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Abstract: Surface-enhanced Raman spectroscopy (SERS) merges nanotechnology with conventional
Raman spectroscopy to produce an ultrasensitive and highly specific analytical tool that has been
exploited as the optical signal read-out in a variety of advanced applications. In this feature article, we
delineate the main features of the intertwined relationship between SERS and nucleic acids (NAs). In
particular, we report representative examples of the implementation of SERS in biosensing platforms
for NA detection, the integration of DNA as the biorecognition element onto plasmonic materials for
SERS analysis of different classes of analytes (from metal ions to microorgniasms) and, finally, the
use of structural DNA nanotechnology for the precise engineering of SERS-active nanomaterials.

Keywords: surface-enhanced Raman spectroscopy; DNA; plasmonics; nanoparticles; sensing

1. Introduction

Surface-enhanced Raman spectroscopy (SERS) is an optical technique that combines
nanotechnology with conventional Raman spectroscopy to produce an ultrasensitive,
highly specific analytical tool [1,2]. Its integration with spectacular advances in the design
and fabrication of advanced nanomaterials [3–5] paved the way for the application of
SERS in multiple fields such as environmental analysis [6–8], materials science [9], data
storage [10], forensic science [11], food safety [12], biology [13], and art and heritage [14].
Most notably, in the last decade, SERS biosensing applications have witnessed tremendous
growth with a specific focus on clinical diagnosis [15–18]. SERS-based nanosensors, in par-
ticular those integrating multifunctional elements [19–21], have the potential to overcome
the limitations of conventional methods.

SERS belongs to the class of plasmon-enhanced analytical techniques, as it relies on
the excitation of localized surface plasmon resonances (LSPRs) at the surface of nanostruc-
tured metals (mostly gold and silver) to enhance the Raman scattering from molecular
entities [22]. Excitation of LSPRs with a light of appropriate wavelength causes the localiza-
tion of highly strong electromagnetic fields at the metallic surface (Figure 1A). Molecules
immersed in such intensified local fields experience the first amplification of their Raman
scattering (i.e., enhancement of the local field on the analyte, see Figure 1B) whereas the
second, multiplicative intensification is ascribed to the successive enhancement of the
re-emitted Raman scattering from the analyte [22,23]. As the intensity of these magnified
electromagnetic fields rapidly declines with distance from the nanomaterial surface, SERS
signals can be obtained, by and large, only from those molecules adsorbed onto or located
close to the plasmonic substrate. In other words, SERS is mainly a “first-layer effect”. This
mechanism of intensification, which applies regardless of the nature of the molecule, is
called electromagnetic (EM) enhancement and represents the sine qua non condition to
observe SERS. The nature of the plasmon-mediated enhancement is primarily related to
the nanostructure features (i.e., composition, size and shape). In this regard, while isolated
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spherical nanospheres can produce appreciable amplification of the Raman signal, the
largest enhancements are observed at the tips of sharp protruding features and, even more
so, at nanometric interparticle gaps. The local enhancement at these interparticle “hot
spots” results from the plasmonic coupling between nanoparticles and rapidly increases
with the shortening of the interparticle gap. Such an effect can be easily visualized in
Figure 1A, where the intensity distribution of calculated electromagnetic fields on (i) an
individual nanosphere and (ii) its corresponding dimer are compared. SERS amplification
of 10−10–10−11 times can be reached at these gaps [22]. While EM enhancement is the
dominant contributor to the SERS effect, additional intensifications of the optical signal
can also originate from the change in the Raman polarizability of the analyte upon in-
teraction with the metal surface (i.e., chemical mechanisms). Overall, SERS retains the
structural specificity and experimental flexibility of conventional Raman while enabling
ultrasensitivity via LSPR-mediated enhancement.
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right 2015, Wiley-VCH. 
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base sequences and the double-helical character of the nucleic acid polymer (Figure 1C) 
[24]. Rapid and ultrasensitive access to genetic information is central in medicine. It is not 

Figure 1. (A) Illustration of a localized surface plasmon resonance (LSPR). Calculated electrical fields
for a 45 nm diameter silver nanoparticle and its corresponding dimer (interparticle gap, g = 1.31 nm)
under a 514 nm excitation laser. Reprinted with permission from [8]. Copyright 2015, American
Chemical Society. (B) Outline of the plasmonic-mediated enhancement of Raman scattering from
a molecule located close to a nanostructured metallic surface (i.e., electromagnetic mechanism).
Adapted with permission from [23]. Copyright 2012, Royal Society of Chemistry. (C) Structures of
A-DNA and B-DNA duplexes (m = minor groove; M = major groove) and A–T and G–C base pairs
(Watson-Crick and Hoogsteen pairing). Reproduced with permission from [24]. Copyright 2015,
Wiley-VCH.

