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Abstract

Differences in immunefunctionbetweenspeciescouldbearesultof interspecificdivergence incodingsequenceand/orexpressionof

immune genes. Here, we investigate how the degree of divergence in coding sequence and expression differs between functional

categories of immune genes, and if differences between categories occur independently of other factors (expression level, pleiot-

ropy). To thisend,wecomparedspleen transcriptomesofwild-caughtyellow-neckedmiceandbankvoles. Immunegenesexpressed

in the spleen were divided into four categories depending on the function of the encoded protein: pattern recognition receptors

(PRR); signal transduction proteins; transcription factors; and cyto- and chemokines and their receptors. Genes encoding PRR and

cyto-/chemokines had higher sequence divergence than genes encoding signal transduction proteins and transcription factors, even

when controlling for potentially confounding factors. Genes encoding PRR also had higher expression divergence than genes

encoding signal transduction proteins and transcription factors. There was a positive correlation between expression divergence

and coding sequence divergence, in particular for PRR genes. We propose that this is a result of that divergence in PRR coding

sequence leads todivergence inPRRexpressionthroughpositive feedbackofPRR ligandbindingonPRRexpression.Whencontrolling

for sequence divergence, expression divergence of PRR genes did not differ from other categories. Taken together, the results

indicate that coding sequence divergence of PRR genes is a major cause of differences in immune function between species.
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Introduction

There are often substantial differences between host species

in disease severity when infected by a given pathogen. One

example that has gained considerable interest concerns Ebola

virus, where bats seem to carry the virus more or less asymp-

tomatically (Leroy et al. 2005), while infection causes severe

disease in humans. Similarly, but on a smaller phylogenetic

scale, different primate species differ in susceptibility to simian

immunodeficiency virus infection. Macaques develop AIDS-

like symptoms, whereas sooty mangabeys do not (Mandl

et al. 2015). Such differences in susceptibility to infectious

diseases could be a result of numerous factors, but differences
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in immune function likely plays the most important role

(Mandl et al. 2015). To understand how differences in im-

mune function between species have evolved, it would be

of interest to uncover general principles of divergence of im-

mune signaling pathways, for example if divergence in protein

coding sequence and/or gene expression is concentrated to

certain functional categories of immune genes.

Analyses of coding sequences in invertebrates (Drosophila)

have shown that some types of immune genes, in particular

receptors involved in detection of pathogens, are more often

under positive selection than other genes in immune path-

ways (encoding signal transduction and effector proteins)

(Sackton et al. 2007), and thus could be expected to have

higher coding sequence divergence. Similar patterns have

been found in primates, where proteins at the margins of

immune networks (e.g.,pattern recognition receptors [PRR],

which are involved in recognition of pathogens) have higher

divergence than core proteins (e.g., signal transduction pro-

teins [Casals et al. 2011]).

A recent analysis of in vitro expression of mammalian (ro-

dent and primate) immune genes in response to stimulation

with viral or bacterial ligands showed that also interspecific

divergence in expression was concentrated to a few func-

tional categories of genes (Hagai et al. 2018). Specifically,

expression of PRR as well as cyto- and chemokines and their

receptors (which are involved in intercellular communication)

had high divergence. In contrast, there was low divergence in

expression of genes encoding intracellular signal transduction

proteins (e.g., protein kinases, adaptors, inhibitors, etc.) and

transcription factors (Hagai et al. 2018).

Thus, analyses of interspecific divergence in coding se-

quence or expression in different study systems have shown

that in both cases some functional categories of immune

genes have higher divergence than others. However, previous

studies have focused on either coding sequence or expression

divergence, used different study systems, and different ways

of categorizing immune genes. It is therefore not entirely clear

whether differences in coding sequence and expression diver-

gence between gene categories are concordant or not. To

understand how differences in immune function between

species have evolved, it would be of interest to compare

both coding sequence and expression divergence of different

immune gene categories in a given system and elucidate how

these two aspects of divergence are related to each other. For

example, do some gene categories have high divergence as

regards both coding sequence and expression, or do some

categories have high sequence divergence while others have

high expression divergence?

Moreover, it is not well known if differences in divergence

between functional categories occur independently of other

factors or not. Under one scenario, differences in coding se-

quence or expression divergence could be an effect of that

natural selection has acted in different ways on different gene

categories because of their function per se. For example, one

could envision that receptors for recognition of pathogens

might have high sequence divergence because these recep-

tors are involved in recognition of specific pathogens and

each host species has adapted to its own sets of pathogens

(Sackton et al. 2007; Lundberg et al. 2020). Alternatively,

gene categories might differ in sequence or expression diver-

gence because they differ in other factors that covary with

sequence or expression divergence, so that once these other

factors are controlled for there is no difference in divergence

between gene categories. For example, sequence divergence

is generally negatively correlated with pleiotropy (Zhang and

Yang 2015), and receptors for recognition of pathogens have

relatively low pleiotropy (Lundberg et al. 2020). Thus, recep-

tors could have high sequence divergence because they have

low pleiotropy, rather than because they are involved in rec-

ognition of pathogens (Sackton et al. 2007). Besides pleiot-

ropy, coding sequence divergence is correlated with several

other factors, in particular expression level (Zhang and Yang

2015). Similarly, expression divergence has been found to be

associated with both pleiotropy and expression level (Hagai

et al. 2018, Warnefors and Kaessmann 2013). These factors

could thus potentially confound any differences in sequence

or expression divergence between gene categories. However,

as far as we are aware, the relative importance of gene func-

tion and other factors for coding sequence or expression di-

vergence of immune genes has not been explicitly addressed.

