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Abstract

Introduction: Adequate volume expansion (VE) in patients with evidence of hypoperfusion should be aimed not
only at achieving an increase in stroke volume (SV) and cardiac index (CI) but also at improved tissue perfusion
and oxygenation. Our aim in this study was to assess the dynamic changes in muscle tissue oxygen saturation
(StO2) during hypovolaemia and in response to VE.

Methods: We conducted a prospective study of 42 fluid challenges in patients undergoing major abdominal
surgery with evidence of hypovolaemia, defined as pulse pressure variation (PPV) >13% and SV variation (SVV)
>12%. CI, SV, SVV (FloTrac/Vigileo) and PPV were measured before and after VE. Fluid responsiveness was defined
as an increase of SV >15% after a 500-mL colloid infusion over 15 minutes. In all patients, the muscle StO2 and its
changes during a standardised vascular occlusion test were analysed using a near-infrared spectroscopy device
after anaesthesia induction (which defined the baseline state) and before and after each VE.

Results: No patients were preload-responsive after anaesthesia induction. Twenty-nine of forty-two fluid challenges
(69%) were positive for VE, with a statistically significant (P < 0.001) difference in SV changes between positive and
negative responses to VE. There was a statistically significant difference in PPV and SVV values before VE in the positive
and negative fluid responses [PPV: 16% (15% to 18%) vs. 14% (13% to 15%), P = 0.001; and SVV: 14% (13% to 16%) vs. 16%
(15% to 16%), P = 0.03 or positive and negative fluid responses, respectively]. Data are presented as medians and 25th and
75th percentiles Before VE there was no significant difference in StO2 values relative to baseline [86% (78% to 88%) vs.
84% (77% to 91%), P = 0.83], without a significant difference (P = 0.36) between positive and negative fluid challenges.
Hypovolaemia was associated with a significant reduction (P = 0.004) in StO2 recovery slope, with a significant difference
(P = 0.02) between positive and negative fluid challenges. The VE-induced increase in the StO2 recovery slope was 62 ±
49% (P < 0.001) for positive fluid challenges and 26 ± 34% (P = 0.04) for negative fluid challenges.

Conclusions: Hypovolaemia significantly affects the muscle StO2 recovery slope. Restoring effective intravascular
volume with fluid loading significantly improves the StO2 recovery slope, despite apparently ineffective changes in
systemic haemodynamics.

Introduction
Fluid loading is a first-line therapy when hypovolaemia is
suspected in patients with evidence of hypoperfusion,
and it is commonly used in operating rooms and ICUs.
The maintenance of adequate oxygen delivery and tissue

perfusion is considered a primary goal in volume replace-
ment [1] while avoiding fluid overload, which may lead
to interstitial oedema [2]. Several studies have demon-
strated the superiority of dynamic preload indices, such
as pulse pressure variation (PPV) and stroke volume var-
iation (SVV), rather than static indices for individualised
evaluation of patients who are likely to benefit from an
increase in preloading [3-5]. In addition, the use of SVV
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or PPV can reduce organ failure during individualised,
goal-directed fluid optimisation [6,7].
Although a fluid challenge should correct macrohae-

modynamics (stroke volume (SV) and cardiac output
(CO)), the ideal volume replacement strategy should also
improve microcirculation perfusion and tissue oxygena-
tion. Hypovolaemia during major surgery or sepsis leads
to inadequate perfusion of the microcirculation and
insufficient oxygen availability to meet tissue oxygen
needs [8]. However, previous reports have suggested a
mismatch between global haemodynamics and microcir-
culation and a potential independence of macrocircula-
tion and microcirculation during fluid loading [9,10].
Thus, fluid administration may correct systemic haemo-
dynamic variables but not regional and microcirculatory
oxygenation and perfusion [11].
Microcirculatory haemoglobin and oxygen availability

can be measured by use of near-infrared spectroscopy
(NIRS) [12], a noninvasive technique that can be per-
formed at the bedside. In this method, the differential
absorption of infrared light at two specific wavelengths
(680 and 800 nm) by deoxyhaemoglobin is used to define
the haemoglobin saturation level in vessels located in the
tissue volume that is illuminated by the probe [13]. The
dynamic response to tissue oxygen saturation (StO2), espe-
cially the StO2 recovery slope, during a standardised vascu-
lar occlusion test (VOT) is assumed to reflect the
recruitment of microvessels in response to a local hypoxic
stimulus [14]. Researchers in previous studies found that
the StO2 recovery slope was a prognostic factor in septic
patients [15] and was useful in evaluating the response to
norepinephrine in severely hypotensive septic shock
patients [16]. However, there is no information on the
StO2 response during fluid resuscitation and in the pre-
sence of abnormal vascular reactivity in patients under-
going major surgery. Our aim in this study was to assess
thenar muscle StO2 changes during VOT in responses to
hypovolaemia and to assess the dynamic responses of the
StO2 recovery slope in response to volume expansion (VE).