DNA stores genetic information in the living world and this biological role is strictly
related to two fundamental structural features of DNA: the complementarity of nucleobase
sequences and the double-helical character of the nucleic acid polymer (Figure 1C) [24].
Rapid and ultrasensitive access to genetic information is central in medicine. It is not
surprising, then, that nano-optical sensing of nucleic acids for clinical diagnosis has become
a major field of research in nanomedicine, intending to overcome the current limitations of
conventional analytical methods (e.g., polymerase chain reaction, PCR; and enzyme-linked
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immunosorbent assay, ELISA) [1,25]. Similarly, the unique recognition properties of nucleic
acids (NAs) have been successfully combined with nanomaterials for engineering sensing
platforms in a broad range of applications [26–28].

In this feature article, we provide an overview of the longstanding, intertwined
relationship between SERS spectroscopy and nucleic acids. We begin with the development
of SERS sensors for NA sensing through both direct and indirect approaches; then we
outline the exploitation of DNA itself as a surface element for SERS-active nanostructures
for recognition and quantification of a wide selection of analytes (from metal ions to
microorganisms); finally, we highlight the use of the rich chemical functionality of DNA
for advanced nanofabrication methods.

2. SERS Sensing of Nucleic Acids

SERS sensing strategies can be classified according to two main approaches. In the first,
the output signal consists of the intrinsic SERS spectrum of the target analyte (i.e., direct
SERS), while the second sensing scheme relies on monitoring the alteration in the Raman
signal (e.g., absolute intensity, changes of the spectral profile in terms of relative band
intensities, peak frequency and bandwidth) yielded by an extrinsic SERS label (i.e., indirect
SERS). It is worth mentioning that terms such as “code”, “probe”, “label”, and “reporter”
are generally used as synonyms in the literature. In direct SERS, sensing design is relatively
straightforward since it is restricted by the need for direct contact between the target
molecule and the plasmonic surface to provide an intense and distinguishable vibrational
signal. On the other hand, indirect approaches, where the spectral alterations of the extrinsic
SERS labels must be selectively and quantitatively correlated with the biorecognition of the
analyte, can be implemented adopting a greater variety of methodologies.

