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Abstract

Background: The increasing demand for local food production is fueling high interest in the development of controlled environ-
ment agriculture. In particular, LED technology brings energy-saving advantages together with the possibility of manipulating plant
phenotypes through light quality control. However, optimizing light quality is required for each cultivated plant and specific purpose.

Findings: This article shows that the combination of LED gradient set-ups with imaging-based non-destructive plant phenotyping
constitutes an interesting new screening tool with the potential to improve speed, logistics, and information output. To validate this
concept, an experiment was performed to evaluate the effects of a complete range of red:blue ratios on 7 plant species: Arabidopsis
thaliana, Brachypodium distachyon, Euphorbia peplus, Ocimum basilicum, Oryza sativa, Solanum lycopersicum, and Setaria viridis. Plants were
exposed during 30 days to the light gradient and showed significant, but species-dependent, responses in terms of dimension, shape,
and color. A time-series analysis of phenotypic descriptors highlighted growth changes but also transient responses of plant shapes
to the red:blue ratio.

Conclusion: This approach, which generated a large reusable dataset, can be adapted for addressing specific needs in crop production
or fundamental questions in photobiology.
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Introduction
New urban agriculture business models are emerging as market
demand for local production of high-quality fruits and vegetables
is increasing [1]. This, in turn, is stimulating the development of
techniques used in controlled environment agriculture (CEA), of-
fering unique opportunities for year-round production, indepen-
dently of season, weather, soil conditions, or climate change, as
well as reduced resource use and lower production costs [2, 3].

The economic feasibility of CEA owes a lot to the development
of light-emitting diode (LED) technology, which progressively re-
places traditional artificial lighting sources. Indeed, LED lighting
fixtures show a great potential for energy saving compared to
former technologies (e.g., high-pressure sodium lamps) [4, 5]. In
addition, they provide control over spectral composition, flexible
fixture format, durability, long operating lifetime, relatively cool
emitting surfaces, and a photon output that varies linearly with
electrical input current [6]. These attributes can greatly facilitate
the application of photobiology at all stages of crop production,
from propagation to postharvest quality control. Besides providing
energy for photosynthesis, light indeed plays a key role in many
plant responses that depend on its duration, intensity, and spec-
trum, which are perceived by a battery of photoreceptors [7–9].
It can thus be expected that LED will revolutionize indoor crop
production [5], all the more as the technology is still improving in
efficiency while capital costs keep decreasing [10].

Interestingly, CEA has its own breeding targets. Indeed, in addi-
tion to indoor-specific constraints (e.g., small size and short cycle),
the desired plant’s response to the environment resides in phe-
notypic plasticity rather than resilience to stress conditions [11].
For example, different light qualities could be used to grow the
same lettuce genotype for different products such as green versus
red salads [12]; therefore genotypes that show such plasticity are
desirable.

In the context of these fast technological developments,
screening for CEA-specific breeding targets and optimizing en-
vironmental conditions for new business models are key steps.
Meeting these needs efficiently requires high-throughput ap-
proaches, such as those used for plant phenomics [13]. Phenomics
is a relatively recent research field, initially triggered by the huge
demands for phenotyping capacity in functional genomics stud-
ies [14]. It has been focused primarily on model plants such as
Arabidopsis thaliana, as well as large-scale crops such as cereals
and other major productions. Phenomics relies heavily on imaging
technologies that are non-destructive and allow the quantifica-
tion of complex structures in a fast and highly repeatable way.
Correlation between image-based descriptors and ground-truth
data obtained by direct measurements has been demonstrated
multiple times in different model systems. For example, (i)
projected leaf area or height has been shown to correlate well
with direct measurements of plant dimensions and biomass in
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wheat [15], Arabidopsis [16, 17], or tomato [18]; (ii) geometric
descriptors have been used to objectivize shape vari-
ations between Arabidopsis genotypes [19, 20]; and (iii)
color indices based on simple red green blue (RGB) im-
ages have proven useful for discriminating differences
in leaf chlorophyll content, e.g., in soybean or corn canopies
[21, 22]. Furthermore, several studies demonstrated that
descriptors extracted from high-throughput imaging, such
as plant area or volume, can be used as non-destructive
estimators of shoot biomass [15, 17, 23]. The requirement
for high-throughput phenotyping increases as the plant re-
search community addresses the future challenges that
agriculture will face with climate change [24]. Obviously,
the same technological advances in sensors, imaging, au-
tomation, and data processing that benefit functional ge-
nomics can be used to evaluate plant phenotypes under
indoor cultivation contexts, as well as to identify either opti-
mum conditions for available genotypes or fitter genotypes for
indoor conditions.

