv5x.

2.1.1. Determine the Left and Right Foot Profiles Categories

The first training section labeled the foot profile regarding the left or right position
using the bounding box in the dataset (Figure 2A). Furthermore, we input datasets labeled
to three different YOLO models, i.e., YOLOv3, v4, and v5x (Figure 2B,C). For the predic-
tion test section, we used 424 images to get the foot profile-box of the left and right feet
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(Figure 2D). A foot profile-box was used to determine the left foot or right foot position
since detecting the foot profiles essential for the differentiation direction of the FPA.
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Figure 2. The illustration of profile-box for left and right foot in plantar pressure image detection with
the YOLO model. (A) Labeling the foot profile in left and right categories using the bounding-box.
(B) Input the data labeled for training. (C) Training the dataset using YOLOv3, v4, and v5x. (D) The
prediction test used 424 images to get the foot profile-box.

2.1.2. Angle-Box

We used a bounding-box to get the diagonal FPA regarding the angle-box prediction
(Figure 3A). In the training section, we input the data labeled by a professional data
annotator (Figure 3B) and used the three versions of YOLO models, namely v3, v4, and v5x
(Figure 3C). We tested 424 images to get the angle-box prediction and determine the points
acquisition based on the foot profile-box (Figure 3D). We used the diagonal FPA on the top
left and bottom right for the left foot (Figure 3E), while the right foot diagonal FPA was
used on the top right and bottom left.
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Figure 3. The illustration of angle-box for foot progression angle (FPA) in plantar pressure image
with the YOLO model. (A) The dataset is labeled by the professional annotator (B). Input the data of
labeled images. (C) Training using YOLOv3, v4, and v5x. (D) testing the 424 images to get the foot
angle-box. (E) Determine the foot axis point acquisition based on the foot profile-box.

2.1.3. Point Benchmark Acquisition

After getting the angle-box, the foot axis points were used to get the distance between
the ground-truth and three YOLO models (Figure 4). In addition, the YOLO models record
four corner coordinates of the angle-box prediction by converting the YOLO coordinates (x,
y, w, h) into pixel coordinate prediction (P1x, P1y, P2x, P2y) [66]. In detail, the horizontal
value in the front foot axis point was calculated in Equation (1). Next, the horizontal value
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in the rear foot axis point was calculated in Equation (2). Then, the vertical value in the
front axis point was calculated using Equation (3). Finally, the vertical value in the rear axis
point was calculated using Equation (4).

P1x =
x−w

2
W (1)

P2x =
x + w

2
W (2)

P1y =
y− h

2
H (3)

P2y =
y + h

2
H (4)

where P1x, P1y represent the front foot axis point coordinates and P2x, P2y represent the
rear of the foot axis point coordinates. The center of the box coordinates is x and y, the
width and height of the bounding box are w and h, width and height of the images are W
and H (Figure 4). While P1x and P1y are the top left corner coordinates for the left foot and
the top right corner for the right foot. The lower right corner coordinates for the left foot
and the lower-left corner for the right foot are P2x, P2y.
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2.1.4. Using Diagonal FPA Detection to Get the FPA 

Figure 4. The example of converting YOLO coordinates (i.e., angle-box) into pixel coordinates. YOLO
coordinates are x, y, w, h, W, and H. Pixel coordinates P1x, P1y, P2x, P2y; X and Y, coordinates
represent the center of the box; w, the width of the bounding-box; h, the height of the bounding-box;
W, the width of image; H, the height of images.

2.1.4. Using Diagonal FPA Detection to Get the FPA

After getting the foot axis points in P1x, P1y, P2x, and P2y, we used diagonal FPA from
P1x and P1y to P2x and P2y to get the FPA results. Then, we calculated the FPA using the
arctangent formula [67] to get the angle of the A1 and A2 (Figure 5). For the calculation, we
used Equation (5).

θ = tan−1
(

A2

A1

)
(5)
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where θ is the angle in the degree of FPA in each image, the θ will be used to differentiate
between the ground-truth and the three YOLO prediction results. For example, A1 is the
height of the angle-box, and A3 is the diagonal FPA of the angle-box. The least angles
differentiation will conclude the suitable model of YOLO versions in this study.
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Figure 5. The example of diagonal foot progression angle (FPA) of the angle-box in the YOLO model;
G1 (G1x and G1y), Ground-truth for the front foot axis point; G2, ground-truth for the rear foot axis
point in (G2x and G2y); P1 (P1x and P1y), YOLO models prediction for front foot axis point; P2 (P2x

and P2y), YOLO models prediction for the rear foot axis point; A1, the height of angle-box; A2, the
width of the angle-box; A3, the diagonal FPA of the angle-box; θ, in degrees for FPA.

