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Background: The cause of the most common form of dementia, sporadic Alzheimer’s dis-
ease (AD), remains unknown. This may reflect insufficiently powered studies to date for
this multi-factorial disorder. The UK Biobank dataset presents a unique opportunity to rank
known risk factors and determine novel variables.
Methods: A custommachine learning approach for high dimensionality data was applied to
explore prospectively associations between AD in a sub-cohort of 156,209 UK Biobank par-
ticipants aged 60–70 including more than 2,090 who were subsequently diagnosed with
AD.
Results: After the possession of the APOE4 allele, the next highest ranked risk factors were
other genetic variants within the TOMM40-APOE-APOC1 locus. When stratified by their
apolipoprotein epsilon 4 (APOE4) carrier status, the most prominent risk factors in carriers
were AST:ALT ratio, the ‘‘number of treatments/ medications” taken as well as ‘‘time spent
in hospital” while protection was conferred by ‘‘Sleeplessness/Insomnia”. In non-APOE car-
riers, lower socioeconomic status and fewer years of education were highly ranked but
effect sizes were small relative to APOE4 carriers.
Conclusions: Possession of the APOE4 allele was confirmed as the most important risk fac-
tor in AD. Other TOMM40-APOE-APOC1 locus variants further moderate the risk of AD in
APOE4 carriers. Liver pathology is a novel risk factor in APOE4 carriers while
‘‘Sleeplessness/Insomnia” is protective in AD irrespective of APOE4 status. Other factors
such as ‘‘Number of treatments/ medications” suggest that multimorbidity is an important
risk factor for AD. Future treatments aimed at co-morbidities, including liver disease, may
concomitantly lower the risk of sporadic AD.
� 2023 The Authors. Published by Elsevier Inc. This is anopen access article under theCCBY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction and with no proven disease-modifying therapies, it pre-
Alzheimer’s disease (AD) is the most common form of
dementia affecting over 50 million people worldwide [1]
sents major social, economic and policy challenges.
The common, sporadic forms of AD are generally

thought to be caused by a complex interaction of genetic
and environmental factors [2], although this hasn’t been
empirically tested to date due to a lack of study power. A
2020 Lancet Commission proposed a set of ‘consensus
associations’ with dementia based on known epidemiolog-
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ical data including age, gender, diabetes, hypertension,
smoking, traumatic brain injury, excessive alcohol con-
sumption, pollution, and apolipoprotein E (APOE4) status
[3]. More than 50 other genetic loci and numerous envi-
ronmental factors such as mild traumatic brain injury [4]
and periodontitis [5] have also been associated with AD,
but many others may be unknown.

The UK Biobank (UKB) is the largest, most densely phe-
notyped, longitudinal study in the world, featuring over
500,000 participants. It has so far enabled several specific
associations with dementia to be tested, including con-
comitant cancer [6], frailty [7], meat consumption [8], pol-
lution [9], cognition [10], and cardiovascular risk factors
[11,12]. In each of these studies, variables associated with
the hypothesis in question were modelled alongside con-
founders such as age, gender, and the presence of the
APOE4 allele. One study selected 30 potential risk factors
and modelled these using logistic and lasso regression to
develop a novel dementia risk score (preprint only, [13]).
However, the full range of variables available in the UKB
have not yet been modelled to give an unbiased ranking
of their importance in predicting AD.

Machine learning has developed substantially over the
last 20 years. Non-parametric tree-based solutions are
effective at modelling the associations, interactions and
non-linear relationships between thousands of indepen-
dent variables and a dependent variable, scoring the ‘‘fea-
ture importance” of individual variables as a ranking of
their contribution to the accuracy of a given model.
EXtreme Gradient Boosting (XGBoost) is a leading algo-
rithm [14], but one of the challenges with XGBoost and
similar algorithms are their ‘‘black-box” nature and the dif-
ficulty of determining a ranking of variables responsible for
the model’s prediction. SHapley Additive exPlanations
(SHAP) [15] is a feature importance methodology which
employs co-operative game theory to interpret outputs
for classification and regression algorithms, enabling a
ranked list of feature importance to be developed for any
given model. This algorithmic combination has been
applied to the UKB to predict myocardial infarction [16].