A timely research investment for CEA development is thus
to use plant phenomics to explore the many new avenues, con-
straints, and needs that currently emerge from the rapid world-
wide adoption of LED technology. Previous studies aiming at
evaluating the effects of light quality on plant production mostly
compared limited numbers of discrete conditions (e.g., different
ratios of red:blue, red:far-red, % UV) within very specific combi-
nations of target species/genotypes, environments, traits of inter-
est, and phenotyping approaches [6]. As light sources and growing
set-ups widely differ across laboratories, customizing the lighting
conditions for each economically important plant remains com-
plex, and knowledge gaps still limit the productivity of CEA [13].
Therefore, a more comprehensive method to characterize plant
phenotypic responses to light quality is desirable and would also
provide a boost to basic photobiology research in model systems.

In this article, we examine the methodological advances pro-
vided by light quality gradients in terms of phenotyping speed, lo-
gistics, and information content, and whether this would facili-
tate studies of light quality responses. To our knowledge, light
gradients have seldom been studied as such, except in agroecol-
ogy contexts such as forestry, where irradiance is the main vari-
able factor [25–27]. Therefore, light quality gradients represent
a new experimental approach offering several potential advan-
tages: (i) a wide range of spectral ratios can be tested in 1 cycle,
while all other parameters remain constant; (ii) the continuous
variation in light quality offers the possibility of detecting thresh-
olds, peaks, and troughs in the plant response; (iii) regressions can
be used to estimate correlation, effect size, and significance in
an easy and straightforward way; and (iv) when combined with
non-destructive phenotyping methods such as time-series imag-
ing, they provide detailed information on the plasticity of various
target traits.

A multi-species experiment was designed to test a gradient of
red and blue lights because these colors have been the focus of
many publications in the horticultural domain [6, 28, 29]. Smart
LED luminaries were used to create a continuous range of red:blue
ratios under otherwise constant conditions, and an imaging plat-
form was used to measure basic phenotypic traits related to
growth, morphology, and pigmentation of the plants (plant dimen-
sions, shape factors, color indices). Among the numerous options
for digital imaging set-ups that have been developed for a vari-
ety of applications and scientific questions [30], a simple low-cost
design was used, based on off-the-shelf electromechanics, RGB
cameras, and open-source image acquisition and analysis soft-

ware. Depending on the purpose, such “maker-made” phenotyping
stations can provide sufficient image quality and throughput as
shown in a growing number of publications [31–33].

Seven plant species were selected, on the basis of their scientific
and economic importance, as well as botanical and architectural
diversity. Four dicot species were used: A. thaliana (Brassicaceae),
an obvious choice owing to its importance in academic research
and the wealth of genomic and phenomic knowledge; Solanum
lycopersicum (Solanaceae) and Ocimum basilicum (Lamiaceae), 2
interesting models for horticultural applications; and Euphorbia
peplus (Euphorbiaceae), a wild species studied for its medicinal
properties. Three monocot species (Poaceae) were also grown: 1
temperate species, Brachypodium distachyon; 1 tropical crop, Oryza
sativa; and 1 C4 wild species, Setaria viridis.

Results and Discussion
Data description
Plants of 7 different species were grown 30 days under white light,
then transferred under a gradient of red to blue LED lights for an-
other 30 days, and finally returned to white light (Fig. 1). Pheno-
typic data were collected twice a week from side- and top-view
images of individual pots. Image processing delivered 3 types of
phenotypic descriptors: (i) simple dimensions (e.g., height, width,
projected area, fitted ellipse), (ii) shape factors derived from sim-
ple dimensions (e.g., roundness, solidity, circularity), and (iii) color
mean density values (red, green, blue, hue, saturation, brightness)
and their respective standard deviations. A detailed explanation
of the phenotypic descriptors is provided in Table 1.

The dataset was first used to evaluate the potential of the
imaging platform to discriminate diverse plant species and mor-
phologies, from narrow-leaf monocots (B. distachyon, O. sativa, S.
viridis) to large-leaf caulescent tomato (S. lycopersicum) or multi-
plant bushes (E. peplus, O. basilicum). Figure 2 shows how species
discrimination by principal component analysis (PCA) performed,
based on different combinations of the 3 types of phenotypic
descriptors (dimensions, shape factors, color indices) and the 2
camera views (side- and top-views). As expected, the different
species were best discriminated based on the full set of descrip-
tors, all other combinations yielding only partial separations, es-
pecially for the 3 monocots. A main limitation was also found with
A. thaliana, whose basal rosette of flat leaves could only be char-
acterized consistently from the top-view images.