A broad range of diverse direct SERS interrogations of NAs has been reported in
the literature [29–34]. While intuitively simple, the direct analysis of NAs has posed key
challenges regarding the acquisition of intense, reproducible and well-defined SERS spec-
tra. This could be ascribed to different reasons, such as the structural complexity of this
class of biomolecules, the diversity of metal surface chemistries that modulate the affinity
for NA binding, and the composition of the media [29]. Our group tackled these issues
by implementing a new class of positively-charged colloids in place of the traditional
negatively-charged ones (e.g., citrate-stabilized silver and gold nanoparticles) [35]. These
cationic colloids (AgSp) comprised silver nanoparticles coated with tetramine spermine
molecules that imparted positive charge and high affinity for NA as a result of electrostatic
binding with negative phosphate groups of NA backbone. Indeed, the addition of tiny
amounts of NA to the AgSp colloids promoted the rapid aggregation of the nanoparticles
into stable clusters in suspension. Here, the NA sequences acted as molecular bridges be-
tween nanoparticles, thereby locating themselves precisely at interparticle gaps where large
electromagnetic fields are selectively generated [36]. Figure 2A outlines the DNA-mediated
formation of nanoparticle clusters which is also reflected in the illustrative change of the
colloidal extinction profile upon NA addition. As a result of such a process, intense SERS
spectra with an unprecedented level of reproducibility can be obtained at very low NA
concentrations (down to pg levels) [37]. Such capability to gather reliable vibrational finger-
prints of the structural properties of NAs, both in terms of composition and conformation,
was exploited for the direct SERS detection and quantification of single-strand hybridiza-
tion into duplex [38] and triplex structures [39], quantifications of the relative nucleobase
content [40], recognition of single-nucleotide mismatches and abasic sites [38,41,42], struc-
tural discrimination of ribonucleic acids [41], and spectroscopic characterization of the
formation of covalent-DNA adducts [28,43]. Most notably, the use of AgSp colloids as plas-
monic substrates was found to be particularly suited for the spectroscopic interrogation of
duplex structures [44]. As can be seen in Figure 2B, the hybridization of two 21-nucleotide
(nt) single-stranded DNAs (ssDNA) into their corresponding duplex (dsDNA) yielded
an extended and characteristic set of spectral changes (e.g., peak position, bandwidths,
and relative intensity) which put on display their structural reorganization into the double
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helix via nucleobase stacking and pairing and Watson–Crick hydrogen bonding. Among
other phenomena, we highlighted the peak-shifting of the ring breathing modes in the
600–800 cm−1 range, which is consistent with base stacking, and of the carbonyl stretching
modes (1653 cm−1), which is sensitive to hydrogen bonding [38]. Notably, the use of
negatively-charged colloids in place of AgSp does not allow the acquisition of SERS spectra
that accurately detail the hybridization-induced structural rearrangement of ssDNAs (spec-
tral changes are limited to alterations of relative intensities that solely indicate a variation
in nucleobase composition) [44]. The validity of direct SERS analysis of NAs using AgSp
colloids in clinical applications has been demonstrated in several studies. For instance, our
group devised a SERS-based classification method for differentiating clinically relevant
point mutations in 141-nt K-Ras oncogene segments () [45]. Discrimination of such long
ssDNAs with single-based sensitivity is afforded by the different secondary structures
that these chains adopt under appropriate experimental conditions. In this scenario, AgSp
nanoparticles acted as compaction agents promoting the electrostatic-induced folding of
the DNA strands into different forms (i.e., A- and B-forms, and a combination thereof).
Partial least-squares discriminant analysis (PLS-DA), a well-established and robust classifi-
cation method, was used to determine the statistically significant difference in the patterns
of the SERS spectra. The results demonstrated 100% sensitivity and specificity even for
K-Ras sequences with single-base substitution. On the other hand, Trau’s group [46,47]
designed an assay for prostate cancer (PCa) risk stratification by combining the AgSp
based SERS detection of NAs with an upstream enzyme isothermal amplification (parallel
isothermal reverse transcription−recombinase polymerase amplification, RT-RPA). As
schematically depicted in Figure 2D, upon extraction of total RNA from urine samples,
three RNA biomarkers of PCa (T2:ERG, PCA3, KLK2) were selectively amplified into their
corresponding dsDNA forms via RT-RPA which, subsequently, were interrogated by SERS
and classified via chemometric analysis with high clinical sensitivity and specificity. It is
worth noting that direct adhesion of NAs via their phosphate backbone on the substrate
has been also described by Halas and co-workers [48] when using aluminum nanocrystals
as plasmonic materials with no requirement of surface modifications.

It is worth noting that the use of more advanced plasmonic substrates and experi-
mental set-ups than the described bulk analysis of aggregated colloids can pave the way
for direct SERS analysis of single DNA molecules. For instance, Huang et al. [49] re-
cently demonstrated this possibility by controlling the residence time of gold nanourchins
(AuNU), with oligonucleotides adsorbed on their tips, within plasmonic nanopores via
an electro-plasmonic trapping effect. The authors demonstrated single-molecule SERS
detection of all four nucleobases as well as the discrimination of individual nucleotides in
a single oligonucleotide. These results corroborate the potential of SERS to be used as a
single-molecule sequencing technique [49,50].