Here, for the first time, a combination of XGBoost and
SHAP was applied to a combination of health-related ques-
tionnaire data, longitudinal inpatient data (ICD10), blood
assays, cognitive testing, and genetic data from the UKB
allowing simultaneous consideration of over 1000 poten-
tial risk factors for AD. The aim was to provide a ranked
set of risk factors for AD that would focus future mechanis-
tic studies towards new therapeutics.
2. Materials and methods

2.1. Sample selection

The UKB study recruited 502,253 subjects, aged 37–
73 years in the United Kingdom between 2006 and 2010.
A raft of clinical measurements and assays were performed
during the initial attendance at the assessment centre
(‘‘baseline”), including clinical pathology screens, genotyp-
ing, neuroimaging, and cognitive testing as well as health
records and self-reported demographic and wellness data
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[17]. Participants aged 60–70 years who had genotype
information available at baseline were selected. Exclusion
criteria included those already diagnosed with dementia
at baseline or who developed dementia within 2 years of
baseline; died of something other than AD or dementia
within 10 years of baseline or had been diagnosed with
Parkinson’s disease prior to baseline. This left a total of
156,209 participants, of which 2,090 had developed AD
within an average of 8.2 years from baseline (Fig. 1).

Genotype information derived using the UKB Axiom
array platform for each participant was processed using
Plink 1.9 [18]. A single variable ‘‘APOE4 carrier” was com-
puted from the two single nucleotide polymorphism
(SNPs), rs429358 and rs7412 (haplotype) data. A score of
zero was given to for those with no APOE4 alleles, one
for those with one allele and two for APOE4 homozygotes.
Otherwise for genetics, and to reduce dimensionality, 38
AD-related SNPs from the most recent and largest
genome-wide association data were included in the mod-
els here [19].

The label ‘‘AD” was given to those participants who
were diagnosed between two and ten years of their base-
line visit to the UKB assessment centre with one of the fol-
lowing ICD10 codes, relating to AD (G30.0, G30.1, G30.8 or
G30.9). The most recent inpatient data (release date:
September 2021) was used to identify all ICD10 codes cor-
responding to any condition for which the number of cases
across our cohort exceeded 5,000 (for subsequent test
validity) and for which a diagnosis was received prior to
attendance at the assessment centre. This resulted in bin-
ary features corresponding to a participant having been
diagnosed with (1) or not (0) any given disease. All vari-
ables with<20% missing observations were selected for
the subsequent analysis. ‘‘One hot encoding” of categorical
variables and imputation of missing values using micefor-
est [20] was applied to structure the data for XGBoost. This
resulted in a full set of 1,002 candidate features (VS)
(Fig. 1).

A set of variables relating to ‘‘known associations” from
a recent consensus report by Livingston and colleagues
were computed for a comparison model [21]. This set
included variables related to traumatic brain injury, age,
gender, APOE4 carriers, hearing difficulties, pollution,
hypertension at baseline, diabetes at baseline, smoker sta-
tus, body mass index, qualifications, frequency of friend
and family visits (as a proxy for loneliness) and IPAQ (Phys-
ical Activity Questionnaire) activity group. These variables
comprised the ‘‘known associations” variable set, denoted
VK.

2.2. Machine learning

2.2.1. Data processing and model selection
To avoid data leakage, data was first split into training

data (DT) and a holdout dataset (DV), with DV containing
a random sample of 30% of AD cases and 30% of controls
with the remainder of each being in DT. Three classification
models were applied to DT using the full variable set VS.
These were evaluated using nested cross-fold validation
with three folds (two training and one validation), resam-
pled 50 times. The mean Area Under Curve – Receiver



Fig. 1. UK Biobank timeline and case/control inclusion/exclusion criteria. A schematic demonstrates our selection criteria for hypothetical UKB
participants. In this case, Participant 1 would be selected in our analysis as they attended the assessment centre and did not meet any of the exclusion
criteria, nor were they ever diagnosed with AD. Participant 2 is included as a case, with a past disease coded as an independent variable as it was diagnosed
prior to their attendance at the assessment centre, and they were diagnosed with AD over 2 years after their attendance. Participant 3 is excluded as they
received an AD diagnosis prior to 2 years after attending the baseline assessment centre.
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Operating Characteristics Curve (AUC) of each model
trained on a training fold and evaluated on the validation
fold was used to determine the best performing classifier.
XGBoost (0.77) outperformed random forest (0.75) and
Support Vector Machines (0.74) and hence was selected
for the subsequent analysis.