To evaluate the effect of the red to blue LED gradient for each
plant species, a linear regression was calculated for each pheno-
typic descriptor against the log-transformed red:blue ratios mea-
sured at each plant location. Besides recording Pearson R and
P-value, the slope and intercept of the regression were used to
estimate descriptor values at both the minimal and the maxi-
mal red:blue ratios. The difference between these values was de-
fined as the “effect size” of the gradient, which is expressed as
the percentage difference across the red:blue gradient. The regres-
sion graphs can be generated using the R scripts provided in the
“Source Code” section. These calculations were performed at each
phenotyping time point in order to evaluate the variation of the
red:blue ratio effects during and after the gradient treatment.

Differential growth, shape, and color under
variable red:blue ratio
Figure 3 shows the kinds of images and data that were obtained
for tomato (S. lycopersicum), as an example. Plants were visually
taller, wider, and bulkier as the red:blue ratio increased (Fig. 3b
and c). Image-based phenotypic descriptors allowed these effects
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Figure 1: Cultivation set-up under red:blue light gradient. (a) 30-day-old plantlets at the end of pre-cultivation period. (b) Cultivation system before
(small pots) and after (large pots) transfer under the red:blue light gradient. (c) Red:blue gradient setup. Arrangement and setting of the 5 clusters of
Lumiatec PHS::16 luminaries in the phytotronic cabinet. (d) Red:blue ratio measured at each plant position; PFD: photon flux density. (e) Total light
irradiance measured across the gradient; PPFD: photosynthetic PFD.

on plant height and volume to be quantified (estimated by Voxel
descriptor), and revealed more subtle changes, such as a decrease
in circularity, a shape factor that quantifies area:perimeter vari-
ation (Fig. 3d). This was likely due to the elongation of stems
and petioles, which increased the convexities in the plant con-
tours under high red:blue ratio. The triangular greenness index
(TGI) calculated from RGB density values also increased, indicat-
ing higher reflectance in the green broadband (Fig. 3d). Because,
as expected from the literature [22, 34], TGI was negatively corre-
lated with chlorophyll content estimates (see Supplementary Fig.

S3), this color change suggested a decrease in leaf chlorophyll con-
tent with higher red:blue ratios. This combination of phenotypes
is consistent with previous studies showing that blue wavelengths
reduce stem elongation and increase chlorophyll concentration in
S. lycopersicum [35, 36]. Interestingly, repeating the phenotyping
procedure during and after the red:blue treatment revealed that
the effect size of the gradient changed over time. It was strongest 2
weeks after the start of the treatment for a number of descriptors
(Fig. 3e) but diminished markedly afterwards, suggesting a possi-
ble acclimation process.



4 | GigaScience, 2022, Vol. 11, No. 1

Table 1: Plant dimension, shape, and color parameters measured by imaging: definition, calculation, and units

Label Definition Formula Unit or scale

Dimensions
Side-view HeightMax Maximum height out of 6 side-view

images during 180◦ rotation
mm

Side-view WidthMax Maximum width out of 6 side-view
images during 180◦ rotation

mm

Side-view AreaMean Mean projected area out of 6 side-view
images during 180◦ rotation

mm2

Top-view Area Projected area out of 1 top view image mm2

Top-view MeanFeret Mean of maximum and minimum
distances between 2 points along the
selection boundary

mm

Voxel Plant volume estimate combining
side- and top-view area of the plant

sqroot [max(side-view area) ∗

min(side-view area) ∗ top-view
area]

mm3

Shape factors
Side- and Top-view Roundness Degree of similarity to a circle derived

from the fitted ellipse axes
minor axis/major axis (of the fitted
ellipse)

Scale 0–1

Side- and Top-view Solidity Overall concavity derived from area
and convex-hull measurements

area/convex-hull area Scale 0–1

Side- and Top-view Convexity Edge “roughness” derived from convex
hull and perimeter measurements

convex-hull perimeter/perimeter Scale 0–1

Side- and Top-view Circularity Ratio of the area of the shape to the
area of a circle having the same
perimeter (a.k.a.“isoperimetric
quotient”)