Materials and methods
This study was approved by the Ethics Committee of our
institution. The requirement for written consent was
waived, as no interventions were required. The protocol
was part of our routine practise in patients undergoing
major abdominal surgery. All patients had arterial cathe-
ters for invasive blood pressure monitoring. The haemody-
namic measurements and fluid loading are routinely used
to assess fluid responsiveness.
We studied 24 consecutive Caucasian patients (13

males and 11 females), all with American Society of
Anesthesiology Physical Status scores of 2 or 3, who were
undergoing major abdominal surgery. Patients with per-
manent cardiac arrhythmia, aortic regurgitation, body

mass index ≥35 kg/m2, those receiving b-blocker therapy
and those with contraindications for VOT (arteriovenous
shunt) were excluded. The surgical procedures that our
24 patients underwent were duodenopancreatectomy (n
= 9), colectomy (n = 10), gastrectomy (n = 3) and hepa-
tectomy (n = 2), and all were scheduled for tumour
resection.

Study design
Standardised anaesthetic management was applied for all
patients. General anaesthesia was induced with propofol
(2 to 3 mg/kg), sufentanil (0.2 to 0.3 μg/kg) and cisatra-
curium (0.15 mg/kg) to facilitate endotracheal intubation
and was maintained with a continuous infusion of propo-
fol and sufentanil (using target-controlled infusion) to
target a bispectral index of 40 to 50 (Aspect A-1000;
Aspect Medical Systems, Norwood, MA, USA). Anaes-
thetic concentrations were based on predicted body
weight. After tracheal intubation all patients were venti-
lated in the supine position in controlled volume mode
using a tidal volume of 8 to 10 mL/kg of predicted body
weight, a respiratory rate adjusted to maintain an end-
tidal carbon dioxide tension of 30 to 35 mmHg, an
inspiratory/expiratory ratio of 1:2 and a positive end-
expiratory pressure of 5 cmH2O. The inspiratory oxygen
fraction was set at 0.5 (Datex-Ohmeda Avance; GE
Healthcare, Helsinki, Finland). Ventilatory settings were
kept constant during the entire study period. Intraopera-
tive fluid intake was maintained using 8 mL/kg/hour of
lactated Ringer’s solution. Normothermia was maintained
during the entire procedure using a convective air warm-
ing system (WarmTouch; Tyco Healthcare, Pleasanton,
CA, USA).

Measurements
Standard monitoring included measurements with a five-
lead continuous electrocardiograph and measurements of
heart rate, peripheral oxygen saturation and end-tidal par-
tial carbon dioxide tension. As part of our routine haemo-
dynamic monitoring during major surgery, all patients
intubated with a 20-gauge, 8-cm arterial catheter (Arrow
International, Reading, PA, USA), which was inserted into
the left radial artery. Arterial pressure was measured using
a high-fidelity dedicated pressure transducer (FloTrac Sen-
sor; Edwards Lifesciences, Irvine, CA, USA) connected to a
Vigileo version 3.01 monitor (Edwards Lifesciences) and a
bedside monitor (IntelliVue MP50; Philips Medical Sys-
tems, Suresnes, France). The pressure transducer was
levelled at the midaxillary line, zeroed at atmospheric pres-
sure and fixed to the operating table so that the transducer
was at the level of the atrium during the study protocol.
In all patients, automated online PPV and SVV were mea-
sured continuously from the algorithm integrated in
the monitors as described in detail elsewhere [5,17,18].
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The following variables were recorded before and after
each episode of VE: cardiac index (CI), SV, systolic arterial
blood pressure, mean arterial blood pressure (MAP) and
diastolic arterial blood pressure.