Hyper-parameter optimization was performed using a
grid search [22] on the following XGBoost hyperparame-
ters: ‘‘minimum child weight”, ‘‘gamma,” ‘‘subsample
rate”, ‘‘maximum depth” and scale positive weight. The
set of hyperparameters which generated the highest AUC
values for the model were selected – these were minimum
child weight = 5, gamma = 2, subsample rate = 1, maximum
depth = 5 and scale positive weight = 1.
2.2.2. Model pipeline
Due to the overwhelming importance of age in predict-

ing AD, the data were age matched first such that the case
to control ratio was the same for all ages (in years) at base-
line. Because the number of controls far exceeded the
number of cases, we resampled controls using Monte Carlo
cross-fold validation [23]. In this way, controls from DT

were resampled 20 times for the same set of cases to create
20 age matched training datasets dT � DT. The hyper-
parameter tuned XGBoost model was trained on each dT,
and the corresponding AUC and mean SHAP score for each
variable in VS was evaluated using validation dataset DV for
each resample. This approach was repeated with DT

restricted to the set of known risk factors (VK) for demen-
tia. A t-test was performed to compare the mean AUCs
across all resamples in each case. A new ordered list of
variables (risk and protective factors) was determined by
selecting the top 20 variables VT � VS, ordered by the mean
SHAP score across all resamples. The complete process was
then repeated for APOE4 carriers and non-APOE4 carriers
separately.
3

AD incidence [24] is defined as number of new cases
within 2–10 years post baseline divided by the total eligi-
ble UKB population at 2 years post baseline. AD Incidence
was calculated for each value for variables in VT, and the
top output variables reported for each cohort: APOE4 car-
riers, non-APOE4 carriers and both. The analysis was per-
formed using the validation dataset, DV to avoid
overfitting. Chi-squared proportionality tests [25] were
used to determine if there was a statistically significant dif-
ference each grouping of each variable and all other group-
ings. Continuous variables were split into ‘high’ (greater
than the variable’s median value across each cohort) and
‘low’ (below the variable’s median value across each
cohort). A Benjamini Hochberg correction [26] was per-
formed on the resulting p values to correct for multiple
comparisons. All p values presented are the adjusted p
values.

All analyses were performed in Python (3.10.0) and the
GitHub codebase is available at https://github.com/binfn-
stats/ukb-dementia-shap/tree/main.
3. Results

A cohort of 156,209 UKB participants, aged 60–
70 years-of-age at baseline met the inclusion criteria here.
2,090 participants had been diagnosed with AD between
two and 10 years from baseline, mean 8.2 years (Table 1).
The cohort was predominantlyWhite (96%) and there were
more female controls (55%) than males (see Supplemen-
tary file S1 for full demographic information on UKB
participants).

In terms of classification accuracy, the full UKB model
(V1) (AUC = 0.77), outperformed a model made up of
known (consensus) risk factors (V2; AUC = 0.67 (3))
(Table 2). Focussing purely on APOE4 carriers, the UKB
model performance remained high (AUC = 0.75), compared

https://github.com/binfnstats/ukb-dementia-shap/tree/main
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Table 1
UKB participant demographics.

AD Cases Controls

Mean Age (Years) 65.6 +/- 2.6 63.9 +/- 2.8
Gender
Male 1.006 69,060
Female 1,084 85,059
Total 2,090 154,119
Ethnicity
African 11 459
Asian 31 2,374
White 1,993 148,380
Other 42 2,130
Unknown 13 776
Total 2,090 154,119

Table 2
Performance of known risk factors versus the UKB model.

APOE4 Known Risk Factors UKB Model

All 0.67+/-0.01 0.77+/-0.004***
Carriers 0.55+/-0.01 0.75+/-0.01***
Non-carriers 0.56+/-0.01 0.64+/-0.02***

Values are Receiver Operator Curve - Area Under Curve (AUC). AUC def-
initions: *** p < 0.001.