Regardless of the technological advances in direct SERS analysis of NAs, some un-
avoidable limitations remain intrinsically posed by the direct nature of the method, most
notably the need to perform pre-purification steps to isolate the target NAs from complex
biological matrices such as real human samples. In fact, in complex media, other molecules
can compete with the target sequence for absorption on the plasmonic surfaces, thereby
preventing NA adhesion or generating unintelligible SERS spectra resulting from a mul-
titude of different scatterers. Conversely, indirect SERS approaches, despite missing the
extensive structural information contained in the intrinsic NA vibrational fingerprints,
are inherently more suited for engineering sensing platforms capable of performing SERS
analysis directly in the original biological media while simultaneously favoring multiplex
and quantitative responses [16,17,51]. Indirect SERS sensing of NAs has typically been
carried out using oligonucleotides grafted onto the plasmonic substrates as biorecognition
elements (or probes) that selectively bind the target strands. Such an approach has been
integrated within a broad range of sensing schemes, exploiting a myriad of diverse SERS
substrates. For instance, Barhoumi et al. [52] proposed a hybrid strategy where DNA hy-
bridization was monitored by using oligonucleotide probes equipped with 2-aminopurines
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(2-APs) in place of adenines. While retaining the same hybridization features, 2-APs yield
a very different SERS signal (Figure 3A), thereby enabling label-free detection of the com-
plementary strand by monitoring the appearance of the strong adenine ring breathing
band at 736 cm−1. However, the most common indirect sensing strategy is one relying on
oligonucleotides as “SERS-silent” surface receptors in combination with extrinsic SERS
labels to provide signal read-out. A representative example is provided by hairpin-forming
structures labelled, at one extremity, with a SERS label (Figure 3B). In this case, the im-
mobilized oligonucleotide forms a stem-loop configuration onto the plasmonic surface,
which forces the SERS label to locate close to the nanomaterial (i.e., intense SERS signal:
“SERS on”). In the presence of the complementary target strand, the hybridization pro-
cess breaks the hairpin geometry, thereby separating the SERS label from the plasmonic
structure (i.e., “SERS off”). The corresponding decrease in SERS intensity can be then
quantitatively correlated with the number of binding events and, in turn, with the concen-
tration of target NAs [53,54]. Another very common sensing design involves the use of
SERS-encoded nanoparticles, which typically comprise, as key building units, a plasmonic
core as the optical enhancer, surface elements as selective receptors for target molecules,
and a SERS reporter/label/code [17,19]. Often, an additional outer layer (e.g., silica) is also
integrated into the nanomaterial design to impart high colloidal stability and protect the
SERS-labelled plasmonic core from the media, while providing a convenient surface for
further chemical functionalization with, among others, oligonucleotides (Figure 3C) [55].
Typically, the presence of the outer shell also prevents an efficient plasmon coupling when
the SERS-encoded nanoparticles are brought in close contact, so that the recorded absolute
SERS intensity will be proportional to the number of particles in the volume illuminated
by the laser. This feature is very convenient for quantitative (multiplexing) analysis. Al-
ternatively, the oligonucleotide-functionalized plasmonic nanoparticles can be devised to
actively take advantage of interparticle plasmon coupling to generate larger electromag-
netic fields at particle junctions and, in turn, further enhance the SERS signal of molecular
reporters positioned at these gaps. As an example, we exploited this strategy to monitor
the hybridization of dsDNA and locked nucleic acid (LNA) modified triplex-forming
oligonucleotides conjugated onto SERS-encoded nanoparticles comprising spherical silver
cores and a resonant SERS label (carboxy-X-rhodamine isothiocyanate; ROX-ITC) [56].
LNA is a structural modification that imparts rigidity and, in turn, increases the binding
affinity of the corresponding oligonucleotide for duplexes, enabling the formation of stable
triplex structures at room temperature via Hoogsten hydrogen bonds. As outlined in
Figure 3D, two sets of silver nanoparticles functionalized with thiolated LNA-modified
oligonucleotides were prepared, one of them also labelled with ROX-ITC. Each oligonu-
cleotide was complementary to one half of a 14-bp duplex (dsDNA00). The time-dependent
triplex-driven nanoparticle assemblies could be monitored via UV-Vis spectroscopy, which
revealed a change of the extinction profile due to nanoparticle aggregation. At the same
time, interparticle plasmon coupling was also responsible for the increase in SERS signal
due to the localization of molecular codes at interparticle gaps. By profiting from the high
structural rigidity of triplex structures, duplexes including an internal non-complementary
segment of increasing length (dsDNA05, dsDNA10, and dsDNA15; consisting of 5, 10, and
15 base pairs, respectively) were also targeted to promote the formation of nanoparticle
clusters with well-defined gap separation (at the nanometric level). This was confirmed
by time-dependent bulk analysis of the gap-plasmon resonances in the extinction spectra
and overall SERS intensification, which progressively decreased for longer duplexes (i.e.,
the shorter the interparticle gap, the higher the SERS intensity). The high reproducibility
of the time-dependent behaviour of the bulk SERS signal, despite a mixture of clusters
of different sizes in the sample, demonstrated effective discrimination between different
duplex lengths. On the other hand, the triplex-DNA ability to engineer precise nanoscale
gaps was exploited to unravel the relationship between the dynamic structural properties
and the bulk plasmonic and SERS responses of randomly aggregated nanoparticles in
suspension. Most notably, the results suggest that maximum SERS intensifications are
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achieved when poorly enhancing individual NPs are assembled into small clusters (ca.
2–6 NPs per cluster) and before larger aggregates are subsequently formed, which occurs
at a different time for each duplex. Regardless, bulk SERS enhancements are primarily
determined by the interparticle distance, whereas the average aggregation state appears to
play a secondary role.
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Figure 2. (A) Outline of NA-mediated assembly of cationic spermine-coated silver colloids (AgSp)
into stable clusters in suspension and the representative extinction spectra of the nanomaterials
before and after the addition of a 21-bp duplex. Adapted with permission from [37]. Copyright
2015 WILEY-VCH. (B) SERS spectra of two 21-nt complementary ssDNAs (ss1 and ss2) and their
corresponding duplex (ds12). A table with the vibrational assignments is also included. Adapted
with permission from [29]. Copyright 2018, Royal Society of Chemistry. (C) Molecular dynamics
simulation of the wrapping process of a 141-nt single-stranded DNA around a AgSp nanoparticle
for low salt concentration, SERS spectra of 141-nt ssDNAs with single and double-point mutations
in the 430–910 cm−1 spectral range, and the resulting partial least-squares discriminant analysis
(PLS-DA). Adapted with permission from [45]. Copyright 2017 WILEY-VCH. (D) Schematic of SERS
detection of urine RNA prostate cancer biomarkers using AgSp colloids and pre-amplification of the
target RNAs via reverse transcriptase-recombinase polymerase amplification (RT-RPA). Adapted
with permission from [47]. Copyright 2018, American Chemical Society.
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Figure 3. (A) Depiction of the label-free sensing scheme for monitoring DNA hybridization: a
thiolated oligonucleotide (DNA probe), with 2-aminopurine (2-AP) substituted for adenine, A, is
anchored onto a gold nanoshell surface. Upon hybridization with the complementary target DNA,
a new adenine band arises in the SERS spectrum. Adapted with permission from [52]. Copyright
2010, American Chemical Society. (B) Illustration of a canonical hairpin DNA probe equipped
with a SERS label for on-off detection and quantification of the target strand. (C) Schematic of
a typical SERS-encoded particle. Adapted with permission from [17]. Copyright 2017, Springer.
(D) Outline of the duplex-mediated assembly of two sets of silver nanoparticles functionalized with
triplex-forming oligonucleotides (one of the two batches of nanoparticles was also labelled with
carboxy-X-rhodamine isothiocyanate, ROX-ITC, as the SERS code); head-to-head nanoparticle triplex
assembly was initiated by the addition of complementary dsDNA of increasing length (dsDNA00,
dsDNA05, dsDNA10, and dsDNA15). Extinction spectra in the absence (black line) and after the
addition of complementary dsDNA between 0–80 min, at 150 s intervals. Time-dependent values of
ROX-ITC SERS intensity (peak height of the 1646 cm−1 band) for each dsDNA-mediated nanoparticle
assembly during the aggregation process. Adapted with permission from [56]. Copyright 2012, Royal
Society of Chemistry.
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3. DNA as Biorecognition Element for SERS Sensing