Near-infrared spectroscopy and vascular occlusion test
The StO2 was continuously and noninvasively measured
using the InSpectra™ StO2 System (model 650; Hutchin-
son Technology Inc., Hutchinson, MN, USA). A 15-mm
NIRS sensor probe (model 1615; Hutchinson Technology
Inc.) placed on the right thenar eminence allowed us to
measure StO2 at a depth of 14 mm. StO2 values were
recorded continuously and stored every two seconds by
the NIRS monitor. StO2 stability was defined as variation
<2% over 30 seconds (pre-VOT StO2) [19]. The values
were then transferred to a personal computer and analysed
using a dedicated program (InSpectra Analysis Program
version 4.0; Hutchinson Technology Inc.).
The VOT was performed by using a sphygmoman-

ometer placed around the upper arm. The sphygmoman-
ometer was rapidly inflated to 50 mmHg more than
systolic pressure and was kept inflated until StO2

decreased to 40% [16]. Upon the completion of the ischae-
mic period, the sphygmomanometer was rapidly deflated
and the StO2 response was followed until it returned to
the baseline value. For every test, the following VOT-
derived StO2 variables were calculated automatically by
the InSpectra Analysis Program: the StO2 desaturation
slope (desStO2, expressed as percentage per minute), the
StO2 recovery slope (recStO2, expressed as percentage per
second) and the hyperaemia recovery area (Figure 1).

Experimental protocol
In all patients, fluid responsiveness was evaluated before
induction of anaesthesia by use of a passive leg raising test
as described previously [20,21]. In cases of passive leg rais-
ing-induced changes in SV >16%, a 250-mL fluid bolus of
hydroxyethylstarch (HES 130/0.4 (Voluven); Fresenius-
Kabi AG, Bad Homburg, Germany) was delivered over a
period of 15 minutes before anaesthesia induction. After
anaesthesia induction and a five-minute period of stabilisa-
tion (which was defined as the baseline state), the first set
of measurements was recorded (systolic arterial pressure
(PAS), diastolic arterial pressure (PAD) ultrasound, mean
arterial pressure (PAM), CI, SV, baseline StO2, desStO2,
recStO2 and hyperaemia recovery area). For each episode
of suspected hypovolaemia, defined as PPV >13% and SVV
>12% [5], VE was performed using a 500-mL bolus of
hydroxyethylstarch delivered over a 15-minute period.
Fluid responsiveness was defined as an increase in SV of
≥15% [3]. Before and after each VE, an additional set of
measurements was obtained (PAS, PAD, PAM, CI, SV,
baseline StO2, desStO2, recStO2 and hyperaemia recovery
area).

Statistical analysis
We subdivided the population into two groups based on
the percentage increase in SV after intravascular VE: (1)
positive response to fluid challenge when SV was ≥15%
and (2) negative response to fluid challenge when SV was
<15%. The results were tested for normality using the one-
sample Kolmogorov-Smirnov goodness-of-fit test. Nor-
mally distributed data are presented as means ± standard
deviation (SD) or and non-normally distributed data as
medians with 25th and 75th percentiles. The c2 test was
used to compare categorical data. Quantitative data were
compared using analysis of variance (ANOVA) when the
distributions were normal and the variances were equiva-
lent; otherwise, they were compared using the Kruskal-
Wallis H-test. The paired Student’s t-test was used to
compare data at two different time points, with adjust-
ment of the t-statistics whenever indicated, to take into
account the presence of several measurements in the
patient studied. The within-group effect of fluid loading
was analysed using ANOVA or the Kruskal-Wallis H-test
as appropriate. To assess the reproducibility of VOT-
derived StO2 variables, the coefficient of variability was
calculated to obtain the StO2 recovery slopes for both
positive and negative responses to fluid loading [22]. Dif-
ferences between groups were assessed using Student’s t-
test or a Mann-Whitney U test as appropriate. A mixed
model using the restricted maximum likelihood method
was used to estimate covariance components, taking into
account the random effects of patient and time (before
and after fluid loading) and the covariate interaction group
× time. The receiver operating characteristic (ROC) curve
was also generated for the StO2 recovery slope, and area
under the ROC curve, sensitivity, specificity, positive pre-
dictive value and negative predictive value were calculated
for recStO2. When applicable, correlations were evaluated
on the basis of the Spearman’s r coefficient. Statistical
analysis was performed using SEM version 2.0 software
[23]. P < 0.05 was considered statistically significant.