4π ∗ area/perimeter2 Scale 0–1

Side- and Top-view Compactness Degree of compacity derived from the
ratio of the diameter of a circle with
the same area to the major axis of the
fitted ellipse

sqroot[(4/π ) ∗ area]/major ellipse
axis

Scale 0–1

Color indices
Side- and Top-view HueMean Mean hue component of the plant’s

color after transformation of the RGB
image into HSB model

Scale 0–255

Side- and Top-view HueCv CV of the plant’s pixels’ hue stdev(hue)/avg(hue) ∗ 100 %
Side- and Top-view SaturationMean Mean saturation component of the

plant’s color after transformation of
the RGB image into HSB model

Scale 0–255

Side- and Top-view BrightnessMean Mean brightness component of the
plant’s color after transformation of
the RGB image into HSB model

Scale 0–255

Side- and Top-view RedMean Mean red component of the plant’s
color in the RGB model

Scale 0–255

Side- and Top-view GreenMean Mean green component of the plant’s
color in the RGB model

Scale 0–255

Side- and Top-view BlueMean Mean blue component of the plant’s
color in the RGB model

Scale 0–255

Side- and Top-view Density Integrated density: the sum of the
grey values of the pixels in the image
or selection

area ∗ mean grey value

Top-view GLI Green leaf index: vegetation index for
use with a digital RGB camera

(2 ∗ green - red - blue)/(2 ∗ green +
red + blue)

Top-view TGI Triangular greenness index:
approximate area of a triangle
bounding a leaf reflectance spectrum,
where the vertices are in the red,
green, and blue wavelengths

[(670 – 480) ∗ (red - green) - (670 –
550) ∗ (red - blue)] / −200

Top-view Chl_predicted Predicted leaf chlorophyll content
derived from multiple linear
regression using red, green, and blue
components of the plant color in the
RGB model

440 + blue ∗ 7.266 + red ∗ 10.873 +
green ∗ −15.545

μmol m–2

CV: coefficient of variation; GLI: green leaf index; HSB: hue saturation brightness; TGI: triangular greenness index.
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Figure 2: Principal component analysis discrimination of 7 species based on various selections of phenotypic descriptors. Species color codes in panel
(a). Imaging data collected over 3 timepoints between 21 and 29 days after transfer under red:blue gradient were used.
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Similar analyses were performed for the other 6 species. Fig-
ure 4 shows the calculated “effect sizes” of the red:blue gradient
at the end of the light treatment for 20 phenotypic descriptors
that showed a highly significant correlation (P < 0.01) with the
red:blue ratio in ≥1 species. Although the effects on height and
color described above for S. lycopersicum were mostly consistent

across species, the pattern and amplitude of the effects on the full
array of phenotypic descriptors appeared highly species-specific.
For example, in S. lycopersicum, effects on dimension descriptors
were observed in side-view images only, while in E. peplus, B. dis-
tachyon, and O. sativa, top-view dimensions were also affected, and
in A. thaliana, O. basilicum, or S. viridis, no significant effects on any
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Figure 4: Effect size of the red:blue gradient on different phenotypic descriptors estimated at the last imaging point before re-transfer to white light
(29 days after the start of the gradient). The significance categories are based on the P-value of the computed R2. Side-view data for A. thaliana are not
shown (NA). Note that “Chl-measured” is not an imaging-based index, but an estimate of leaf chlorophyll content obtained with a handheld probe
(Apogee MC-100). NS: nonsignificant.

dimension descriptors were observed. An increase in plant height
with the red:blue ratio is reported in the horticultural literature
involving phylogenetically distant eudicots such as cabbage [37],
artichoke [38], cucumber [39], tomato [35, 36], or lettuce [40]. In
O. basilicum, however, which is probably one of the most studied
species under indoor conditions including LED lights, previous re-
ports showed conflicting results. For example, blue light was re-
ported to affect stem elongation and leaf expansion either posi-
tively [41, 42] or negatively [43]. These discrepancies demonstrate
the difficulty of comparing phenotypic studies performed in dif-
ferent laboratories where cultivation set-ups vary, and strengthen
the interest in using an LED color gradient to change light quality
with all other environmental parameters being constant.

In terms of shape descriptors, all species exhibited different
patterns of responses to the red:blue ratio, which was expected
because of their different architectures. Nevertheless, the combi-
nation of descriptors made it possible to capture how light quality
affected the general appearance of the plants, as sketched in Fig. 5.
Interestingly, some of these effects were known in the literature,
which supports the suitability of the imaging pipeline developed
here.

For example in A. thaliana, higher red:blue ratios induced curl-
ing of the leaves that were also slanted downwards [44], and this
was captured here by a decrease in top-view circularity, as leaves
were seemingly narrower when seen from the top (Figs 4 and 5).
A similar phenotype, known as part of the “red-light syndrome,”
has been reported in other species, including tomato [45] and cu-
cumber [46].

