
SCIENTIFIC COMMENTARY

Deep learning for epileptogenic zone
delineation from the invasive EEG: challenges
and lookouts

This scientific commentary refers to
‘Refining epileptogenic high-frequency
oscillations using deep learning: a re-
verse engineering approach’ by Zhang
et al. (https://doi.org/10.1093/brain-
comms/fcab267).

Deep learning (DL) has shown in-
creasingly high-level performances in
the medical domain, especially in the
field of medical imaging.1 In the past
decade, DL has also found its way in
the automatic evaluation of the EEG,
for example, in epilepsy for the detec-
tion of seizures.2 Recently, researchers
attempted DL approaches for delinea-
tion of the epileptogenic zone (EZ)
from the invasive EEG (iEEG).2,3

This is relevant, as manual EZ delinea-
tion remains challenging, because the
clinician needs to process and interpret
complex and extensive information
including information that may be
present but hidden to the human
eye.4 A DL approach for EZ
delineation comes with several chal-
lenges. We will discuss challenges
encountered in the study from Zhang
et al.5 published recently in Brain
Communications. We start off with a
brief overview of artificial intelligence
(AI) in medical healthcare.

AI encompasses all methods that
aim to mimic human cognitive
functioning, e.g. make a diagnosis
from computed tomography images.
Machine learning (ML) is an overarch-
ing term within AI that refers to meth-
ods that learn through experience
using data. There are three types of

learning in ML: supervised learning,
unsupervised learning and reinforce-
ment learning (Fig. 1). With super-
vised learning, the data are labelled,
and an ML model is trained to predict
these labels, e.g. a diagnosis or life ex-
pectancy. In unsupervised learning,
the data are not labelled, and the ML
model is trained to find hidden struc-
tures in the data and discover clusters
of subgroups. In reinforcement learn-
ing, an ML model learns the optimal
behaviour in a certain environment,
e.g. automated robotic surgery. For
each type of learning, multiple ML
models exist and the most suitable
model to use depends on the task at
hand. For some ML models, features
need to be extracted from the raw
data, which requires expert knowl-
edge about the data and the ML pro-
blem. In DL, a subfield of ML,
successive layers are used to transform
the input data into more meaningful
representations, where the first layers
of a DL model act as feature extrac-
tors. Hence, DL models do not require
any feature engineering. This DL
property makes a DL approach inter-
esting for EZ delineation, given that
no single EZ iEEG feature or combin-
ation of features yields enough predic-
tive information for clinical use.6

Several DL approaches for EZ
delineation have been proposed.
San-Segundo et al.2 and Daoud and
Bayoumi3 used a DL approach to
classify whether iEEG epochs from
the Bern-Barcelona data set7 and the

Bonn data set8 were part of the EZ.
Both obtained excellent results with
accuracies above 90%. The generaliz-
ability of these studies can be ques-
tioned as these data sets consist of
iEEG recordings from five temporal
lobe epilepsy patients. Other DL ap-
proaches have been proposed for
automatic detection of EZ biomarkers
such as interictal epileptiform dis-
charges9 and high-frequency oscilla-
tions (HFOs).10

Zhang et al.5 used a DL approach to
classify dichotomously whether an
HFO was located on a spike (spike
HFO) because spike HFOs are re-
garded more epileptogenic than non-
spike HFOs. They used two types of
validation methods to assess the DL
model’s generalizability, namely
patient-wise cross-validation (CV)
and all-patient CV. In their patient-
wise CV, the model was trained on
HFOs from a subset of patients and
validated on the HFOs of the remain-
ing patients. In all patients CV, the
HFOs from all patients were pooled
together, and the model was trained
on a subset of these pooled HFOs
and validated on the remaining pooled
HFOs. This latter type of CV was also
seen in the studies of San-Segundo
et al.2 and Daoud and Bayoumi,3

probably due to the meagre number
of patients to construct a training
and validation set with enough pa-
tients and the laborious work of
annotating the iEEG. However, since
HFOs within one patient are similar,
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validating a DL model on data from
the same patients whose data were
used in training will affect the reliabil-
ity of the generalization assessment to
other patients. This is substantiated by
the reported performance difference
between patient-wise CV and all pa-
tients CV for classification of a spike
HFO in the study of Zhang et al.:5

the mean (standard deviation) of the
precision: 81.4% (16.1%) versus
92.0% (0.8%). Patient-wise CV is
hence the most adequate assessment

of a DL model’s generalizability for
clinical use in different patients.