Besides the conventional use of short thiolated oligonucleotides as surface receptors for
targeting complementary NA sequences, we have witnessed in the last decade tremendous
growth in the use of aptamers as sensing elements in research, including for SERS-based
applications [57–59]. Traditionally, aptamers are selected from an extensive pool of random
NA sequences via a combinatorial technique known as systematic evolution of ligands by
exponential enrichment (SELEX). The identified sequences form versatile tertiary structures
with flexible structural conformations that allow the selectively binding, with high affinity,
of specific targets via hydrogen bonding, base stacking, and van der Waals and electrostatic
forces [57]. Broadly speaking, the integration of aptamers into SERS-based applications
takes place via the same sensing strategies as for conventional oligonucleotides employed
in NA detection, as previously discussed (e.g., direct vs. indirect, label-free or aptamers
labelled with a SERS code, integrated into SERS-encoded nanoparticles, etc.). However,
SERS sensing via aptamer receptors can be extended to a vast range of different targets, from
metal ions and small molecules to large biomolecules and microorganisms. In particular,
aptamers have emerged as an efficient alternative to antibodies because of their improved
chemical stability, relative ease of à la carte design and cost-effective production, low
immunogenicity, and reduced size. On this subject, our group tested the responses of
antibody- vs. aptamer-modified SERS-encoded nanoparticles for the online, rapid and
ultrasensitive quantification of S. aureus in real human fluids [60]. In a first work [61], we
designed a microorganism optical detection system (MODS) that integrates microfluidics
and SERS sensing for the multiplex identification of bacterial pathogens in serum and
blood. Antibody-modified SERS-encoded nanoparticles were fabricated to guarantee high
colloidal stability in biological media while simultaneously minimizing the thickness of
the outer functional layer on the spherical particles (Figure 4A). This was to permit an
efficient interparticle plasmon coupling (i.e., generation of hot-spots) when NPs selectively
accumulated on the bacterial membrane via surface proteins binding. As a result, the
overall SERS signal recorded when NP-covered pathogens flow through the volume under
laser interrogation was further boosted against the background of unbound nanoparticles,
thereby facilitating their real-time, efficient and rapid quantification. Similarly, SERS-
encoded nanoparticles were subsequently designed by using a ssDNA aptamer specific to
Staphylococcus aureus (S. aureus) [62] in place of the S. aureus antibody MA1-10708. The
number of SERS code molecules (code = mercaptobenzoic acid, MBA) per nanoparticle
was maintained at a constant level. To compare the binding efficiency, the two sets of
particles were separately combined with a serum solution spiked with around 7× 103 CFUs
per mL of S. aureus (the number of viable bacteria in a sample is expressed as colony-
forming units, CFUs) and the resulting mixtures were passed through a microfluidic device
for optical analysis. Both SERS-encoded particles yielded intense SERS signals when
exposed to bacteria, which progressively increased over time up to a plateau reached at
t = 800 s (Figure 4A). In the case of aptamer-modified nanoparticles, however, the final
SERS intensity was approximately 40% larger thanks to a larger affinity for the bacteria
membrane. This can be explained as follows: in contrast to antibodies, aptamers are
easily and controllably anchored onto the plasmonic surface without undermining their
bioavailability, while their smaller size facilitates the formation of more SERS efficient
hot-spots (i.e., shorter interparticle gaps).