In B. distachyon, which is the species whose shape and size were
the most affected by light quality (Figs 4 and 5), side- and top-view

area, height, and width increased with the red:blue ratios, which
could be explained by a reduction of the foliage by blue light, as
already reported for wheat [47], and/or an increase of branching
(tillering) by red light, as reported in red:far red experiments [48,
49]. In O. sativa, increased red:blue ratios altered the plant shape
by enhancing the erectness of leaves and causing plant tightening,
as indicated by changes in both side- and top-view roundness and
solidity descriptors (Figs 4 and 5). Interestingly, erect leaves were
previously shown to improve photosynthesis and yield in rice by
reducing leaf shading in dense plantations [50]. This phenotype is
regulated by environmental and hormonal factors, among which
brassinosteroids exert a prominent role. The effects of light qual-
ity observed here could thus act upstream of these hormones, as
suggested by Asahina et al. [51].

The color indices green leaf index (GLI), TGI, or predicted
chlorophyll content (Chl-predicted) all pointed towards a decrease
in chlorophyll content with higher red:blue ratio, which is in line
with reported effects of red and blue lights in various species
such as lettuce [40], cabbage [37], tomato [36], cucumber, pep-
per, or radish [35]. Also, the expected negative correlation between
TGI and chlorophyll content estimates [22, 34] was found in most
species (Supplementary Fig. S3). There were 2 exceptions, how-
ever: (i) the correlation between TGI and chlorophyll estimates
was reversed in O. sativa (Supplementary Fig. S3), possibly as a
consequence of leaf inclination and reflectance changes with light
quality; and (ii) there was no correlation between TGI and chloro-
phyll estimates in S. viridis, and the effect of the red:blue ratio on
chlorophyll estimates was opposite to what was observed in the
other species (Fig. 4). It is tempting to speculate that this pecu-
liar behavior of S. viridis is linked to its C4 metabolism, but infor-



8 | GigaScience, 2022, Vol. 11, No. 1

Figure 5: Schematic representation of the phenotypic variations caused by a red:blue light gradient in 7 plant species. Effects observed 4 weeks after
the start of the light gradient.

mation on this topic is scarcely available in the literature. In one
report on maize, though, it was shown that blue light represses
the accumulation of chlorophylls, compared to red light [52]. Con-
cerning the lack of correlation between TGI and chlorophyll es-
timates, one explanation might be that S. viridis plants started
flowering during the gradient treatment, and TGI may have been
biased by the presence of paler green panicles, independently of
the variations in leaf chlorophyll content. This is a good reminder
that chlorophyll content is not always the main explanatory vari-
able in a color index. Indeed, although RGB reflectance was shown
to be a good chlorophyll proxy in different species [21, 53, 54], it
lacks specificity and is sensitive to other pigments as well as to
leaf texture and/or inclination.

Patterns of change over time
An undeniable advantage of image-based phenotyping is that
it allows repeated measurements and thus provides a dynamic
output. It was important in this study because the effect size of
the red:blue gradient was found to change over time, but in dif-
ferent ways in the different species (Fig. 6). As mentioned above,
the effect of the red:blue gradient was transient in tomato, being
strongest 2 weeks after the start of the treatment for a number
of descriptors (Fig. 3d). By contrast in B. distachyon, O. sativa, and
E. peplus, the effect size increased with time and then diminished
slowly after return to white light (Fig. 6). In O. basilicum, no signifi-
cant effect was observed during exposure to the gradient, but the
transfer back to white light caused sudden and transient changes
in parameters such as height, circularity, and TGI, indicating re-
adjustment of plants to the light quality
fluctuation.

Plant acclimation to light fluctuations is subject to immense
interest but is mostly focused on irradiance rather than spectrum
fluctuations [55, 56]. In nature however, intensity and quality fluc-
tuations are often concomitant. For example, plants undergoing
shading in a canopy experience both a decrease in intensity and
a shift towards greener light with lower red:far red ratio. In that
respect, Wagner et al. [57] showed that the long-term response
to fluctuating light quality is an important and distinct light ac-
climation mechanism that supports survival of A. thaliana under

low light conditions, and hence integrating time into the under-
standing of plant responses to light quality deserves more atten-
tion. An “end of treatment” phenotyping would undoubtedly miss
important data.