The automatic detection of HFOs in
the iEEG addresses the tedious work
of manually marking these biomar-
kers. Nonetheless, HFOs are also gen-
erated by healthy tissue, which may
limit their specificity as EZ
biomarker.11 This have led Zhang
et al.5 to use DL to refine epileptic
HFOs, in which HFOs from resected
tissue were labelled as epileptic and
HFOs from preserved channels as

non-epileptic in nine patients who
underwent epilepsy surgery with post-
surgical seizure freedom. They did
not report the classification results
but performed multiple group level
analyses based on these identified ‘epi-
leptic’ HFOs. As these analyses were
on a group level, it is unknown if these
identified ‘epileptic’HFOs can classify
an individual iEEG epoch as part of
the EZ and can hence aid in EZ delin-
eation. It would have been interesting
to know if the DL model could

Figure 1 An overview of ML approaches. First the ML problem is defined and an appropriate ML model is chosen. Subsequently, the data are
preprocessed, e.g. filter the data, transformation to the frequency domain and selecting events or epochs. Next, features are selected or
deep learning is used in which the raw data is used. The data are then split into a training and test set. The model is trained based on the training
data using CV. Finally, the performance of the model is assessed on unseen data, the test set. This figure illustrates the choices made during an
ML approach, such as model selection, preprocessing steps, feature selection, percentage split in CV and training of the model (which also
includes optimizing hyperparameters of the model).
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discriminate between HFOs originat-
ing from the EZ and from healthy tis-
sue. Especially since much research on
HFOs consists of analysis on the
group level and not individual level.
Hence, the true clinical value of
HFOs and the ‘epileptic’ HFOs found
by Zhang et al.5 for an individual pa-
tient remains pending.

All previousDL studies for EZdelin-
eation have focused on classifying a
single channel or a biomarker from a
single channel as part of the EZ or
not.One should not forget that the first
assumption that is made when choos-
ing an ML or DL approach is that the
information for the task at hand is pre-
sent in the data that are given to the DL
model. Since epilepsy is regarded as a
network disorder, classifying a single
iEEG channel as part of the EZwithout
taking adjacent channels in consider-
ation may be impossible. Providing
neighbouring channels to the DLmod-
el may improve EZ delineation perfor-
mances. Furthermore, the approach of
interpreting the resected area as the EZ
may lead to labelling errors, given that
the resected areamay be larger than the
actual EZ. More complex learning
methods (e.g. multi-instance learning,
which is a generalization of traditional
supervised learning) may address these
labelling errors.

Once a DL model for EZ delinea-
tion is successfully trained, assessing
the features learnt by the DL model
can be interesting for clinical imple-
mentation and research purposes.
Zhang et al.5 tried to identify features
from the found ‘epileptic’ HFOs
based on prior knowledge. They found
that epileptic HFOs were often accom-
panied by a spike and showed an in-
verted T-shape in the time–frequency
plots. However, around 30% of
non-epileptic HFOs also had spikes
and adding the inverted T-shaped fea-
ture to non-epileptic HFO did increase
the model’s prediction towards an
epileptic HFOs by just 0.285 on
average. Observing these features is
therefore not enough to classify an in-
dividual HFO as an epileptic HFO.
More sophisticated methods that can
explain a DL model which do not re-
quire prior assumptions may reveal

novel EZ iEEG features in the future.
Explainable AI (xAI) refers to such
methods that aim to provide an ex-
planation along with the output of
an ML model.12 These methods can
provide a saliency map that highlights
important aspects in the input accord-
ing to the DL model. Novel EZ bio-
markers in the iEEG may be
discovered by using xAI and a DL
model which classifies iEEG signals as
part of the EZ. In addition, the saliency
maps can be a good interpretation tool
for neurologists, which they can use to
observe the reasons why a DL model is
given a certain recommendation.

In summary, DL for EZ delineation
from the iEEG is a promising approach
as no a priori feature extraction is re-
quired and it is an individual-level ana-
lysis. The required large iEEG data for
DL may be difficult to obtain, since
well-documented iEEGdata are scarce,
and labelling the data for resected areas
andartefacts is laborious.Nonetheless,
a proper data set is essential for a DL
model to learn generalizable patterns
and to get a reliable assessment of
a DL model’s generalizability.
Therefore, more publicly available
iEEG data sets are of great value.
With enough patients, it can be as-
sessed whether DL can be used to clas-
sify a single iEEG channel as part of the
EZ or incorporation of more channels
is needed.When aDLmodel is success-
fully trained, xAI may reveal pre-
viously unknown EZ features and
may aid in the DL model’s clinical im-
plementation. Further down the line,
aDLmodel and xAImay guide the sur-
geon in the operation theatre to resect
only epileptic tissue and improve post-
surgical seizure freedom results.
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