Here, we use two wild rodent species—the bank vole and

the yellow necked mouse—to investigate both coding se-

quence and expression divergence of genes in immune sig-

naling pathways. Specifically, we tested if there are

differences in coding sequence divergence and expression di-

vergence between functional categories of immune genes,

and if differences in divergence between categories occur in-

dependently of other factors (pleiotropy and expression level)

or not. To this end, we generated de novo transcriptome

assemblies and expression data from spleen of wild-caught

bank voles and yellow-necked mice.

Methods and Materials

Study Species and Field Work

The bank vole (Myodes glareolus, Schreber 1780) is a small

rodent (adult body mass 15–40 g) in the family Cricetidae

(hamsters, lemmings, voles, etc.), which occurs in forests

and meadows with thick ground cover, from western

Europe to central Siberia (Aulagnier et al. 2009; Wilson

et al. 2017). The yellow-necked mouse (Apodemus

flavicollis,Melchior 1834) is a small rodent (adult body mass

22–56 g) in the family Muridae (rats and mice), which occurs

in forests in temperate parts of Europe (Aulagnier et al. 2009;

Wilson et al. 2017). Cricetidae and Muridae diverged ca. 18

Ma (Steppan & Schenk 2017).
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The bank vole and yellow-necked mouse share pathogens

to a large extent. At our study site, both species are infested

with ticks (Ixodes ricinus), and infected with the tick-

transmitted bacteria Borrelia afzelii and Candidatus

Neoehrlichia mikurensis (Andersson and Råberg 2011;

Hellgren et al. 2011) and various helminths (Clough and

Råberg 2014). The bank vole and the yellow-necked mouse

differ in resistance to at least some of these pathogens. Bank

voles have about 10-fold higher infection intensities with

B. afzelii (i.e., bacterial load in infected animals) than yellow-

necked mice (Råberg 2012; Strandh and Råberg 2015), even

though the two species carry the same B. afzelii strains

(Råberg et al. 2017). In contrast, yellow-necked mice have

considerably higher tick burdens than bank voles living in

the same area (L. Råberg, unpublished data), which is likely

an effect of that voles but not mice develop acquired resis-

tance to ticks (Dizij and Kurtenbach 1995).

In previous analyses of gene expression in spleen of wild-

caught naturally B. afzelii-infected and uninfected bank voles

and yellow-necked mice, we found that the two species re-

spond in partly different ways to B. afzelii infection.

Specifically, B. afzelii infection is associated with up-

regulation of IFNa-signaling in yellow-necked mice, but

down-regulation of IL6 signaling and the complement system

pathway in bank voles (Zhong et al. 2020). These differences

in immune response presumably contribute to the observed

difference in B. afzelii infection intensity between the two

species (Råberg 2012; Strandh and Råberg 2015). In the pre-

sent study, we use the dataset from Zhong et al. (2020), but

instead of focusing on differences between the two species in

the response to a specific pathogen, we analyze divergence in

expression between species regardless of infections status.

Animals for this study were trapped in a dry deciduous

wood (tree cover dominated by beech and oak) at

Stensoffa field station, Revingehed, 20 km east of Lund,

southern Sweden. Voles and mice were trapped during 5

days in August and September 2016 using live traps

(Ugglan special, GrahnAB, Sweden). Traps were set in the

evening, collected early in the morning, and immediately

transported to the field station where selected animals were

dissected without delay. To minimize variation in gene expres-

sion due to age, reproductive status, weather, etc., we fo-

cused on adult males (as indicated by the presence of a

scrotum) and collected equal numbers of the two species

on each day. To get a general measure of the immune

gene expression of an animal, we analyzed spleen transcrip-

tomes. The spleen is a lymphoid organ that harbors large

numbers of immune cells, including monocytes and B and T

lymphocytes, and plays an important role during the immune

response to an infection (Lewis et al. 2019). Spleens were

dissected within a couple of minutes of euthanization and

stored in RNAlater RNA Stabilization Reagent (Qiagen) until

RNA extraction. Samples were collected with permission from

the Malmö/Lund board for animal experiment ethics (permis-

sion M47-14).

RNA Sequencing

From each animal, about 30 mg of spleen tissue was homog-

enized with a TissueLyser II (Qiagen, GmbH, Hilden,

Germany). Total RNA was extracted by RNeasy Mini Kit

(Qiagen) and treated by RNase-Free DNase Set (Qiagen).

RNA quality was assessed by measuring RNA Integrity

Number (RIN) on a BioAnalyzer (Agilent, USA); in all cases

RIN values were �8.8. Paired-end Illumina RNA sequencing

was performed by SciLifeLab (Stockholm, Sweden) on a

HiSeq2500 (Illumina) with HiSeq Control Software 2.2.58/

RTA 1.18.64 and a 2� 126 setup using ‘HiSeq SBS Kit v4’

chemistry.

De Novo Transcriptome Assemblies

Reads were trimmed using Trimmomatic (Bolger, Lohse, and

Usadel, 2014) with settings “2:30:10 SLIDINGWINDOW : 4:5

LEADING : 5 TRAILING : 5 MINLEN : 25.” All trimmed reads

passed the quality test in FastQC0.11.5 (https://www.bioin

formatics.babraham.ac.uk/projects/fastqc/). Trimmed reads

were de novo assembled for bank vole and yellow-necked

mouse using Trinity with default settings (Grabherr et al.