M. Allwright, H.D. Mundell, A.N. McCorkindale et al. Aging Brain 3 (2023) 100081
to the known risk factors (AUC = 0.55) (Table 2). For non-
APOE4 carriers the performance of the UKB model was
lower (AUC = 0.64) but remained better than known risk
factors (AUC = 0.56) (Table 2; see Supplementary Fig. 1
for the ROCs).

In the UKB model, the number of APOE4 alleles (repre-
sented by the SNP, rs429358; the alternative ‘C’ variant)
had the highest mean SHAP score followed by other vari-
ants within the TOMM40-APOE-APOC1 locus on chromo-
some 19 (Fig. 2A). rs4420638 is 343 bp 30 of APOC1,
rs6857 is in the 10th and final exon of NECTIN2, the gene
immediately (45 Kb) upstream of TOMM40 and rs769449
in is intron 4 of the APOE gene itself. There was a relative
decrease in effect sizes for the remaining factors, with
‘‘Sleeplessness/Insomnia” conferring a protective effect
and high serum AST:ALT ratio the next highest risk factor
(Fig. 2A). The presence of both ‘‘Number of treatments/
medications taken” and ‘‘Spells in hospital” in the top 20
ranked factors, appear consistent with multimorbidity or
frailty being associated with AD cases.

Given the importance of the APOE4 allele, the cohort
was stratified into carriers and non-carriers. It was hypoth-
esized that in the absence of APOE4 the effect size of some
factors would increase, or novel factors be identified.
Among the APOE4 carriers, two copies of APOE4
(rs429358) versus a single copy was the highest ranked
factor (Fig. 2B), followed by AST:ALT ratio. rs7412, was pro-
tective here as the alternative (T) allele is associated with
APOE2 (if the common variant ‘T’ is also at rs429358). Con-
trary to our hypothesis, almost all risk factors for non-
APOE carriers had lower mean SHAP scores with wide con-
fidence intervals. The latter suggesting that these rankings
are unstable and subject to variable rankings across
repeated measures (Fig. 2C). The ‘‘North coordinate at
birth” was the leading risk factor in non-APOE4 carriers
with the spirometric variable ‘‘FEV1/ FVC ratio Z-score”
4

while ‘‘urate” was protective. (Fig. 2C). ‘‘North coordinate
at birth” (positive association) and ‘‘Average household
income before tax” (negative association) suggest an
inverse association between socioeconomic advantage
and AD. Similarly, ‘‘Education score (England)”, another
prominent risk factor in the non-carriers, is a UKB measure
of ‘‘deprivation in terms of education, skills and training”.
Supplementary file S1 contains a complete list of all factors
modelled and their associated mean SHAP scores.

The impact of these factors on AD incidence was then
explored in three cohorts: APOE4 carriers, non-APOE4 car-
riers and both to explore dose-dependent effect of the
APOE4 allele. For both and APOE4 carriers rs429358 was
the most prominent followed by other genetic variants
within the TOMM40-APOE-APOC1 locus (Table 3). Using
the National Cancer Institute’s LD pair tool based on Phase
3 of the 1000 Genomes Project [27] rs4420638 (near
APOC1; D’ = 0.58), and rs6857 (NECTIN2; D’ = 0.63) were
both in modest linkage disequilibrium (LD) with
rs429358 and their additional effects reflect nuances
within the wider APOE4 haplotype [28]. rs769449 was in
almost complete LD (intronic APOE; D’ = 0.99) and likely
reflects the APOE4 effect. In non-APOE4 carriers, possess-
ing copies of rs4420638, was the most potent risk factor
(accounting for 7.7% AD incidence) reinforcing the idea
that other TOMM40-APOE-APOC1 locus SNPs are impor-
tant in AD risk. The ‘‘Frequency of friend/family visits”
and frequency of ‘‘Ability to confide” were also important
variables.
4. Discussion

A ranking of the risk factors for AD was derived from the
world’s largest and most comprehensive longitudinal com-
munity study in combination with the state-of-the-art
machine learning pipeline. At the time of this study, 2090
UKB participants, who attended the assessment centre
between the age of 60 and 70 years, had subsequently
developed AD 2 or more years after their visit. After pos-
session of the APOE4 allele, the most potent risk factors
were additional SNPs at the TOMM40-APOE-APOC1 locus
and AST:ALT ratio while ‘‘Sleeplessness/Insomnia” was
the major protective effect.