Aptamers have also been extensively exploited in the SERS-based sensing of toxic
metal ions such as Hg(II) [54]. Mercury ions display a high affinity for thymine residues,
promoting the formation of Hg(II) mediated homo base-pairs (T-Hg(II)-T). Our group
demonstrated the viability of direct SERS analysis with AgSp colloids for elucidating
the spectral changes in the intrinsic vibrational profiles of ssDNA upon Hg(II) binding
which, in turn, can be also quantitatively correlated with the metal ion concentration in the
sample [43]. However, more conventionally, Hg(II) quantification is carried out via indirect
methods using labelled thymine-rich aptamers which, upon target binding, undergo struc-
tural reshaping over the plasmonic surface (Figure 3B). An illustrative example is provided
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by the work of Shi et al. [63]. Here, a silver nanoparticle film was functionalized with
aptamers labelled with carboxyfluorescein (FAM) as a resonant SERS code. For high surface
coverages, the strands adopted a tilted orientation, thereby placing the SERS code further
away from the surface (i.e., weak SERS signal, Figure 4B). The FAM-labelled extremity of
the aptamer was brought into closer contact with the plasmonic nanostructure when Hg(II)
binding promoted the formation of a hairpin structure (i.e., “SERS on”). An additional
SERS code (4-aminothiophenol; 4-ATP) was also directly introduced at the nanostructured
surface to be used as an internal standard. Thus, Hg(II) quantification was performed by
measuring the SERS intensity ratios between the FAM signal (target dependent) and the
4-ATP signal (target independent). This ratiometric approach has been shown to improve
the sensitivity and robustness of the quantitative response over a broader linear dynamic
range. Furthermore, the authors generated a dual nucleic acid surface layer by integrating a
second biorecognition element consisting of a DNA duplex for the simultaneous detection
of Pb(II). The dsDNA was formed by the hybridization of a surface-bound Pb(II)-specific
DNAzyme strand labelled with 6-carboxy-X-rhodamine (ROX) and the complementary
17DS strand (Figure 4B). The rigid duplex structure positioned the ROX label further from
the plasmonic substrate (i.e., “SERS off”). The addition of Pb(II) caused the DNAzyme
strand-activated cleavage of 17DS, which allowed for the approximation of the ROX-
labelled extremity of the surface-bound single strand to the silver film thanks to the gained
structural flexibility. As shown in the corresponding SERS spectrum (Figure 4B), intense
and unique bands of individual labels can be easily distinguished and used for multiplex
ratiometric analysis. It is worth noting that the current availability of selective aptamers
for metal ion sensing is restricted to very few species, which hampers a more extensive use
of this class of NAs in the field. Conversely, an abundant source of molecular receptors
for metal ions can be found among the organic reagents employed in classical qualitative
analytical chemistry. For SERS sensing purposes, aromatic reagents are preferably selected
from among those that undergo extended alterations of their Raman polarizability upon
metal ion interaction. Such alterations are directly reflected in the reshaping of their vi-
brational profile which, in turn, can be quantitatively related to the number of binding
events via ratiometric analysis. Thus, in these indirect approaches, these molecular species
act as chemoreceptors integrating, within the same structure, the selective receptor for
target ions, the SERS transducer, and the internal standard. However, for SERS applica-
tions, the chemoreceptor must be anchored to the plasmonic surface while retaining its
chelation capability of coordinating target ions. This significantly limits the number of
available organic receptors, since binding to the target species often takes place through
the same functional groups that promote their adsorption on metallic nanostructures. Our
group recently demonstrated that the structural and functional plasticity of dsDNA for
non-covalent interaction with small aromatic molecules via intercalative binding can be
used to tackle this issue [64]. Specifically, we selected alizarin red S (ARS) as the organic
reagent for the quantitative determination of Al(III) and Fe(III), and a short DNA duplex
as the chemoreceptor host (Figure 4C). In the absence of dsDNA, ARS directly bound
the metallic surface of AgSp colloids via coordination of the same keto and hydroxyl
groups that are involved in metal ion chelation. Thus, it is not surprising to see that the
SERS profile of ARS directly bound to positively-charged silver colloids did not show any
appreciable alterations in the presence of Fe(III) (Figure 4C). Conversely, when previously
combined with dsDNA, ARS retained its chelation capabilities, as demonstrated by the
extensive spectral change upon addition of the target ion (Figure 4C). Intriguingly, ARS
chelation to Fe(III) and Al(III) yielded well-distinguishable spectral fingerprints due to the
distinct electronic redistributions resulting from metal ion coordination. This allowed for
the simultaneous detection of both metal ions using one single chemoreceptor.
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4. DNA as a Structure-Directing Molecule for Nanomaterial Fabrication