2011). CD-HIT version 4.6.8 (Fu et al. 2012) and

Transdecoder (Haas et al. 2013) were used to cluster contigs

with at least 95% similarity (-c 0,95) and to predict coding

sequences, respectively. Potential assembly errors were re-

duced by mapping reads back to pre-filtered contigs using

RSEM (Li and Dewey 2011) and removing contigs with TPM

(transcripts per million mapped reads) values less than 1.

Identification and Annotation of Orthologs

To identify orthologs between bank vole and yellow-necked

mouse, a reciprocal best hit BLASTp was performed, using

predicted amino acid sequences from bank vole and yellow-

necked mouse filtered de novo transcriptome assemblies. Hits

with an e-value < 1e-5 were selected to construct the puta-

tive one-to-one orthologs matrix. To annotate the putative

orthologs, BLASTx (version 2.6.0) was used to match both

bank vole and yellow-necked mouse transcripts to house

mouse (Mus musculus) proteins (91,244 transcripts from

22,237 unique protein coding genes) downloaded from

Ensembl (www.ensembl.org, release 87). Only orthologs

that received the same annotation were retained.

Quantification of Gene Expression

The reads from each species were mapped to their filtered de

novo transcriptome assemblies using RSEM. Initial gene ex-

pression matrices were produced for the two species sepa-

rately, including nonnormalized expected counts for each

individual within species. Read counts for the annotated
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orthologs in the two species were extracted to make the full

matrix and normalized using a trimmed mean of M-values

(TMM) method in edgeR (Robinson et al. 2010). Fragments

per kilobase per million mapped reads (FPKM; Trapnell

et al.2010) were calculated and transformed to log2(FPKM).

An empirical distribution of log2(FPKM) values for each indi-

vidual was calculated by kernel density (Gaussian distribution)

estimation in R version 3.5.2 (R Core Team, 2018), where

after zFPKM values were computed according to the proce-

dure described in Hart et al. (2013).

Identification of Different Categories of Immune Genes

We compiled a list of immune genes likely expressed in spleen

based on the following KEGG pathways (Kanehisa et al.

2017): FccR-mediated phagocytosis; CLR signaling pathway;

NOD-like receptor signaling pathway (excluding sensors and

signaling genes exclusively involved in detection of DAMPs);

RIG-I like receptor signaling pathway; TLR signaling pathway;

NFkB signaling pathway; NK-cell-mediated cytotoxicity; BCR

signaling pathway; TCR signaling pathway; Th1 and Th2 cell

differentiation; Th17 cell differentiation; IL17 signaling path-

way; TNF signaling pathway; and Chemokine signaling path-

way. In addition, we included all cytokines and their receptors

listed in appendix IV in Janeway’s Immunobiology (Murphy

and Weaver 2017).

This yielded in total 732 genes. Of these, 676 could be

divided into four functional categories (Table 1): genes encod-

ing 1) PRR, which are involved in the initial detection of patho-

gens by recognizing microbe-associated molecular patterns

(MAMP) like lipopolysaccharide and double-stranded RNA;

2) signal transduction proteins (adaptors, protein kinases,

etc.), which mediate signaling downstream of PRRs and other

receptors; 3) transcription factors (identified based on Animal

TF database 3.0 [Hu et al. 2019]), which are activated by

signaling proteins and induce expression of cytokines and

other modulators of the immune response, and 4) cyto-/che-

mokines or cyto-/chemokine receptors (henceforth cytokines),

which are involved in intercellular communication (autocrine,

paracrine, and endocrine), thereby modulating immune

responses. Most of the remaining 56 genes encoded different

types of cell surface molecules (CD4, Fc receptor genes, etc.)

that did not easily fit into any of the above categories, and

were considered to have functions that were not similar

enough to form a separate category; they were therefore

excluded from further analyses. Our categories are similar to

those used by Hagai et al. (2018), but we lumped all intracel-

lular signal transduction proteins into one group to enhance

statistical power, and because the analysis by Hagai et al.

showed there was little difference in divergence in expression

between subgroups of signaling proteins.

Interspecific Divergence of Coding Sequences

Coding sequences of orthologs from the bank vole and

yellow-necked mouse de novo transcriptome assemblies, as

well as the longest transcript from M. musculus ortholog were

aligned with PRANK version 170427 (Löytynoja 2014) using

default settings except for specifying a codon-aware align-

ment, and parallelized using gnu-parallel (Tange 2011). All

alignments were edited manually. In a few cases (IL7R,

MYD88, TBX21, TKFC), the sequence from the bank vole

transcriptome was complemented with sequence from the

bank vole reference genome (Lundberg et al. 2020) to in-

crease the overlap between bank vole and yellow-necked

mouse. Following Warnefors and Kaessmann (2013), only

genes with at least 150 bp of overlap between the aligned

bank vole and yellow-necked sequences were used in analy-

ses of sequence divergence. Only two of the immune genes

(CSF2RA and IL10RB) did not fulfil this criterion, leaving

N¼ 313 immune genes for analyses of coding sequence di-

vergence. To obtain a set of control genes for comparison of

coding sequence divergence, we selected N¼ 313 genes at

random from the one-to-one orthologs not included in the list

of immune genes (i.e., from 8599� 315¼ 8284 genes).