Results
Table 1 summarises the baseline demographic clinical
characteristics of the 24 patients. On the basis of the pas-
sive leg-raising test, no patient was considered preload-
dependent before induction of anaesthesia. The duration
of the surgical procedures ranged from 75 to 300 minutes
(median, 120 minutes). Table 2 shows the baseline macro-
circulatory and thenar StO2 curve variables, which were
recorded after induction of anaesthesia. No patients
required vasopressor therapy during the study period.

Macrocirculatory variables
Compared to baseline values, hypovolaemia was asso-
ciated with a significant reduction in SV (70 ± 20 mL
vs. 58 ± 12 mL; P = 0.038), but CO was not significantly
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different (5.0 ± 0.9 L/minute vs. 4.5 ± 0.9 L/minute; P =
0.13). Before VE, PPV was 16% (range, 14% to 18%) and
SVV was 15% (range, 14% to 16%). A total of 42 fluid

challenges (one to three per patient) were performed. In
the whole study population, delivery of a fluid bolus was
associated with a 27.7 ± 20% increase in SV (P < 0.001).
According to the expected 15% increase in SV, 29 (69%)
of 42 fluid challenges were positive in relation to VE
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Figure 1 Response to tissue oxygen saturation during a vascular occlusion test. StO2, tissue oxygen saturation. dt = time to reach the StO2

baseline (preVOT) value. The two-way arrow is dt.

Table 1 General characteristics of the study population
before induction of anaesthesiaa

Variables Values

Age, years 62 ± 13

Sex ratio, % (M/F) 54/46

Height, cm 167 ± 8

Body surface area, m2 1.8 ± 0.2

BMI, kg/m2 24 ± 4

Comorbidities, %

Hypertension 54

Ischaemic heart disease 4

Diabetes mellitus 17

COPD 13

Smokers 33

MAP, mmHg 93 ± 17

HR, beats/minute 70 ± 18

Hb, g/dL 13 ± 2

SpO2, % 97 ± 2

StO2, % 80 (77 to 83)
aBMI, body mass index; COPD, chronic obstructive pulmonary disease; Hb,
haemoglobin; HR, heart rate; MAP, mean arterial pressure; SpO2, peripheral
oxygen saturation; StO2, tissue oxygen saturation. Data are absolute values,
means ± SD or medians (25th and 75th percentiles).

Table 2 Macrocirculatory and muscle tissue oxygen
saturation curve variables at baseline after induction of
anaesthesiaa

Variables Values

Systolic arterial pressure, mmHg 110 ± 16

Diastolic arterial pressure, mmHg 57 ± 10

Mean arterial pressure, mmHg 73 ± 12

Heart rate, beats/minute 71 ± 13

Stroke volume, mL 70 ± 20

Cardiac output, L/minute 5.0 ± 0.9

PPV, % 8 (5.75 to 8.25)

SVV, % 7 (6.0 to 8.0)

SpO2, % 98 ± 1

StO2, % 86 (78 to 88)

desStO2, %/minute -10.4 (-10.2 to -8.8)

recStO2, %/second 5.1 (3.89 to 5.53)

Hyperaemia recovery area, AU 16.9 (13.1 to 20.6)
aPPV, pulse pressure variation; SVV, stroke volume variation; SpO2, peripheral
oxygen saturation; StO2, tissue oxygen saturation; desStO2, StO2 desaturation
slope; recStO2, StO2 recovery slope; AU, arbitrary units. Data are means ± SD
or medians (25th and 75th percentiles).
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(mean change in SV: 36 ± 17%) and 13 fluid challenges
were negative (mean change in SV: 10 ± 16%). There
was a statistically significant difference (P < 0.001) in SV
changes between positive and negative responses to
fluid challenge. With regard to the type of fluid
response, there was a statistically significant difference
in PPV and SVV values before VE for the positive and
negative fluid responses [PPV: 16% (15% to 18%) vs.
14% (13% to 15%), P = 0.001, and SVV: 14% (13% to
16%) vs. 16% (15% to 16%), P = 0.03, for positive and
negative fluid responses, respectively]. In the positive
fluid challenge, VE also induced significant changes in
CO and MAP, but there were no evident differences
induced by the negative fluid challenge (Table 3). There
was no statistically significant difference in haemoglobin
levels during VE (12.6 ± 2 g/dL before VE vs. 11.7 ±
2 g/dL after VE; P = 0.10).