2.1.5. Measure the Distance

Confirming the foot axis’s front or rear points can affect the diagonal FPA. This study
used the two-point distance formula [68] for each image’s ground-truth coordinates and
YOLOv3, YOLOv4, and YOLOv5x coordinates values. We calculated the distance of Gi
(i.e., G1 and G2) and Pi (i.e., P1 and P2) (Figure 4) by Equation (6).

→
GlPl =

√
(Gix,−, Pix)

2 +
(
Giy,−, Piy

)2 (6)

where
→

GlPl is the distance value between the “ground-truth diagonal FPA points coordi-
nates” and “YOLO’s diagonal FPA points coordinates”. We conducted this formula three
times to get the distance between the ground-truth and the three YOLO models.

2.2. Statistical Analysis

After getting all the values of FPA in the ground-truth and three YOLO models in
each image, we compared the front and rear of the foot axis points on three YOLO models
using a paired t-test. The paired t-test was used to describe the differences between points,
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determine which point affected detecting the FPA, and get the angle differentiation between
the ground-truth and YOLO models. Finally, we used one-way ANOVA and LSD post
hoc at the significance level of 0.01 to describe the significant difference between YOLO
models and the ground-truth. The data were processed using SPSS 26 (IBM, Somers,
New York, NY, USA).

3. Results
3.1. Training Results

Average Precision (AP) and Mean Average Precision (mAP) are the most popular
metrics used to evaluate object detection models [69]. A high mAP means that the trained
model performs well [60]. Average precision (AP) and loss values of YOLOv3, YOLOv4,
and YOLOv5x were calculated, as shown in Table 1. For training results of the profile-
box, we used the AP to get detailed results of each class of foot profile-box prediction to
determine the left and right foot position [70]. For example, YOLOv4 got the precision of
the foot profile-box with an AP of 100.00% for the left foot and was the same high average
precision similar for the right foot in 99.78% of AP results. For the foot angle-box, we
used mAP. Here, the mAP and AP are the same as the mean because there is only one
object. Furthermore, the average precision (mAP) of the training for the foot angle-box
for YOLOv4 (97.98%) was 14.38% which was higher than YOLOv5x (96.90%) and 11.88%
higher than YOLOv3 (86.32%).

Table 1. YOLOv3, v4, and v5x performance in bounding box training on the foot profile (profile-box)
and FPA (angle-box).

Bounding
Parameter

YOLO Version

Box Type v3 v4 v5x

Profile-box
mAP 86.32% 99.89% 96.90%
Loss 0.55 0.12 0.00

Left foot (AP) 92.93% 100.00% 95.80%
Right foot (AP) 79.70% 99.78% 98.00%

Angle-box
mAP 86.01% 97.98% 83.60%
Loss 1.47 0.53 0.02

Note: mAP, mean average precision; AP, average precision; FPA, foot progression angle.

3.2. FPA Comparison

The total sample data is 424 images, while the usable sample data is 367 images.
This was caused by 57 samples having missing values. Missing values occurred because
the deep learning model could not recognize the image; the data were excluded from
further analysis [71,72]. Compared with the FPA from the ground-truth, three versions
of YOLO models were calculated using one-way ANOVA and LSD post hoc to get the
angle differentiation. YOLOv4 FPA (5.86 ± 0.09◦) did not show any significant difference
compared to ground-truth (5.58 ± 0.10◦) (Table 2). However, YOLOv3 and YOLOv5x were
different compared to the ground-truth (Figure 6).

Table 2. One-way ANOVA of FPA comparison between the ground-truth angle and different
YOLO versions.

Parameter Ground-Truth Model One-Way Fisher LSDANOVA

(Mean ± SE) YOLOv3
(Mean ± SE)

YOLOv4
(Mean ± SE)

YOLOv5x
(Mean ± SE) p-Value GT vs.

YOLOv3
GT vs.

YOLOv4
GT vs.

YOLOv5x.