These 313 control genes were aligned and edited in the

same way as the immune genes. Coding sequence divergence

of each pair of orthologs was estimated as the number of

nonsynonymous substitutions per nonsynonymous site (dN)

between bank vole and yellow-necked mouse (Warnefors

and Kaessmann 2013). To test if any differences in dN be-

tween gene categories were a result of differences in muta-

tion rate or selection, we also estimated the number of

synonymous substitutions per synonymous site (dS), which

is a crude measure of mutation rate (P�al et al. 2006), and

dN/dS (where a relatively high value indicates relaxed purifying

selection or positive selection). dN and dS were calculated

with MEGA X for MacOS (Kumar et al. 2018; Stecher et al.

2020) using the Nei-Gojobori method with Jukes-Cantor cor-

rection. One gene (ARPB1C) had dN¼ 0 and dS¼ 0, and was

assigned a dN/dS value of 0.

Intraspecific Variation and Interspecific Divergence of
Gene Expression

We used the standard deviation (SD) of zFPKM values as a

measure of intraspecific variation (as the SD of a log-

transformed variable is uncorrelated with the mean;

Lewontin 1966).

Several different approaches have been used to estimate

interspecific divergence in gene expression, including pheno-

typic correlations in gene expression between species

(Brawand et al. 2011), principal component analysis

(Uebbing et al. 2016), comparison of the relative variance in

expression within and between species (Romero et al. 2012;

Rohlfs and Nielsen 2015), comparison of genetic mean ex-

pression levels between species (Nourmohammad et al.

Zhong et al. GBE
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2017), and residuals from a regression of expression levels in

different species (Chen et al. 2019). Some of these are useful

for comparing divergence of sets of genes, for example in

different tissues (Brawand et al. 2011; Uebbing et al. 2016),

while others also give gene-specific estimates of divergence

(Rohlfs and Nielsen 2015; Nourmohammad et al. 2017; Chen

et al. 2019). Here, we employed the approach outlined by

Chen et al. (2019), which yields gene-specific estimates of

divergence. For this purpose, we used smatr3 (Warton et al.

2012) to extract residuals from a standardized major axis re-

gression (where residuals are orthogonal to the regression

line;Warton et al. 2006) of mean expression in bank voles

against mean expression in yellow-necked mice, and used

the squared residuals as a measure of divergence. SMA

regressions were performed with all annotated orthologs,

rather than just the immune genes, to obtain a more precise

estimate of the regression between expression in bank voles

and yellow-necked mice. Besides comparing expression diver-

gence among the different categories of immune genes, we

also compared each category to the set of 313 control genes

(see above).

Pleiotropy

Divergence in protein-coding sequences is often negatively

correlated with pleiotropy (Zhang and Yang 2015). Similarly,

Hagai et al. (2018) found that expression divergence was

negatively correlated with pleiotropy (see also Papakostas

et al.,2014). We therefore included pleiotropy as a potential

covariate in analyses of differences in divergence in coding

sequence and expression between gene categories. We used

number of protein–protein interactions (PPI) as a proxy for

pleiotropy (Papakostas et al. 2014; Zhang and Yang 2015).

The number of PPI for M. musculus orthologs of the bank vole

and yellow-necked mouse genes were retrieved from the

STRING database (Szklarczyk et al. 2018), and were based

on the sources “experiments” and “databases,” with confi-

dence �0.4 (“intermediate confidence”).

Statistical Analyses

For each variable, we compared the four immune gene cat-

egories against each other, using general linear models (GLM)

and Tukey’s post hoc test. We also compared each of the

immune gene categories to the set of control genes (see

above), using GLM and Dunnett’s post hoc test. GLMs were

performed with proc glm in SAS 9.4 (SAS Inc., Cary, USA).

Squared residuals (from the SMA regressions) were log10-

transformed, while dN and dN/dS were arcsine squareroot

transformed for the GLM analyses (dS was normally distrib-

uted). Continuous independent variables were Z transformed

(mean¼ 0, SD¼ 1), so the effect of the factor immune gene

category is tested at the mean value of each covariate (rather

than 0).

Results

RNA-Sequencing

We performed RNA sequencing on spleen samples from 18

bank voles and 17 yellow-necked mice. Altogether, these 35

libraries generated �1.44 billion raw reads. De novo tran-

scriptome assemblies contained 842,299 and 761,841 con-

tigs for bank vole and yellow-necked mouse, respectively. A

series of filtering steps resulted in the retention of 13,631

contigs and 13,744 contigs in bank vole and yellow-necked

mouse, respectively (see Zhong et al. 2020 for more details

regarding de novo transcriptome assemblies). The orthology

between bank vole and yellow-necked mouse genes was de-

termined by Reciprocal Best Hit (RBH) via BLASTp, which

resulted in 10,931 one-to-one orthologs. Of these, 8,599

could be annotated (and received the same annotation) by

BLASTx against a house mouse protein database.

Of the 676 categorized immune genes (see Material and

Methods), 315 were included in our set of 8,599 annotated

orthologs. Two of these had too short alignment length for

calculating coding sequence divergence (<150 bp; see

Materials and Methods); the remaining 313 represent the

data set used in all analyses of divergence, etc., below

(Table 1).

Table 1.