Near-infrared spectroscopy variables
There was no significant difference in the mean StO2

values before and after induction of anaesthesia [80% (77%
to 83%) vs. 86% (78% to 88%); P = 0.15]. Table 3 shows
the mean values of the NIRS variables before and after VE.
Before VE there was no significant difference in pre-VOT
StO2 values during hypovolaemia relative to baseline [86%
(78% to 88%) vs. 84% (77% to 91%); P = 0.83] and no sig-
nificant difference between positive and negative fluid
challenges (P = 0.36). There was also no significant differ-
ence in desStO2 values before VE relative to baseline (P =
0.53) or between positive and negative fluid challenges
(Table 3). Hypovolaemia was associated with a significant
reduction in recStO2 values relative to baseline [5.1%
(3.89% to 5.53%)/second vs. 3.57% (2.71% to 4.58%)/sec-
ond; P = 0.004]. There was also a significant difference in
recStO2 before VE in the positive and negative fluid

challenges (P = 0.02) (Table 3). Before VE there was no
significant difference in StO2 hyperaemia recovery area
relative to baseline (P = 0.30) or between positive and
negative fluid challenges (P = 0.29) (Table 3).
There was no significant change in pre-VOT StO2 after

VE (P = 0.22) in the positive and negative fluid challenges
(Table 3). VE resulted in an overall increase in recStO2 of
50 ± 47% (P < 0.001) (Figure 2). For positive fluid chal-
lenge, the VE-induced increase in recStO2 was 62 ± 49%
(P < 0.001); for negative fluid challenge, the VE-induced
increase in recStO2 was 26 ± 34% (P = 0.04) (Figure 3).
There was a significant difference (P = 0.016) in VE-
induced increase in recStO2 between positive and nega-
tive responses to VE. The coefficient of variability of
recStO2 was 25% and 33% for the negative fluid challenge
group and the positive fluid challenge group, respectively,
with a statistically significant difference between groups
(P = 0.0453). The results obtained with the mixed model
showed a significant interaction between covariates (P =
0.039). Variance attributable to each random effect was
45.27% for patient, 49.60% for time and 5.13% for resi-
dual variability. The area under the ROC curve of
recStO2 was 0.740 (95% confidence interval, 0.56 to 0.91).
The optimal cutoff value for recStO2 was 18% (sensitivity
85.7%, specificity 61.5%, positive predictive value 82.8%
and negative predictive value 66.7%). There were no sig-
nificant changes in desStO2 or StO2 hyperaemia area
during VE and no differences in positive and negative
fluid challenges (Table 3).

Changes in stroke volume, cardiac output and tissue oxygen
saturation recovery slope during volume expansion
No significant relationship was observed between VE-
induced changes in SV and changes in the StO2 recovery
slope (Spearman’s r coefficient = 0.15, P = 0.33) or

Table 3 Changes in macrocirculatory and microcirculatory variables during fluid challengea

Positive fluid challenge (n = 29) Negative fluid challenge (n = 13)

Variables Before VE After VE Before VE After VE

SAP, mmHg 94 ± 15 112 ± 15† 104 ± 20 106 ± 11

DAP, mmHg 53 ± 10 57 ± 9 52 ± 9 51 ± 7

MAP, mmHg 66 ± 11 75 ± 10† 69 ± 12 70 ± 7

HR, beats/minute 77 ± 16 75 ± 14 78 ± 13 75 ± 12

SV, mL 61 ± 12 83 ± 19† 64 ± 15 69 ± 14

CO, L/minute 4.7 ± 1.2 6.3 ± 1.7† 4.9 ± 1.5 5.2 ± 1.3

SVV, % 14 (13 to 16) 6 (5 to 7)† 16 (15 to 16) 6 (5 to 8)†

PPV, % 16 (15 to 18) 5 (3 to 6)† 14 (13 to 15) 5 (4 to 8)†

Pre-VOT StO2, % 84 (77 to 91) 88 (79 - 93) 83 (77 to 90) 84 (79 to 91)

desStO2, %/minute -10.4 (-12.2 to -9.2) -10.9 (-10.7 to -6.5) -9.9 (-10.7 to -9.7) -10.8 (-13.1 to -9.9)