The relative effect size of the APOE4 haplotype here
reiterates that understanding how this common variant
mechanistically modifies AD risk is the most pressing need
for the AD research community. The effect of APOE4 has
been known since 1993 but the mechanism by which it
modulates AD risk is unknown [29]. Generally, APOE binds
lipids and delivers them to cells via receptor-mediated
uptake [30]. In the brain the major receptor is lipoprotein
receptor-related protein 1 (LRP1). During ageing, posses-
sion of APOE4 is associated with decreased hippocampal
volume in females [31] and breakdown of the blood–
brain-barrier [33]. APOE4 binds to Ab with more affinity
than APOE3 or APOE2 and this may account for the propen-
sity in carriers to form Ab plaques [31]. In AD, APOE4 is
associated with both plaques and neurofibrillary tangles
(insoluble tau) and appears to adversely affect cognitive
function via these pathognomonic entities [32]. It is also



Fig. 2. SHAP scores and AD risk. Bar plots showing mean SHAP scores for the entire cohort (A), APOE4 carriers (B) and non-APOE4 carriers (C). The colour of
the bar represents features which positively impacted on AD risk in the UKB model (red) and those with a negative or protective association (blue). Black
bars indicate confidence intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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associated with decreased CSF Ab 1–42 [32]. A second
mechanism is that APOE4 carriers have poorer Ab clear-
ance via APOE-dependent LRP1-mediated endocytosis
within the brain [33,34] and across the BBB [35] and
blood-CSF barriers [36]. Soluble LRP1 also binds the major-
ity of Ab in plasma, creating a peripheral ‘sink’ [37]). A
third or even adjunctive mechanism maybe relatively less
Ab uptake by microglia of APOE4 carriers via a Triggering
5

receptor expressed on myeloid cells-2 (TREM2)-APOE
pathway [38,39]. Whilst TREM2 is a receptor expressed
on all myeloid cells, it is restricted to microglia in the brain,
and rare variants increase the risk of AD [40]. TREM2-
dependent activated microglia appear to delay Ab-driven
tau-seeding [41] providing an opportunity whereby
immune modulation could disarticulate Ab accumulation
from the neurodegenerative (tau) stages of AD.



Table 3
AD incidence in APOE carriers and non-APOE carriers.

Attribute Value All Carriers Non carriers

AST_ALT_ratio High 0.0389 (***) 0.0626 (***) 0.0229 (***)
Low 0.0277 (***) 0.0426 (***) 0.0188 (***)

Ability to confide Never or almost never 0.0363 (**) 0.0546 (ns) 0.025 (***)
Once every few months 0.0421 (***) 0.0647 (***) 0.0276 (***)
About once a month 0.0328 (ns) 0.0524 (ns) 0.0199 (ns)
About once a week 0.0336 (ns) 0.0563 (ns) 0.0186 (ns)
2–4 times a week 0.0321 (ns) 0.0496 (ns) 0.0211 (ns)
Almost daily 0.0316 (***) 0.0504 (**) 0.0194 (**)

Aspartate aminotransferase High 0.036 (***) 0.0576 (***) 0.0216 (ns)
Low 0.0307 (***) 0.0478 (***) 0.02 (ns)

Average household income before tax <18,000 0.0396 (***) 0.0628 (***) 0.0245 (***)
18,000 to 30,999 0.034 (ns) 0.0551 (*) 0.0199 (ns)
31,000 to 51,999 0.0242 (***) 0.0337 (***) 0.0191 (ns)
52,000 to 100,000 0.027 (***) 0.0435 (***) 0.0159 (**)
Greater than 100,000 0.0245 (**) 0.0516 (ns) 0.0054 (***)

C-reactive Protein High 0.0276 (***) 0.0429 (***) 0.021 (ns)
Low 0.039 (***) 0.0623 (***) 0.0206 (ns)

Cooked Vegetable Intake High 0.0354 (**) 0.0517 (ns) 0.0256 (***)
Low 0.0327 (**) 0.0529 (ns) 0.0193 (***)