θ (degree) 5.58 ± 0.10 6.07 ± 0.06 5.86 ± 0.09 6.75 ± 0.06 <0.01 * <0.01 * 0.013 <0.01 *

Note: θ, angle in degree; GT, Ground-truth; FPA, foot progression angle; *, a significant difference (p < 0.01)
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3.3. Distance between Ground-Truth Point and Prediction Point

To confirm the foot axis point, we used paired t-test to get the distance differentiation

between
→

G1P1 and
→

G2P2 in three YOLO models. Furthermore, we used one-way ANOVA
and Fisher’s LSD post hoc to get the distance differentiation of three YOLO models on
→

G1P1 and
→

G2P2 (Tables 3 and 4). The results showed that all comparisons were significantly
different (Figures 7 and 8).

Table 3. Effect of different YOLO models on the distance between the ground-truth point and
prediction point.

Parameter YOLO
One-Way Fisher’s LSD
ANOVA Post Hoc

v3
(Mean ± SE)

v4
(Mean ± SE)

v5x
(Mean ± SE) p-Value YOLOv3 vs.

YOLOv4
YOLOv3 vs.
YOLOv5x

YOLOv4 vs.
YOLOv5x

→
G1P1 (pixel) 13.41 ± 0.52 9.23 ± 0.39 18.25 ± 0.62 <0.01 * <0.01 * <0.01 * <0.01 *
→

G2P2 (pixel) 9.74 ± 0.38 7.34 ± 0.36 12.80 ± 0.43 <0.01 * <0.01 * <0.01 * <0.01 *

Note:
→

G1P1, the distance between the front points of the ground-truth (G1) and YOLO model prediction (P1);
→

G2P2, the distance between the rear points of the ground-truth (G2) and YOLO model prediction (P2). The value
coordinates in this calculation were in the pixel; *, a significant difference (p < 0.01).

To evaluate the FPA results we found in YOLO models predictions, we used an
example plantar image to test our results using angle calculations through digital image
software (Photoshop CS.5, Adobe Inc., San Jose, CA, USA) by comparing the ground-truth
with YOLO prediction results [73]. First, we measured the ground-truth coordinate and
got the FPA. Second, we validated our prediction of the foot axis points coordinates and
calculated the FPA. As a result, our forecast approached the ground-truth angle (Figure 9).
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Table 4. Effect of different points of FPA on the distance between the ground-truth point and
prediction point.

Distance Paired t-Test
→

G1P1
→

G2P2
Model (Mean ± SE) (Mean ± SE) p-Value

YOLOv3 13.41 ± 0.52 9.74 ± 0.38 <0.01 *
YOLOv4 9.23 ± 0.39 7.34 ± 0.36 <0.01 *

YOLOv5x 18.25 ± 0.62 12.80 ± 0.43 <0.01 *

Note:
→

G1P1, the distance between the front points of the ground-truth (G1) and YOLO model prediction (P1);
→

G2P2, the distance between the rear points of the ground-truth (G2) and YOLO model prediction (P2). The value
coordinates in this calculation were in pixels; *, a significant difference (p < 0.01).
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Figure 7. Comparisons of the front (
→

G1P1) and rear of the foot axis point (
→

G2P2) of the angle-box

on the distances between ground-truth and prediction points in different YOLO models.
→

G1P1, the

distance between the front points of the ground-truth (G1) and YOLO model prediction (P1);
→

G2P2,
the distance between the rear points of the ground-truth (G2) and YOLO model prediction (P2);
*, a significant difference (p < 0.01).
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Figure 9. Examples of validation using photoshop software for the left foot profile. (A) the ground-
truth angle of 4.08◦ was compared with (B) the same images from the YOLOv4 prediction with an
angle of 4.40◦. Note: G1x and G1y are front foot axis points of the ground-truth. G2x and G2y are rear
foot axis points of the ground-truth. P1x and P1y are the front foot axis point of the YOLO model. P2x

and P2y are the rear foot axis point of the YOLO model.

4. Discussion

This study used the profile-box and the angle-box labeling names to get the FPA. The
profile-box uses the whole plantar pressure images to determine left and right foot profiles.
The angle-box is inside a plantar pressure image from the heel to the metatarsal head
without the toe region and is used to predict the FPA.

This study shows the effectiveness of deep learning with a small-scale data test con-
taining 367 plantar images. In the profile-box, the YOLO training results showed that the
YOLOv4 model has the highest mAP with 99.89%, the left foot profile gets the AP with
100.00% accuracy and the right foot profile with 99.78%. Furthermore, the YOLO training
showed that the YOLOv4 model gets the highest mAP with 97.98% in the angle-box. How-
ever, the results of the FPA between the YOLOv4 prediction and ground-truth angle did
not significantly differ, indicating that YOLOv4 and the ground-truth have similar results
(Figure 6). Besides, the foot axis’s front point may affect the accuracy of detecting the FPA
(Figure 7).