Hyperaemia recovery area, AU 12.6 (7.5 to 21.5) 12.2 (7.3 to 22.9) 12.9 (10.7 to 20.9) 12.8 (8.9 to 19.8)
aCO, cardiac output; DAP, diastolic arterial pressure; HR, heart rate; MAP, mean arterial pressure; SAP, systolic arterial pressure; StO2, tissue oxygen saturation;
desStO2, StO2 desaturation slope; recStO2, StO2 recovery slope; PPV, pulse pressure variation; SVV, stroke volume variation; SV, stroke volume; VE, volume
expansion; VOT, vascular occlusion test; AU, arbitrary units. Data are means ± SD or medians (25th and 75th percentiles). †P < 0.05 after vs. before volume
expansion.
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between VE-induced changes in CO and the StO2 recov-
ery slope (Figure 4).

Discussion
The main findings of our study are that (1) hypovolaemia
is associated with significant alterations in NIRS variables
measured at the thenar eminence and (2) restoring effec-
tive intravascular volume with fluid loading significantly
improves the StO2 recovery slope. Furthermore, during
apparently ineffective fluid loading (that is, without sig-
nificant changes in systemic haemodynamics), VE also
leads to a significant improvement in the StO2 recovery
slope.
Monitoring the effects of fluid therapy at the bedside

remains a cornerstone in the operating room and ICU.
Although there are limitations [24,25], previous research
indicates that dynamic indices (based on flow or preload
parameters) are useful for predicting individualised fluid
responsiveness [26] and prevention of excessive fluid
intake. However, preload responsiveness does not equate
to fluid requirement [27]. We used a PPV value >13% and
a SVV value >12% to predict fluid responsiveness during
mechanical ventilation with a tidal volume >8 mL/kg [5],
but 69% of the significant changes in SV were induced by

VE and increased CO. Conversely, one-third of the volume
challenges were not accompanied by a significant increase
in SV, although the patients were supposed to be on the
steep portion of the Frank-Starling curve. This was very
close to the range that was previously reported (40% to
72%) [28]. We used a fixed cutoff value for SV (≥15%
increase) to dichotomise positive and negative responses
to fluid loads [3]. Nevertheless, because the response to a
given volume load is a continuum ranging from no
increase to a large increase in SV, it can be assumed that a
lower threshold value (10% instead of 15%) would have led
to a different level of significance. In addition, although we
used generation software whose accuracy has been well
established to estimate CO in surgical patients, concerns
have been raised regarding its reliability to track changes
in SV or CO in some patients [29,30]. Taken together, this
information could explain, at least in part, the absence of
significant changes in some measurements of CO despite
reductions in both PPV and SVV values with fluid loading.
Nevertheless, fluid resuscitation is designed to restore sys-
temic haemodynamics, so determining whether a patient
is preload-dependent provides only part of the answer,
because fluid challenge should be performed within the
context of known or suspected tissue hypoperfusion [27].
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Figure 2 Changes in the tissue oxygen saturation recovery slope during fluid challenge. Boxplots showing the median (horizontal lines
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(A) 

(B) 

Figure 3 Changes in the thenar tissue oxygen saturation recovery slope before and after volume expansion for positive (A) and
negative (B) fluid events. A positive fluid event was characterised by a 15% increase in stroke volume with pulse pressure variation >13% and
stroke volume variation >12%. Boxplots show the medians (horizontal lines within the boxes) with 75th and 25th percentiles (upper and lower
edges of the boxes), maximum and minimum values (upper and lower bars) and means (dark diamonds within the boxes). RecStO2, tissue
oxygen saturation recovery slope.
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In our study, preload responsiveness was associated
with a 25% decrease in the StO2 recovery slope. Previous
data have suggested that hypovolaemia leads to inade-
quate perfusion of the microcirculation, which results in
insufficient oxygen availability [31]. The StO2 recovery
slope is believed to reflect the microvascular blood flow
response to a transient tissue hypoxia-induced oxygen
deficit created by the ischaemic stimulus [19]. Vasodilata-
tion of arterioles and recruitment of closed capillaries are
responsible for this reactive hyperaemia [16]. We used a
fixed StO2 target of 40%, as recommended by other
investigators [32,33], and found that the baseline StO2