Conclusion
It is clear from this study that the effects of light quality on
plant phenotypes are strongly species-dependent, so no predic-
tive clues can be generalized. Experimentation is thus absolutely
required before any application of LED technology in CEA or other
research contexts. In that respect, this study demonstrates that,
compared to discrete conditions, the use of a light gradient allows
subtle phenotypic effects to be captured while avoiding the in-
terference of other environmental variations, which still hampers
comparisons of data acquired in different plant growth facilities.
The analysis of the dataset provided here also shows that high-
throughput phenotyping is required to capture the complexity of
plant plasticity and that a time course is needed to measure pos-
sible transient effects.

Additional features could improve the platform described here.
For instance, throughput could be increased by adding automated
steps (plant conveyors or moving top-view cameras on gantry)
that were not included in our maker-made platform but are quite
common for higher capacity facilities [58–60]. The accuracy, rel-
evance, and depth of imaging could be improved by using new
technologies such as spectral, tridimensional, thermal, or fluores-
cence cameras, depending on the desired application and/or traits
of interest. In particular, this would address the pertinence of the
RGB color indices and the biases caused by plant shapes and leaf
inclination, which were also reported in studies on spectral imag-
ing [61]. Image analysis could be accomplished with other avail-
able software, some of which offer more specialized functionali-
ties than the free and popular generalist package, ImageJ, which
was used here. The online resource [62] curates currently available
tools for morphological plant image analysis [63]. More elaborate
data processing could also be explored beyond linear regression,
while machine learning approaches could facilitate the interpre-
tation of the complex set of parameters generated by imaging.
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Figure 6: Time-course variation of the “effect size” of the red:blue gradient for 4 phenotypic descriptors in 6 species. Vertical dotted line: end of the
red:blue gradient treatment and return to white light. The significance categories are based on the P-value of the computed R2. Side-view data for A.
thaliana are not shown (NA). NS: nonsignificant.

For example, classification techniques would allow plants to be
categorized according to predefined criteria and provide the user
of the dataset with a more holistic understanding of the plant phe-
notype.

All these perspectives further broaden the potential advan-
tages of combining LED gradients with imaging-based plant phe-
notyping for both environmental optimization and genotypic se-
lection of CEA targets. The methodology can be adapted to multi-
ple use-cases by changing the LED wavelengths, the gradient con-
figurations, and the timing of the light treatments.

Methods
Plant materials
Arabidopsis thaliana Col-0 seeds were obtained from a public seed-
bank (NASC, Nottingham, UK) and Brachypodium distachyon Bd21-
3 seeds from Prof. R. Amasino (University of Wisconsin, Madi-
son, WI, USA). Seeds of Euphorbia peplus were obtained from
fairdinkumseeds.com (Gin Gin, Queensland, Australia). Seeds of
Setaria viridis A10.1 were obtained from USDA Iowa State Uni-
versity Agricultural Research Service (Ames, IA, USA). Seeds of

Solanum lycopersicum cv Ailsa Craig were obtained from TGRC
(Davis, CA, USA). Ocimum basilicum cv Genovese seeds were ob-
tained from Le Jardin de Bellecourt (Bellecourt, Belgium). Seeds of
Oryza sativa cv. Nipponbare were obtained from IRRI (Los Baños,
Laguna, Philippines). All materials were obtained and used within
the Rights and Obligations of the Recipient as specified by the
International Treaty on Plant Genetic Resources for Food and Agri-
culture adopted by the FAO Conference on 3 November 2001 and
entered into force on 29 June 2004.

Growth conditions
Seeds were sown in 4.5-cm fiber pots (Jiffypots®, Jiffy, Zwijn-
drecht, Netherlands) filled with a 4:1 mix of leaf mold and
baked clay granules. The fiber pots were placed on 120 × 18 ×
14 cm cultivation gutters (Goponic, Nouméa, France) and irrigated
by capillarity through a wet cultivation felt mat (Feutriplanta®,
Jardirama, Warsage, Belgium) and wicks dipping in the water
(Fig. 1a and b). The gutters were placed for 30 days in a Convi-
ron PGV36 phytotronic cabinet (Conviron, Winnipeg, MB, Canada)
at 21◦C day/night, 70% relative humidity under 12-h photoperiod
provided by Sylvania Luxline Plus T5 FHO 54W tubes (Osram-
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Sylvania, Wilmington, MA, USA) delivering 4,000K white light (see
spectral distribution data in Supplementary Fig. S2). Photosyn-
thetic photon flux density (PPFD) (400–700 nm) was adjusted to
±130–150 μmol m–2 s–1, as measured using a HiPoint HR-550 spec-
trophotometer (Taiwan Hipoint Corp., Kaohsiung, Taiwan). After 4
weeks, Jiffypots were transplanted into 12-cm square plastic pots
filled with the same substrate, supplemented with 6 g L–1 of slow
release fertilizer (Osmocote Exact Standard 5–6 M, ICL Specialty
Fertilizers). Only 1 plant per pot was kept, except for E. peplus (6
plants/pot) and O. basilicum (up to 9 plants/pot) to account for
their usual mode of cultivation in bushes. The pots were fitted
at the bottom with a 2 × 10 cm felt wick for capillarity irriga-
tion and randomly placed on the deck of the cultivation gutters.
The gutters were then placed in the same environmental condi-
tions as previously, except for the lighting, which was provided
either by white fluorescent tubes as before or by adjustable Lumi-
atec PHS::16 luminaries providing a range of red:blue light ratios
(described below and Fig. 1c). The carbon dioxide concentration
was ambient and remained within 390–410 ppm throughout the
experiment (measurements performed with IRGA analyzer WMA-
5 PP Systems, Amesbury, MA, USA).