Therefore, the YOLO model is suitable for detecting the FPA from plantar pressure
images based on object detection. These results may indicate that YOLO can help predict
the FPA. In addition, the precision of YOLO models on the FPA may contribute to clinical
practice by providing information on in-toeing, out-toeing, and rearfoot kinematics, in
evaluating the effect of physical therapy programs on knee pain and knee osteoarthritis.

4.1. YOLO Deep Learning Performance

The normal FPA is an out-toeing angle that ranges from 5◦ to 13◦ in children [21]. For
the adult population, a normal FPA is defined as between 0◦ and 20◦ [10]. Our results
indicate that the data used in this study was for a normal FPA (Table 2). Our results showed
that the FPA was different from the ground-truth (5.58 ± 0.10◦) and three YOLO models
(v3: 6.07 ± 0.06◦, v4: 5.86 ± 0.09◦, and v5x 6.75 ± 0.06◦) estimated between 1.3◦ to 1.9◦.
The YOLO model can detect and estimate the precise FPA direction of the plantar pressure
image. Deep learning can also detect and estimate the spinal curve angle of the trunk



Sensors 2022, 22, 2786 12 of 18

kinematics and limb. For spinal disorders and deformities object detection, Galbusera et al.
showed that deep learning was trained to predict kyphosis angle, lordosis angle, and Cobb
angle. The predicted parameters with an automated method resulted in standard estimate
errors between 2.7◦ and 9.5◦ [74]. Alharbi et al. showed that deep learning object detection
was used to automatically measure the scoliosis angle based on X-rays images and the
differentiation from results was estimated at 5◦–10◦ [75].

Furthermore, Hernandez et al. predicted lower limb joint angles from inertial measure-
ment units using deep learning for the lower limb detector and got an estimated average
of 2.1◦ between their ground-truth and predicted joint angles [76]. Pei et al. used deep
learning to detect hip–knee–ankle angles in X-rays images, comparing the other deep
learning model with a calculated angle ratio that had a deviation from the ground-truth
estimate of 1.5◦ [77]. Our results of different FPAs between YOLO prediction angles and
ground-truth angles ranged from 1.3◦ to 1.9◦, similar to the results for lower limb areas in
other studies. Therefore, the YOLO models is suitable for detecting the FPA from plantar
pressure images based on object detection.

4.2. YOLOv4 Showed Superior Results

In our results, YOLOv4 showed excellent performance in detecting the FPA based
on plantar pressure images with a single-frame task. The reason would be that YOLOv4
had the backbone network modifications, especially in single-frame tasks, and optimized
accuracy for object detection based on images [78]. Whereas YOLOv5 is advantageous
in the detection based on video with a multi-frame task [64]. For example, Zheng et al.
detected concealed cracks using YOLOv3, v4, and v5x with YOLOv4, proving superior
prediction based on single-frame tasks [79]. Furthermore, Andhy et al. applied YOLOv4
to detect waste images based on images and precision results with the actual data [62].
Therefore, YOLOv4′s good performance in the FPA of plantar pressure may be due to the
single-frame task.

The results of profile-box training showed that YOLOv4 gets 99.78% (right foot) to
100.00% (left foot) AP due to the characteristic of plantar images with one class and one
object in an image. By utilizing boundaries from plantar images, the labeling makes it
easier for YOLO to detect foot profiles [80]. Our result was similar to the study by Gao et al.
facilitating a robotic arm grasping system in nonlinear and non-Gaussian environment
detection using labeling objects on the boundary, with a YOLOv4 range of 96.70% to 99.50%
AP. Therefore, YOLOv4 was chosen rather than YOLOv3 and YOLOv5 [81].

In addition, the mAP of angle-box was 97.98% in YOLOv4 was lower than the profile-
box mAP of 99.89% (left foot 100.00% and right 99.78% AP). The detection of the angle-box
may have limitations on prediction due to the position of the angle-box inside the pressure
images with similar background color and density from the pressure. Similar background
color and density were the problems of detecting a cluster of flowers and detecting eyes,
nose, and mouth in the face. Wu et al. detected apple flowers in natural environments.
They got the result of 97.31% mAP on YOLOv4, which had a bounding-box in the flowers
with a similar background color and density of flower clusters [11]. Dagher et al. predicted
that face recognition to detect the eyes, nose, and mouth was more complex than predicting
the whole face [82]. It is concluded that YOLO might be good at profile detection.