Number of Immune Genes in Different Functional Categories

Function of Encoded Protein Number

in KEGG Pathways

Number Annotated

in Both BV and YNM

De Novo Transcriptome

Assemblies

Number Used for Analyses of

Sequence and Expression

Divergence

Pattern recognition receptor (PRR) 44 22 22 (50%)

Signal transduction protein 364 193 193 (53%)

Transcription factor (TF) 53 27 27 (51%)

Cyto-/chemokines and their receptors 215 73 71 (33%)

Total 676 315 313 (46%)

NOTE.—BV, bank vole; YNM, yellow-necked mouse.

Divergence in Coding Sequence and Expression GBE
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Plots of the frequency distributions of log2(FPKM) values

for each individual showed that the data set was highly ho-

mogenous, with relatively little variation in mean and SD of

log2(FPKM) between individuals (supplementary fig S1,

Supplementary Material online). Nevertheless, there was a

statistically significant difference in mean log2(FPKM) be-

tween bank voles and yellow-necked mice (t-test: t¼ 2.25,

df¼ 33, P¼ 0.03). We therefore applied the zFPKM transfor-

mation (Hart et al. 2013). A plot of the frequency distribution

of log2(FPKM) expression values showed that there was no

pronounced “shoulder” with lowly expressed genes (com-

pare our Supplementary Fig 1 and Fig 2 in Hart et al.

[2013]). We therefore retained all genes for further analyses,

instead of excluding genes with zFPKM <�3 as recom-

mended by Hart et al. (2013). In our data set, only 1 signaling

and 3 cytokine genes had mean zFPKM <�3 in both bank

voles and yellow-necked mice.

Divergence of Coding Sequences

The mean coding sequence divergence (estimated as the

rate of nonsynonymous substitutions; dN) differed be-

tween categories of immune genes (F 3, 309¼ 62.23.

P< 0.0001), with PRR and cytokine genes having higher

dN than signaling and transcription factor genes (Tukey’s:

P< 0.0001; fig. 1a). A comparison of the mean dN of

different categories of immune against the 313 randomly

selected control genes showed that PRR and cytokine

genes had higher dN, while signaling genes had lower

dN than control genes (F 4, 621¼ 45.08, P< 0.0001,

Dunnet’s: P� 0.01; fig. 1a).

Analyses of the rate of synonymous substitutions (dS, an

estimate of the mutation rate) showed that PRR genes had

higher dS than signaling and transcription factor genes (F 3,

309¼ 4.80, P¼ 0.0028, Tukey’s: P< 0.05; fig 1b), and that

PRR and cytokine genes had higher dS than control genes (F 4,

621¼ 5.76, P¼ 0.0001, Dunnett’s: P< 0.01; fig 1b).

A comparison of the ratio of substitution rates (dN/dS,

an estimate of the mode and strength of selection) among

categories of immune genes revealed an identical pattern

as for dN, with PRR and cytokine genes having higher dN/

dS than signaling and transcription factor genes (F 3,

309¼ 61.08, P< 0.0001, Tukey’s: P< 0.0001; fig 1c).

PRR and cytokine genes also had higher dN/dS than con-

trol genes, while signaling genes had lower dN/dS than

control genes (F 4, 621¼ 40.48, P< 0.0001; Dunnett’s:

P< 0.001; fig 1c).

Mean and Standard Deviation of Gene Expression

The mean expression levels differed between immune gene cat-

egories, with signaling genes having significantly higher expres-

sion than cytokine genes in both bank voles (F 3, 309¼ 8.95,

P< 0.0001, Tukey’s: P< 0.0001; fig 2a) and yellow-necked

mice (F 3, 309¼ 10.12, P< 0.0001; fig 2b). Signaling genes

ctrl PRR signal TF cytokine

0.
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*** *** ***
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FIG. 1.—Divergence in coding sequence of different categories of

immune genes and a set of randomly selected control genes. (a) The

rate of nonsynonymous substitutions, dN. (b) The rate of synonymous

substitutions, dS. (c) dN/dS. Letters indicate which categories of immune

genes were significantly different from each other based on Tukey’s post

hoc test; in panels (a) and (c), P in all cases<0.0001; in panel (b), P<0.05.

Asterisks indicate which categories of immune genes were significantly

different from the control genes based on Dunnett’s post hoc test:

***P<0.001, **P<0.01.
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also had higher expression than control genes in both bank voles

(F 4, 621¼ 6.90, P< 0.0001, Dunnett’s: P¼ 0.0002) and

yellow-necked mice (F 4, 621¼ 7.17, P< 0.0001, Dunnett’s:

P¼ 0.0015). In yellow-necked mice, cytokine genes also had

lower expression than control genes (P¼ 0.017).

The intraspecific variation in gene expression (measured as

the standard deviation of zFPKM) differed between immune

gene categories, with PRR and cytokine genes having higher

level of variation than transcription factor and signaling genes

in both bank voles (F 3, 309¼ 18.62, P< 0.0001, Tukey’s:

P< 0.05; fig 2c) and yellow-necked mice (F 3, 309¼ 21.32,

P< 0.0001, Tukey’s: P< 0.05; fig 2d). PRR and cytokine

genes also had higher level of variation than control genes

in both bank voles (F 4, 621¼ 8.51, P< 0.0001, Dunnett’s:

P� 0.0077) and yellow-necked mice (F 4, 621¼ 10.90,

P< 0.0001, Dunnett’s: P� 0.043). In yellow-necked mice,
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FIG. 2.—Mean and variation (SD) of expression levels (zFPKM) of different categories of immune genes and a set of randomly selected control genes in

each species. (a) Mean expression in bank voles. (b) Mean expression in yellow-necked mouse. (c) SD of zFPKM in bank voles. (d) SD of zFPKM in yellow-

necked mice. Letters indicate which categories of immune genes were significantly different from each other, based on Tukey’s post hoc test. Asterisks

indicate which categories of immune genes were significantly different from the control genes based on Dunnett’s post hoc test: ***P<0.001, **P<0.05,

*P<0.05.
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signaling genes also had lower SD than control genes

(P¼ 0.0054).