Finally, DNA has emerged as an outstanding nanotechnological tool for the rational
design of nanomaterials with precision at a nanometric scale. In this context, DNA is
used as a structure-directing agent by profiting from the programmability of nucleic acid
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assembly and DNA’s unique chemical properties, structural plasticity, and tunability [65,66].
Structural DNA nanotechnology has been applied to produce a multitude of diverse, hybrid
nano-architectures, including plasmonic materials for SERS applications. An illustrative
example of the outstanding ability of DNA to assemble metallic nanoparticles into well-
defined molecular-like materials (i.e., plasmonic metamolecules) has been recently reported
by Zhou et al. [67]. In their work, the authors exploited a general strategy based on
DNA origami to prototype the assembly of core-shell silver-gold nanoparticles (Ag@Au)
into metamolecules of high structural complexity and tunable SERS response. Six 10
nm diameter gold nanoparticles were attached to the exterior sides of a hexagon tile
template obtained by the programmed self-assembly of DNA-origami honeycomb lattices
(Figure 5A). These small AuNPs were used as seeds for in situ Ag deposition to yield
Ag@Au core-shell nanoparticles of increasing size. The efficiency of the SERS response,
monitored by using 4-mercaptobenzoic acid (4-MBA) as the SERS label, showed an increase
with the thickening of the silver shell before neighboring nanoparticles began to fuse
(i.e., suppression of interparticle hot-spots), as corroborated by theoretical simulations of
the distribution of the electromagnetic field (Figure 5A). Further and more structurally
complex SERS metamolecules were constructed by tailoring hexagon DNA monomers
(core-satellites, dimers, trimers, 1D chains, etc.), revealing a general correlation between
increase in structural complexity and SERS response.