Red-blue light gradient
The phytotronic cabinets were equipped with 15 Lumiatec PHS::16
(300W) luminaries (GDTech, Alleur, Belgium) each. These luminar-
ies are controllable over 16 channels and fitted with PCB-LEDs
offering 2 × 6 Blue LED 455 nm, 6 × 6 White LED 4,000K, 1 ×
6 Green LED 520 nm, 1 × 6 Yellow LED 593 nm, 2 × 6 Red LED
635 nm, 2 × 6 Hi-Red LED 660 nm, 1 × 6 Far-Red LED 730 nm, and
1 × 6 UV LED 280 nm. The 15 luminaries were regularly distributed
at a distance of 0.5 m (Fig. 1c) and were controlled per cluster of
3 using the Lumiatec control interface. The blue and hi-red chan-
nels (see spectral distribution data in Supplementary Fig. S2) were
adjusted as shown in Fig. 1c to create a gradient of red:blue ratio
(Fig. 1d). The light spectrum and intensity above each plant were
monitored using the same HiPoint HR-550 spectrophotometer as
before. PPFD under the gradient conditions was 100–150 μmol m–2

s–1 (Fig. 1e). The other parameters used during the gradient treat-
ment (air temperature, relative humidity, photoperiod) were the
same as described in the “Growth conditions” section.

Layout under red:blue gradient
Each room (3 m2) allowed 12 gutters of 10 pots (Fig. 1c). The place-
ment of the plants was organized in rows and columns so that
each pot could be registered by room:row:column coordinates and
labeled with a unique quick response identifier (QR-code). The
gutters corresponded to the columns, and there were 36 pots per
species in 3 contiguous rows of 12 pots, except for Arabidopsis,
which had 4 rows, so 48 pots. No guard rows were used. At the be-
ginning of the LED gradient treatment, a randomization step was
performed for each species within their block, after which the pots
were kept at the same position until the end of the treatment. A
detailed representation of the layout is provided in Supplemen-
tary Fig. S1. On Day 60, the plants were all transferred back to
white light conditions, and the experiment was stopped 4 weeks
later.

Imaging hardware
Plants grown in individual pots were placed on a rotating plat-
form and photographed laterally (6 side-view images during a
180◦ rotation) or from the ceiling (1 top-view image). The imaging

set-up was built with aluminium profiles supporting white diffu-
sive polyvinyl chloride walls. The cabinet was illuminated by 25 ×
25 cm white light LED panels (Araponics, Liège, Belgium). Lighting
was optimized for taking pictures with a diffusive back-lit white
background for side-view images and a black cloth background
for top-view images. A step-motor platform was used to rotate
the pot while 2 color (RGB) 12 Mpx cameras (Dalsa Genie-nano
4040, Dalsa, Waterloo, ON, Canada) acquired plant images from
side and top view and 1 color HD webcam (Logitech, Lausanne,
Switzerland) read QR-coded labels on the pot. Spatial specifica-
tions allowing reproduction of this set-up are provided in Supple-
mentary Fig. S4. The Genie-Nano cameras were fitted with high-
resolution 25-mm focal length Tamron M111FM25 lenses, which
enabled imaging of plants ≤150 cm high and 100 cm wide with an
estimated smallest detail size of ±0.5 mm at a working distance
of 200 cm, based on sensor dimensions (14.2 × 10.4 mm, 4,112 ×
3,008 pixels) and lens optical resolution (3.1 μm “pixel pitch”). Di-
aphragm closure of the lenses was set to F8.0, exposure time to 0.2
msec, and gain to 6. The cameras and the stepper-motor were con-
trolled through dedicated software written in Python and running
on a Linux computer to synchronize plant identification, rota-
tion, and image acquisition. The adjustment of basic camera set-
tings (e.g., shutter speed, gain, output format) used libraries from
OpenCV (OpenCV, RRID:SCR_015526) [64] and Aravis [65], while
rotation functionalities (i.e., speed, number, and time of acquisi-
tions after QR-code detection) were programmed by us. Typically,
6 side-view images and 1 top-view image were acquired during a
180◦ rotation in 4 seconds (45◦ per second). The pots were manu-
ally loaded on the rotating platform through a sliding door.
After rotation was initiated, the imaging cycle started when
the QR-code was read by the webcam, and each image ac-
quired by the Genie-Nano cameras was saved under a unique
identifier (UID). The complete imaging cycle was ∼10 seconds
per pot.