Divergence of Gene Expression

Mean gene expression across all 8,599 orthologs in the

yellow-necked mouse and bank vole de novo transcriptome

assemblies were strongly correlated (rs¼0.797, P< 0.001).

We used the squared residual deviation in a SMA regression

of expression in bank voles against expression in yellow-

necked mice as a measure of divergence (see Materials and

Methods for details). The intercept and slope of a SMA re-

gression of bank vole against yellow-necked mouse were

�0.0546 0.018 and 1.0256 0.013 (695% CI), respectively

(fig. 3).

The extent of interspecific divergence in gene expression

differed between immune gene categories (F 3, 309¼ 4.60,

P< 0.0037), with PRR genes having higher divergence than

signaling and transcription factor genes (Tukey’s: P� 0.021;

fig. 4). PRR genes also had higher divergence than control

genes (F 4, 621¼ 3.16, P¼ 0.014, Dunnett’s: P¼ 0.034).

Divergence of Coding Sequence and Expression in Relation

to Other Factors

To illustrate how sequence and expression divergence are re-

lated to other factors (including each other), we constructed a

path model involving the following variables: immune gene

category, gene expression level (mean of mean expression in

voles and mice), pleiotropy, gene expression divergence, and

coding sequence divergence (fig. 5). Besides the effects of

immune gene category on sequence divergence and expres-

sion divergence already reported above, this factor also had

significant effects on pleiotropy (GLM: F¼ 23.68, df¼ 3, 309,

P< 0.0001; fig 5) and expression level (GLM: F¼ 10.64,

FIG. 3.—Standardized major axis (SMA) regression of mean expres-

sion (zFPKM) in bank vole against mean expression in yellow-necked mice

based on 8599 orthologs.
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FIG. 4.—Divergence in gene expression between bank vole and yel-

low-necked mice for different categories of immune genes, where diver-

gence is measured as the squared residual deviation (log10) in a SMA

regression of mean expression in bank voles against mean expression in

yellow-necked mice. Letters indicate which categories of immune genes

were significantly different from each other based on Tukey’s post hoc test

(PRR vs signal: P<0.01; PRR vs TF: P<0.05). The asterisk indicate which

categories of immune genes is significantly different from the control

genes based on Dunnett’s post hoc test: * P<0.05.

FIG. 5.—Path model showing the effects of the factor immune gene

category on the four continuous variables pleiotropy, gene expression level

(mean of mean expression in bank voles and yellow-necked mice), gene

expression divergence, and coding sequence divergence, as well as corre-

lations among the four continuous variables. Asterisks above arrows from

the factor immune gene category indicate the results of GLMs with the

continuous variable against immune gene category; text below arrows

indicate results of Tukey’s post hoc tests (PRR, pattern recognition receptor

genes; SIGN, signalling genes; TF,transcription factor genes; CYT,genes

encoding cytokines, chemokines, and their receptors). Values at bidirec-

tional arrows indicate Spearman rank correlation coefficients.

***P<0.001; **P<0.01.
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df¼ 3, 309, P< 0.0001; fig 5). In addition, five out of six of

the pairwise correlations between continuous variables were

statistically significant (fig. 5).

To test if the difference in sequence divergence between

immune gene categories (fig 1a) occurred independently of

other differences between gene categories, we performed a

GLM with sequence divergence against the factor immune

gene category, the covariates expression level, expression di-

vergence, and pleiotropy, as well as the two-way interactions

between gene category and the covariates. This showed that

the effect of gene category (i.e., the difference in dN between

genes encoding PRR and cytokines on one hand and those

encoding signaling proteins and transcription factors on the

other) remained highly significant (F¼ 42.9, df¼ 3, 304,

P< 0.0001) even when controlling for a negative correlation

between sequence divergence and pleiotropy (F¼ 5.04,

df¼ 1, 304, P¼ 0.026), and an interaction between gene

category and expression divergence (F¼ 3.41, df¼ 3, 304,

P¼ 0.018; see supplementary table S1, Supplementary

Material online for full model details). Also the differences in

dN between PRR and cytokine genes on one hand and control

genes on the other (fig 1a) remained when controlling for

potentially confounding factors (supplementary table S2,

Supplementary Material online). Similar analyses for dS and

dN/dS showed that differences between gene categories

were independent of covariates also for these variables (sup-

plementary tables S3–S6, Supplementary Material online).