Besides its use as molecular directing agent in the bottom-up self-assembly of nanopar-
ticles, DNA has been also employed as an interfacial-active element for guiding gold/silver
ions reduction in overgrowth processes [68,69]. Generation of small interparticle gaps is
key to maximizing signal enhancement and, thus, fabricating highly bright SERS encoded
structures [70,71]. Salt-induced aggregation of labelled nanoparticles is a straightforward
approach to generate very active SERS structures, but the traditional poor control over
aggregate sizes, geometries, and gap separations yields highly heterogeneous cluster-to-
cluster SERS responses. To tackle these limitations, Nam and coworkers [68,69] proposed
an approach based on thiolated DNA-base chemistry for the high yield fabrication of
core-shell gold nanoparticles with an interior gap of ca. 1 nm. This class of SERS encoded
nanoparticles displayed very high and uniform SERS enhancements with single-particle
sensitivity. The fabrication scheme is depicted in Figure 5B. The 20 nm citrate-stabilized
gold core was functionalized with thiolated ssDNAs equipped with an internal SERS label
(Cy3). The nucleobases acted as a template for the subsequent growth of the gold shell
layer and, thus, enabled the precise entrapment of the SERS label at the internal nanogap.
Among other variables, the nucleobase composition played a central role in determining
the structural property of the core-shell particles, as clearly shown by the use of different
thiolated homopolymeric sequences (poly A, poly C, poly G and poly T, see Figure 5B).
poly A and poly C-modified gold cores enabled the formation of uniform ~1 nm nanogaps
for nearly all particles. On the other hand, small nanohole-like gaps were generated using
guanine sequences (nanoparticle aggregation was also detected in this case), while poly T
yielded irregularly shaped narrow nanogaps in popcorn-like Au shell structures (Figure 5B).
The formation of G-quadruplexes in poly G and the poor binding affinity of thymines for
Au have been indicated as the source of such uneven core-shell-like particles. Importantly,
upon removal of nucleobases from the sugar moiety and phosphate backbone (Figure 5B,
“no base”), no interior gaps were observed within shell growth, further demonstrating the
key role of nucleobases in controlled synthesis.
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Figure 5. (A) Schematic of the fabrication of Ag@Au hexagonal metamolecules on a DNA origami
template via control of the growth time of in situ silver deposition (t = 0, 3, 7 and 10 min). At
t = 12 min, fusion of the nanoparticle was observed. Representative TEM images and corresponding
finite-difference time-domain simulations of the electromagnetic fields (laser = 633 nm) are also
included. Adapted with permission from [67]. Copyright 2021, American Chemical Society. (B) Out-
line of the fabrication of core-shell SERS encoded nanoparticle with ultrasmall interior nanogap by
exploiting thiolated DNA-based chemistry. The sequences of the thiolated ssDNA poly A, poly C,
poly G and poly T are 3′-HS-(CH2)3-(Cy3)-A10-5′, 3′-HS-(CH2)3-(Cy3)-C10-5′, 3′-HS-(CH2)3-(Cy3)-
G10-5′, and 3′-HS-(CH2)3-(Cy3)-T10-5′, respectively (where Cy3 = SERS code). “No base” refers to
a structurally analogous thiolated ssDNA from which nucleobases were removed while leaving
sugar moiety and phosphate backbone intact. Core-shell nanoparticles with nanometric interior
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polyvinylpyrrolidone (PVP) as a stabilizer. The reduction of HAuCl4 onto the core was performed us-
ing hydroxylamine hydrochloride (NH2OH·HCl) as a mild reducing agent. Adapted with permission
from [68]. Copyright 2021, American Chemical Society.

5. Conclusions and Future Prospects

In this feature article, we outlined the main facets of the increasingly intertwined
relationship between SERS spectroscopy and DNA. SERS offers unique benefits over
conventional analytical techniques (e.g., sensitivity, selectivity and multiplexity) while
tremendous efforts in nanofabrication and materials sciences have enabled the engineering
of a multitude of diverse SERS-active substrates and their integration with other technolo-
gies into flexible, multifunctional platforms. As a result, SERS (bio)sensing is continuously
expanding its realm of applications into multidisciplinary areas although, despite its ex-
ceptional analytical potential, translation into commercial devices is, by and large, yet to
be seen. Critical challenges to be addressed are, for instance, (i) large-scale production of
robust, reliable and cost-effective SERS platforms, (ii) elaboration of standardized protocols
for sample manipulation and measurements, and (iii) spectral analysis. These improve-
ments are essential to fully convert SERS into a truly quantitative analytical technique [1]
and, thus, pave the way for converting SERS sensing of nucleic acids, a longstanding im-
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plementation of the technique in the academic setting, into viable applications for clinical
settings. On the other hand, we also anticipate that foreseeable advances in aptamer tech-
nology and product availability will be extremely beneficial for the design of innovative
SERS-based sensors for the selective detection of a multitude of different targets, including
those that are currently inaccessible or extremely difficult to identify and quantify. Finally,
the use of DNA nanotechnology and the programmability of DNA macromolecules for
the manufacturing of sophisticated nanostructures with nanoscale precision is an exciting
research area for generating customized SERS active materials.
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