Image processing and generation of phenotypic
descriptors
An automated script was developed using the macro language of
the ImageJ open source package (Fiji distribution) [66] to extract
plant phenotypic descriptors from each image. The successive
steps were (i) reading the raw image in Bayer format; (ii) getting
metadata, e.g., date, pot UID, camera view, frame No.; (iii) white
balance and spatial calibration based on a reference color chart;
(iv) segmentation of the plant from background using grey-scale
or color thresholding; (v) measurement of plant dimensions and
shape factors; (vi) extraction of color components in either RGB
or HSB (hue saturation brightness) color space; (vii) exporting raw
data in text format (.csv).

R version 3.6.1 for macOSX [67] running under Rstudio ver-
sion 1.3.1093 (Rstudio, Boston, MA, USA) was used to (i) compute
additional shape factors as ratios from existing measurements,
such as voxel, compactness, anisotropy; (ii) compute color indices
such as GLI and TGI; (iii) generate a chlorophyll content prediction
based on RGB values; (iv) generate scatter plots to visually check
for abnormal measurements due to, e.g., corrupted images, before
further statistical use; (v) aggregate the multiple camera mea-
surements per pot (e.g., the side-view camera generated 6 images
from which the mean, maximum, minimum, and median values
were computed); (vi) merge imaging data with plant metadata
(species, spatial location, intensity and quality of light at plant
location, estimated chlorophyll content). A more detailed descrip-
tion of the image processing is found in Supplementary Table S1.

https://scicrunch.org/resolver/RRID:SCR_015526
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Chlorophyll content estimate
The leaf chlorophyll content was estimated with a hand-held
probe measuring the transmittance ratio of cell walls at 931
nm versus chlorophyll at 653 nm (Apogee MC-100, Apogee Instru-
ments, Logan, UT, USA). These measurements were performed
once, at the end of the red:blue gradient treatment. Species-
specific calibration models provided with the instrument were
used for tomato and rice, whereas a generic model, averaged from
multiple species (described in [68]) was used for the other species.
At least 6 measurements were made on a minimum of 3 different
mature leaves per pot. The measurements were averaged per pot.

Additional Files
Figure S1: Experimental design and layout during the gradi-
ent treatment. Four phytotronic cabinets were used. Three of
them (G4, G5, G9) were equipped with Lumiatec PHS::16 lumi-
naries and 1 (G8) was equipped with regular fluorescent tubes
(white light). Three successive sowings were performed at 2 weeks
interval in chamber G8. Each sowing consisted of 2 species and
A. thaliana. After 30 days in G8, 36 plants of each species (48 for
A. thaliana) were transferred to the respective Lumiatec PHS::16-
equipped phytotronic cabinet for the gradient treatment. Twelve
plants of each species per sowing were kept under white light in
G8 until the end of the experiment. Each plant was tagged with a
unique identifier. Note that A. thaliana plants in chambers G4 and
G5 were sown for molecular analyses that are not reported in this
article.
Figure S2: Spectral distribution of the red and blue LED of the Lu-
miatec PHS::16 luminaries and the white fluorescent lights used
in the experiment.
Figure S3: Correlation between leaf chlorophyll content, as esti-
mated manually with an Apogee MC-100 chlorophyll meter, and
the triangular greenness index (TGI) computed from RGB images.
Measurements of both TGI and chlorophyll content in this figure
were performed 29 days after the start of the gradient treatment.
Figure S4: Blueprint of the imaging cabinet.
Table S1: Steps in the image processing to generate plant shape
and color proxies.

Data Availability
Raw images, image analysis script, and raw data file are available
at zenodo.org [69].

Source Code
R script for statistical analysis, subsequent processed data files,
and plot files are available at codeocean.com [70].
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