recovery slopes were very close to those previously
reported in healthy volunteers [15,33]. Previous studies
have suggested that StO2 values can be used to detect
changes in peripheral tissue oxygenation resulting from a
lower-body negative pressure model of simulated central
hypovolaemia [34]. A reduction in muscle oxygen was
also found to be an earlier indicator of hypovolaemia
than the standard clinical measures (heart rate and blood
pressure) [35]. Nevertheless, previous studies have sug-
gested that resting StO2 values are insensitive to the
assessment of tissue hypoperfusion [36]. Our results,

which indicate similar resting StO2 values in spite of an
insufficient flow, support the findings of these previous
studies.
We also found a 50% increase in the StO2 recovery

slope with fluid loading. This suggests that restoration of
intravascular volume in preload-dependent patients
improves muscle tissue oxygenation and increases SV
and CO. This finding may have important clinical impli-
cations, because the ultimate goal of resuscitation should
be improvement of tissue oxygenation and perfusion. We
hypothesise that this is due to improved microvessel
recruitment during the fluid challenge, together with an
increase venular blood compartment volume, despite the
absence of macrocirculatory changes. It is unlikely that
changes in the StO2 recovery slope with VE were due to
changes in rheologic factors, because we found no signifi-
cant differences in haemoglobin levels before and after
VE. In addition, Creteur et al. [37] recently performed
VOT before and after red blood cell transfusion and
reported no differences despite the different haemoglobin
levels. It must be stressed that the StO2 recovery slope
remained low, or even decreased, in some of our patients
after VE (Figure 2), even though CO improved with VE.
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Figure 4 Relationship between changes in cardiac output and changes in the tissue oxygen saturation recovery slope in all fluid
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This is in agreement with the hypothesis that VE can
cause apparent improvement in systemic parameters,
even though microcirculation and tissue oxygenation
remain uncorrected. In addition, a 500-mL fluid infusion
might have been insufficient in some patients.
Our study has several limitations that need to be

addressed. First, we studied only surgical patients.
Although major surgery is associated with significant
impairment in both microvascular flow and tissue oxyge-
nation [38], our data should not be extrapolated to other,
more specific patient populations (with an increased inter-
subject variability) until further investigations are carried
out. In addition, repeated measurements were performed
in some patients. An advantage of analysing the response
to repeated fluid loading is that it reproduces daily prac-
tice, when fluid responsiveness has to be evaluated in the
same patient on different occasions. Second, we did not
evaluate patient outcomes. In other words, we did not
determine whether higher StO2 recovery slopes were asso-
ciated reduced organ failure. Third, we placed the NIRS
probe on the thenar eminence, a region with very little fat,
and therefore there was little interference with the spec-
troscopic measurements. Although measurement at this
site have very low variance [39] and even though we used
a standardised VOT, the interpretation of VOT should be
viewed with caution. Fourth, in all patients, anaesthesia
was maintained by continuous infusion of propofol, which
previous research has indicated increases blood flow to the
muscles and the vascular bed [40]. Although all the VOTs
were performed while patients were under similar condi-
tions of anaesthesia, we cannot exclude the possibility that
our results would have been different if different drugs
had been used. Fifth, none of the patients were given
vasoactive drugs during the study protocol. Although nor-
epinephrine can improve the StO2 recovery slope [16], the
effects of VE in such conditions has not been evaluated.
In conclusion, with respect to our study conditions,

we found that preload dependence is associated with
significant changes in the StO2 recovery slope based on
NIRS measurements at the thenar eminence. In addi-
tion, our findings suggest that VE can improve tissue
oxygenation. Taken together, our results suggest that
measurements of StO2 using a standardised VOT could
be a useful complementary tool along with the dynamic
indices to improve fluid optimisation. Further studies
are warranted to validate this hypothesis.

Key messages
• When hypovolaemia is suspected, fluid loading should
restore systemic haemodynamics, but the ultimate goal
of fluid resuscitation should be improvement of tissue
perfusion and oxygenation.
• Preload dependence is associated with significant

alterations in the StO2 recovery slope based on NIRS

measurements, suggesting the coexistence of microcir-
culatory abnormalities.
• VE induces positive effects at the level of muscle tis-

sue oxygenation as measured by the elevation of the
StO2 recovery slope.
• The StO2 recovery slope better assesses the effects of

hypovolaemia and fluid loading on muscle tissue oxyge-
nation than other NIRS-derived variables.
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