To test if the difference in gene expression divergence be-

tween immune gene categories (fig. 4) occurred indepen-

dently of other differences between gene categories, we

performed a GLM with expression divergence against gene

category, the continuous independent variables pleiotropy,

expression level, and sequence divergence, and the two-

way interactions between gene category and the continuous

independent variables. This showed that there was a signifi-

cant interaction between gene category and sequence diver-

gence (F 3, 305¼ 3.09, P¼ 0.027). When controlling for

gene category � sequence divergence, the difference in ex-

pression divergence among gene categories (fig. 4) was no

longer significant (F 3, 305¼ 2.50, P¼ 0.06; see supplemen-

tary table S7, Supplementary Material online for full model

details). The difference in expression divergence between PRR

and control genes (fig. 4) did however remain significant even

when controlling for a negative correlation between expres-

sion divergence and mean expression (supplementary table

S8, Supplementary Material online).

Correlation between Expression Divergence and Coding
Sequence Divergence

The GLMs of both coding sequence and expression diver-

gence showed statistically significant interactions between

gene category and expression divergence or sequence diver-

gence (see above), indicating that the strength of the

association between expression divergence and sequence di-

vergence varied among immune gene categories. To examine

this in more detail, we calculated Spearman rank correlations

between expression divergence and sequence divergence for

each immune gene category. There were significant positive

correlations between expression divergence and sequence di-

vergence for PRR (rs¼0.477, P¼ 0.025) and signaling genes

(rs¼0.159, P¼ 0.027), but not for cytokine and transcription

factor genes (rs¼�0.187, P¼ 0.12, and rs¼0.14, P¼ 0.49,

respectively; fig. 6).

Discussion

Here, we divided genes in immune signaling pathways into

four broad functional categories and tested if they differ in

degree of coding sequence and expression divergence be-

tween two rodent species.

Genes encoding PRR and cytokines had considerably

higher coding sequence divergence (dN) than genes encoding

signal transduction proteins and transcription factors. The se-

quence divergence of PRR and cytokine genes was also higher

than that of a set of nonimmune control genes. The differ-

ences between categories remained even after controlling for

some potentially confounding factors (mean expression level,

pleiotropy, and expression divergence). We acknowledge that

there is likely considerable noise in the estimates of the cova-

riates. For example, gene expression was measured in only

one organ (spleen), and pleiotropy was estimated as PPI in a

different species (Mus musculus) and even in that species

knowledge is incomplete. In addition, there might be other

factors that could explain the difference in sequence diver-

gence between gene categories (Zhang and Yang 2015).

Nevertheless, given the strong independent effect of gene

category, it seems likely there is an effect of functional cate-

gory per se on coding sequence divergence. Genes encoding

PRR and cytokines not only had higher dN but also higher dS

than other gene categories. An association between dN and

dS is a common finding in mammals and could have a num-

ber of different causes, for example correlated selection on

adjacent synonymous and nonsynonymous sites (Smith and

Hurst 1999, Stoletzki and Eyre-Walker 2011).

Analyses of dN/dS showed that differences in coding se-

quence divergence between gene categories was an effect of

differences in selection between PRR and cytokines on one

hand and signal transduction and transcription factor genes

on the other, with PRR and cytokine genes having experi-

enced relaxed purifying or enhanced positive selection relative

to signal transduction and transcription factor genes. These

two explanations could be distinguished by tests based on

codon models of sequence evolution (Kosiol and Anisimova

2012), but that would require a data set with more than two

species. Previous analyses of other mammals have shown that

genes encoding both PRR and cytokines often have signatures

of positive selection (Kosiol et al. 2008; Wlasiuk and Nachman

Divergence in Coding Sequence and Expression GBE

Genome Biol. Evol. 13(3) doi:10.1093/gbe/evab023 Advance Access publication 10 February 2021 9



2010; Neves et al. 2014), suggesting that the high sequence

divergence of such genes between the bank vole and yellow-

necked mouse is a result of positive selection rather than re-

laxed constraint. Analyses of bank voles and humans have

shown that PRR and cytokine genes also have relatively high

levels of intraspecific diversity (Casals et al. 2011; Lundberg

et al. 2020), and that the elevated diversity is at least partly a

result of balancing selection (Lundberg et al. 2020).

Positive selection on receptors for recognition of pathogens

has been attributed to that these proteins interact directly

with pathogens and therefore are more likely to be involved

in host–pathogen coevolution than other immune genes

(Sackton et al. 2007). It is indeed easy to envision that selec-

tion on pathogens for evading recognition and subsequent

positive selection on host recognition receptors to “chase”

evolving pathogens can lead to a high rate of evolution of

such receptors. In contrast, it is not immediately clear why

there should be positive selection on genes encoding cyto-

kines. One possibility is that these proteins are targets of path-

ogen immune evasion, and thus have a high rate of evolution

due to selection for avoiding interference by pathogen pro-

teins (Finlay and McFadden 2006). For example, some viruses

produce decoy cytokine receptors that neutralize cytokines

(Jensen 2017). It should be noted, though, that immune eva-

sion also often targets intracellular signaling proteins (Finlay

and McFadden 2006; Hoffmann et al. 2015), but genes in this

category on average have much lower sequence divergence

than cytokine genes (although there are a number of outliers

in the signaling category [fig. 1a–c]; these could potentially be

a result of selection imposed by immune evasion).

The generally high divergence of coding sequences of PRR

genes likely plays an important role in interspecific variation in

immune function, by influencing the ability of a host species

to recognize and respond to a given pathogen. Indeed, there

are several cases where substitutions in the coding sequence

of PRR genes have been pinpointed as key determinants of

interspecific variation in resistance to particular pathogens

(Werling et al. 2009; Palesch et al. 2018; Adrian et al.