4.3. Foot Profiles Prediction and Foot Axis Points Distance

Specific markers could predict the FPA front and rear point in two small bounding-
boxes. However, the two small bounding-boxes in the front and rear were very similar.
Therefore, YOLO was not the best performance for similar objects in one image [83]. The
low performance is caused by the fact that just two small boxes in the grid are anticipated
and only belong to a new class of objects within the same category, resulting in an abnormal
aspect ratio and other factors such as low generalization capacity [84]. Due to these reasons,
we used one bounding-box, including front and rear points, to get the FPA.
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Similar background color and density were problems in the angle-box and may have
affected FPA accuracy in object detection. FPA accuracy is based on the two points of
the diagonal FPA (front and rear foot axis point). Therefore, the distance between the
predicted and ground-truth points is necessary to investigate. The FPA, especially in the
front foot axis point between the three YOLO models prediction and the ground-truth (9.23
to 18.25 pixel), was longer than the rear foot axis point (7.34 to 12.80 pixel). Furthermore,
the front foot axis point as a density area also has a similar background of pressure to the
metatarsal-phalangeal joints bone and near the other bone, affecting the detection of the
used plantar pressure images [85,86]. The density and similar background can lead to low
performance in predicting the bounding boxes [87]. However, the rear foot axis point is
clearer than the front foot axis point. The rear foot axis point has pressure from calcaneus
bone, allowing the YOLO model optimum detection with a non-maximum suppression
feature [88,89]. In addition, the rear of the foot axis point is around the boundary of the
plantar pressure distribution area with minimum density [90]. The results represent that
the front foot axis point due to increasing density from metatarsal-phalangeal joints bone
and near the other bone may affect detecting the FPA.

4.4. Limitation in Diagonal FPA Acquisitions

The main limitation of our study was the analysis dataset without in-toeing data. As
we know, in-toeing is a symptom of illness in the FPA and needs further intervention. Even
though we did not have the plantar image with the FPA of in-toeing in this study, our
standard methods can be used to measure out-toeing. However, in-toeing measurement
has required the addition of the “regular-FPA-procedure” in “labeling the foot profile in
left and right categories” and “point benchmark acquisition.”

“Labeling the foot profile in left and right categories” needs to be modified into four
classifications: “labeling the foot profile in left-in-toeing, left-out-toeing, right-in-toeing, and
right-out-toeing categories.” To determine foot profiles associated with in-toeing conditions
by labeling plantar pictures, we used YOLO to do the first classification to get the left
and right foot profiles of in-toeing conditions such as left-in-toeing and right-in-toeing.
The in-toeing foot profiles position may have the other condition to measure the FPA
than the out-toeing condition. In out-toeing, the diagonal FPA acquisition is the same as
the “regular-FPA-detection-procedure.” In contrast, in-toeing diagonal FPA acquisition is
the patient’s normal foot profile (Figure 10). Therefore, it is necessary to classify the foot
position before detecting the foot axis points.
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Furthermore, “point benchmark acquisition” was based on the angle-box. YOLO can
detect the 4-corner coordinates of the angle-box prediction through the converting stage
and then acquire the 2-point benchmark referred to as the foot position of the in-toeing foot
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direction (Figure 10) [91]. The left and right foot profiles of in-toeing determine the front
and rear axis points used to get the diagonal FPA used to measure the angle of the FPA [92].

In addition, using more data validation sets over 3500 images may increase YOLO
performance [93]. However, the current study using a small-scale validation set under 350
images showed good performance [42]. Therefore, this study used a small-scale validation
set using plantar pressure images and achieved a suitable YOLO performance.

5. Conclusions

This study proposed three YOLO models for a suitable model for detecting the FPA.
YOLOv4 showed superior results in detecting the left and right foot profiles. Deep learning
with YOLOv4 has the advantage of improving predictions of the FPA without significant
differences from the ground truth. Besides, YOLOv4 has a reliable detection accuracy of
FPA from plantar pressure images. The effects of the accuracy of the FPA may be from the
front of the FPA point. The precision detection of the FPA can provide information with
in-toeing, out-toeing, and rearfoot kinematics, to evaluate the effect of physical therapy
programs on knee pain and knee osteoarthritis.
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