Drive faster than motorway speed limit Do not drive on the motorway 0.0375 (***) 0.0584 (***) 0.0242 (***)
Sometimes 0.0287 (***) 0.0462 (***) 0.0172 (***)
Often 0.0248 (***) 0.0419 (**) 0.0131 (***)
Most of the time 0.0063 (***) 0.0147 (***) 0.0 (***)

Duration to first press of snapbutton High 0.0366 (***) 0.0579 (***) 0.0228 (***)
Low 0.0301 (***) 0.0474 (***) 0.0189 (***)

Education score (England) High 0.0377 (***) 0.0585 (***) 0.0244 (***)
Low 0.029 (***) 0.0468 (***) 0.0173 (***)

Fev1 fvc ratio zscore High 0.0365 (***) 0.0592 (***) 0.0214 (ns)
Low 0.0302 (***) 0.046 (***) 0.0203 (ns)

Frequency of friend/ family visits Never or almost never 0.0755 (***) 0.0833 (***) 0.0772 (***)
Once every few months 0.035 (ns) 0.0573 (ns) 0.0207 (ns)
About once a month 0.0334 (ns) 0.0565 (ns) 0.0182 (ns)
About once a week 0.0309 (***) 0.0491 (**) 0.0189 (**)
2–4 times a week 0.0348 (**) 0.0531 (ns) 0.0234 (***)
Almost daily 0.0307 (*) 0.0522 (ns) 0.0158 (***)

Gamma Glutamyltransferase High 0.0334 (ns) 0.0528 (ns) 0.0201 (ns)
Low 0.0333 (ns) 0.0524 (ns) 0.0215 (ns)

Home location at assessment east coordinate High 0.0347 (**) 0.056 (***) 0.0207 (ns)
Low 0.032 (**) 0.0494 (***) 0.021 (ns)

Mean time to correctly identify matches High 0.0342 (*) 0.054 (ns) 0.022 (*)
Low 0.0324 (*) 0.0513 (ns) 0.0197 (*)

North Coordinate at birth High 0.0388 (***) 0.0617 (***) 0.0238 (***)
Low 0.0279 (***) 0.0436 (***) 0.0179 (***)

Number of treatments/medications High 0.0431 (***) 0.0666 (***) 0.0278 (***)
Low 0.0275 (***) 0.0442 (***) 0.0167 (***)

Particulate matter air pollution (pm10) High 0.0371 (***) 0.0595 (***) 0.0216 (ns)
Low 0.0296 (***) 0.0458 (***) 0.02 (ns)

Platelet distribution width High 0.0355 (***) 0.0556 (***) 0.0222 (**)
Low 0.0312 (***) 0.0497 (***) 0.0194 (**)

Sleeplessness/ Insomnia Never/rarely 0.0392 (***) 0.0603 (***) 0.0251 (***)
Sometimes 0.0331 (ns) 0.0522 (ns) 0.0206 (ns)
Usually 0.0298 (***) 0.048 (***) 0.0184 (***)

Spells in Hospital High 0.0424 (***) 0.0673 (***) 0.0264 (***)
Low 0.0258 (***) 0.0406 (***) 0.0161 (***)

TS Ratio High 0.0296 (***) 0.0473 (***) 0.0184 (***)
Low 0.0371 (***) 0.058 (***) 0.0233 (***)

Townsend Deprivation Index High 0.0386 (***) 0.0621 (***) 0.0231 (***)
Low 0.0281 (***) 0.0431 (***) 0.0186 (***)

Triglycerides High 0.0309 (***) 0.0468 (***) 0.0197 (*)
Low 0.0358 (***) 0.0584 (***) 0.022 (*)

Urate High 0.0336 (ns) 0.0522 (ns) 0.022 (*)
Low 0.033 (ns) 0.0531 (ns) 0.0196 (*)

Vitamin D levels High 0.0315 (***) 0.0474 (***) 0.0207 (ns)
Low 0.0351 (***) 0.0578 (***) 0.0209 (ns)

Water percentage buffer (1000 m) High 0.0305 (***) 0.0485 (***) 0.0186 (***)
Low 0.0361 (***) 0.0568 (***) 0.0231 (***)

White blood cell leukocyte count High 0.0343 (*) 0.0535 (ns) 0.0231 (***)
Low 0.0324 (*) 0.0518 (ns) 0.0185 (***)
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Table 3 (continued)