2019), although there is also at least one example of that

substitutions in a signaling gene play an important role (Xie

et al. 2018). The contribution of the high divergence in coding

sequences of genes encoding cyto-/chemokines or cyto-/che-

mokine receptors to interspecific variation in immune function

is more questionable. If a change in the coding sequence of a

cytokine receptor (driven by pathogen immune evasion) is

followed by a compensatory change in the coding sequence

of the corresponding cytokine that restores cytokine—recep-

tor affinity, so that cytokines and their receptors are co-

adapted, high sequence divergence could have limited

effects on immune function.

Overall, differences in expression divergence between cat-

egories of immune genes were less pronounced than in the

in vitro study of divergence in response to stimulation (Hagai

et al. 2018), presumably as a consequence of that our data set

is more noisy because individuals harbored different infections

at the time of sampling. Nevertheless, as in Hagai et al. (2018),

PRR genes had higher expression divergence than some of the

other immune gene categories (here signaling and transcrip-

tion factors). In apparent contrast to Hagai et al. (2018), cyto-

kines did not differ in expression divergence from signaling

and transcription factors. However, this is probably at least

partly a result of cytokine genes having highly variable expres-

sion within species in our data set, which obscures differences

in mean expression level between species. When controlling

for potentially confounding factors (of which the gene cate-

gory � sequence divergence interaction was statistically sig-

nificant), the difference in expression divergence between

PRR genes and other immune gene categories was marginally

nonsignificant. Thus, there are at least not strong differences

in expression divergence between immune gene categories

independently of other factors.

The analyses of coding sequence divergence and expres-

sion divergence revealed a correlation between these varia-

bles, and that the strength of the correlation varied between

gene categories, being particularly strong for PRR. A previous

study found that the strength of this correlation varied among

organs, being strongest in brain and weakest in liver and testis

(Warnefors and Kaessmann 2013). What is the cause of the

correlation between sequence and expression divergence,

and why is it strongest for PRR genes? At least two different

scenarios have been proposed to explain the occurrence of a

correlation between sequence and expression divergence in

general (Warnefors and Kaessmann 2013). First, both se-

quence and expression divergence could be governed by
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FIG. 6.—Expression divergence (log10 transformed) against coding

sequence divergence (dN, arcsin squareroot transformed) for different cat-

egories of immune genes.
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some other factor. For example, previous studies have shown

that both sequence and expression divergence tend to be

negatively correlated with expression level (Warnefors and

Kaessmann 2013). However, controlling for expression level

did not affect the correlation between sequence divergence

and expression divergence in either (Warnefors and

Kaessmann 2013) or the present study. Second, sequence

divergence and expression divergence might be associated

because selection acts in similar ways (purifying/positive) on

the coding sequence and cis-regulatory elements of a gene;

this explanation is supported by analyses of both Drosophila

and vertebrates (Lemos et al. 2005; Warnefors and

Kaessmann 2013). Still, it is not obvious why it should result

in that the correlation is particularly strong for PRR genes. We

therefore propose an additional explanation which applies

specifically to PRR, namely that divergence in PRR coding se-

quence causes divergence in PRR expression. Signaling by a

PRR does not only affect expression of cytokines and other

modulators of the immune response, but also often leads to

upregulation of expression of the PRR itself (e.g.,TLR2 and

other PRR genes in response to Borrelia [Petzke et al. 2016];

see also [Hagai et al. 2018]). Thus, if high coding sequence

divergence leads to that PRR binding affinity to a given path-

ogen ligand (MAMP) differs between species, this could lead

to high divergence in expression of the PRR too. While the

‘similar selection’ scenario provides a general explanation for

the correlation between sequence and expression divergence,

an additional causal effect of PRR sequence divergence on

PRR expression divergence could explain why the correlation

is particularly strong for this category.

To sum up, we found that PRR and cytokine genes stand

out as having particularly high coding sequence divergence.

Of these, at least the high divergence of PRR genes is likely to

play a major role in differences in immune function between

species. PRR genes also had relatively high expression diver-

gence, but we have interpreted this as being an indirect phe-

notypic effect of other factors, in particular coding sequence

divergence, rather than a direct effect of divergent selection

on expression of PRR genes.

Besides divergence in coding sequence and expression of

orthologs, differences in immune function between species

could be caused by interspecific variation in gene content as a

result of gene duplication and subsequent neo-/subfunction-

alization of paralogs (Kaessmann 2010; Sackton 2019).

Analyses of Drosophila showed that some categories of im-

mune genes (effector and recognition genes) had higher copy

number variation across species than others (Sackton et al.

2007). It is well-known that some types of vertebrate-specific

immune genes, like MHC and immunoglobulin genes, have

high rates of duplication and considerable copy number var-

iation between species, and it seems likely there are differ-

ences in duplication rate also between the immune gene

categories considered in the present study. However, such

an analysis would require high-quality reference genomes

and can therefore not yet be performed with our study spe-

cies. Gene duplication can be expected to affect both coding

sequence divergence and expression divergence (Zhang et al.

2003; Pegueroles et al. 2013; Guschanski et al. 2017); it

would therefore be of great interest to expand the present

analyses by investigating the interplay between gene duplica-

tion, coding sequence divergence and expression divergence

in the evolution of immune function.

Supplementary Material

Divergence2_Supplementary Material are available at

Genome Biology and Evolution online (http://www.gbe.ox-

fordjournals.org/).
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