Attribute Value All Carriers Non carriers

rs429358 No alleles 0.0173 (***) 0.0147 (***) 0.0208 (ns)
Single allele 0.0632 (***) 0.0604 (***)
Double Allele 0.2062 (***) 0.1976 (***)

rs4420638 No alleles 0.0179 (***) 0.0179 (***) 0.0207 (ns)
Single allele 0.0557 (***) 0.0611 (***) 0.0209 (ns)
Double Allele 0.1398 (***) 0.1376 (***) 0.0766 (***)

rs6857 No alleles 0.0189 (***) 0.0229 (***) 0.0205 (**)
Single allele 0.0562 (***) 0.0597 (***) 0.0259 (**)
Double Allele 0.171 (***) 0.1695 (***) 0.0 (ns)

rs7412 No alleles 0.0366 (***) 0.0766 (***) 0.0208 (ns)
Single allele 0.017 (***) 0.0162 (***)
Double Allele 0.0181 (**) 0.0172 (***)

rs769449 No alleles 0.021 (***) 0.0293 (***) 0.0209 (ns)
Single allele 0.068 (***) 0.0651 (***) 0.0 (ns)
Double Allele 0.1857 (***) 0.1781 (***)

Significance levels based on a chi-square proportions test of each variable unit compared to all others. * = p < 0.05; ** = p < 0.01; *** = p < 0.001.
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It was hypothesized here that, in the absence of APOE4,
novel factors or the same factors at a greater magnitude
would be needed to meet the ‘‘AD threshold”. However,
nearly all other key factors identified here promoted AD
more potently in APOE4 carriers. This could, in part, reflect
that the case status of APOE4 carriers is more definitive in
the UKB because possession of one of two copies of APOE4
lowers the age at disease onset [42]. In contrast, more non-
APOE4 carriers relative to APOE4 carriers, will still go on to
develop AD in later life, potentially diluting effect sizes in
the non-APOE4 carrier analyses.

The highest-ranking protective factor was
‘‘Sleeplessness/Insomnia”. This finding appears to contra-
dict the idea that sleep facilitates the clearance of Ab from
the brain [43]. However, it might be consistent with stud-
ies showing that short sleep duration during midlife asso-
ciates with increased Ab deposition [44] but then in later-
life, long sleep duration is associated with increased
dementia risk [45]. This is further supported by a recent
article that makes the distinction between sleep-
initiation insomnia (increased risk) and sleep-
maintenance insomnia (40% decrease) in dementia risk
[46]. While UKB participants who were diagnosed with
AD within two years of recruitment were excluded here,
the sleep associations may also reflect the impact of AD
pathology on regions such as the thalamus in the preclini-
cal period [47].

AST:ALT ratio is commonly used in the clinic to differ-
entiate between two main causes of chronic liver pathol-
ogy; alcoholic liver disease and non-alcoholic fatty liver
disease [48]. Higher AST:ALT ratios in AD and specifically
correlated with CSF Ab 1–42 levels, has been previously
described [49] while ALT was inversely correlated with
cognitive function. Nho et al. proposed that this association
might reflect a global abnormality in energy metabolism
including the brain or the reduced availability of gluta-
mate, secondary to an ageing liver. A recent paper showed
that the expression of human APOE4 in the liver only
impaired cerebrovascular function and cognition in a
mouse model [50]. It also exacerbated amyloid load when
7

crossed with APP/PS1 mice. Both these phenotypes were
rescued by plasma from young APOE3 mice. The liver is
responsible for 90% of peripheral APOE and levels appear
to increase with ageing [51], although APOE levels seem
to be lower in E4 carriers [52]. It has been suggested that
APOE4 associated changes in liver lipid metabolism, and
subsequently secreted metabolites may be responsible
for damage to the cerebral vasculature in AD [53]. High
serum triglycerides (TG) were a risk factor here, particu-
larly with APOE4 carriers, while our independent explo-
ration of UKB brain MRI showed that APOE4 was
associated with vascular changes such as loss of white
matter integrity [54]. In the latter we also showed using
the Rush Memory and Aging Project (ROSMAP) study data
the degree of cerebral amyloid pathology was APOE4-
dependent and immune related transcripts were more
highly correlated to AD pathology levels in APOE4 carriers.
This dichotomy is also consistent with a probabilistic
model of AD with three variants, namely autosomal domi-
nant, APOE4-related sporadic and APOE4 unrelated-
sporadic [55].

Several variables including ‘‘Spells in Hospital”, ‘‘Num-
ber of treatments/medications taken” and low ALT (con-
tributing to higher AST:ALT ratios) collectively suggested
that frailty or multimorbidity is an important component
in determining who develops AD. Frailty, like dementia,
can be described as a gradual loss of homeostatic mecha-
nisms over time, and one that manifests as a multidimen-
sional condition with physical, nutritional, psychological,
and cognitive deficits [29]. Frailty and multimorbidity are
related concepts [56] with most frail individuals being
multimorbid but fewer multimorbid individuals meeting
frailty criteria [57].

A recent study that looked at the association between a
modified version of the Fried Frailty index (FFI) [58] and
dementia in the UKB found that pre-frailty (one or two of
the Fried Frailty criteria [58]) and frailty (three or more cri-
teria) accounted for 9�9% and 8�6% of the 726 dementia
cases (up to Jan 2017), respectively [7]. Similarly, frailty
has been associated with five other chronic conditions:
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multiple sclerosis, chronic fatigue syndrome; chronic
obstructive pulmonary disease; connective tissue disease
and diabetes using UKB data [56].

Although causal mechanisms remain unclear [59], Wal-
lace and colleagues using the ROSMAP cohort found that
frailty increased the likelihood that AD neuropathology
would manifest as dementia [60].

Similarly, prominent factors such as a northernly birth-
place in the UK and lower household income suggest an
inverse association between socioeconomic status (SES)
and AD. Poor education was similarly associated with
higher risk of AD. A recent meta-analysis found that social
class, measured by non-skilled manual occupations and
poor education, but not income, was associated with the
risk of dementia [61]. Persons with lower SES show faster
declines in memory with ageing [62] and although not nec-
essarily causative, social isolation, multimorbidity and low
SES are common in persons living with dementia [63].

There were two indices, plasma C-reactive protein
(CRP) and serum TG, where the direction of effect, low
levels increasing risk, seemed counterintuitive. However
recent studies do agree with these associations. Low
plasma CRP at baseline was a risk in the similarly large
Copenhagen General Population and the Copenhagen City
Heart Studies [64]. The effect remained after adjusting for
APOE4. This result is consistent with a 2008 study that
CRP was lower in APOE4 carriers than controls and might
reflect an influence of the locus on immune function [65].

In the case of serum TG there has been discordant stud-
ies to date, A 2020 meta-analysis showed no effect of
serum TG levels in either AD or MCI patients [66], but a
research report, showed that if TG were divided up by prin-
cipal component analysis, then there was a clear associa-
tion of low polyunsaturated TG with AD risk [67]. As per
the findings here, this effect was greater in APOE carriers.

A weakness of the current study was the unbalanced
nature of the population with only 2090 CE cases
versus � 170,000 non-AD controls. It may well be possible
to use proxies for future dementia status such as hip-
pocampal volume, neuropsychological testing perfor-
mance or a family history of dementia, as demonstrated
recently [68], but the current study relied on the relative
surety of confirmed clinical diagnoses. The prominence of
well-established risk factors such as ageing and APOE4
gives us confidence that other factors such as low serum
TG and AST: ALT are important in a proportion of cases.
However, ML classification models such as XGBoost do
overlook the direction of causality and, as discussed above
for sleep these deficits may be the earliest, preclinical
effects of dementia rather than true risk factors.
5. Conclusions

This study confirms the known importance of APOE4
and ageing while suggesting that liver lipid metabolism
and frailty, are important contributors to the AD. APOE4
carriers have both central and peripheral lipid anomalies
that may combine to modify AD risk. The pathogenesis of
AD in non-APOE4 carriers is less clear, but socioeconomic
factors and multimorbidity appear relatively more
8

important than in APOE4 carriers. Future studies using
the UKB as additional AD cases occur will be importance
in replicating the findings here however, these results
may go some way to explaining why pathology
(amyloid)-based treatments in the common sporadic cases
have met with such little impact on cognitive decline. The
flip side is that treatments aimed at co-morbidities and
specifically liver damage may concomitantly lower AD risk.
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