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Osteoprotegerin is a marker 
of cardiovascular mortality in 
patients with chronic kidney 
disease stages 3–5
Gustavo Lenci Marques1*, Shirley Hayashi2, Anna Bjällmark3, Matilda Larsson4, 
Miguel Riella5, Marcia Olandoski6, Bengt Lindholm2 & Marcelo Mazza Nascimento1,2

Cardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease 
(CKD). Osteoprotegerin (OPG), known to regulate bone mass by inhibiting osteoclast differentiation 
and activation, might also play a role in vascular calcification. Increased circulating OPG levels in 
patients with CKD are associated with aortic calcification and increased mortality. We assessed the 
predictive role of OPG for all-cause and cardiovascular mortality in patients with CKD stages 3–5 over a 
5-year follow-up period. We evaluated the relationship between OPG and all-cause and cardiovascular 
mortality in 145 CKD patients (stages 3–5) in a prospective observational follow-up study. 
Inflammation markers, including high-sensitivity C-reactive protein, standard echocardiography, 
and estimation of intima-media thickness in the common carotid artery, were assessed at baseline, 
and correlations with OPG levels were determined. The cutoff values for OPG were defined using 
ROC curves for cardiovascular mortality. Survival was assessed during follow up lasting for up to 
5.5 years using Fine and Gray model. A total of 145 (89 men; age 58.9 ± 15.0 years) were followed 
up. The cutoff value for OPG determined using ROC was 10 pmol/L for general causes mortality and 
10.08 pmol/L for CV causes mortality. Patients with higher serum OPG levels presented with higher 
mortality rates compared to patients with lower levels. Aalen–Johansen cumulative incidence curve 
analysis demonstrated significantly worse survival rates in individuals with higher baseline OPG levels 
for all-cause and cardiovascular mortality (p < 0.001). In multivariate analysis, OPG was a marker of 
general and cardiovascular mortality independent of sex, age, CVD, diabetes, and CRP levels. When 
CKD stages were included in the multivariate analysis, OPG was an independent marker of all-cause 
mortality but not cardiovascular mortality. Elevated serum OPG levels were associated with higher 
all-cause and cardiovascular mortality risk, independent of age, CVD, diabetes, and inflammatory 
markers, in patients with CKD.

Cardiovascular disease (CVD) accounts for about 30% of deaths worldwide1 and is the leading cause of death in 
patients with chronic kidney disease (CKD)2. However, the high prevalence of traditional risk factors cannot fully 
explain the high incidence of fatal events in this population3, 4. Therefore, in the last decade, other risk factors, 
such as markers of inflammation, oxidative stress, and vascular calcification, have been studied5–7. In this context, 
osteoprotegerin (OPG) has become the subject of increased interest because of its role as a cardiovascular risk 
factor in both the general population as well as in CKD patients8.

OPG is a soluble receptor of the osteoclast activator, receptor activator of nuclear factor-κB ligand (RANKL), 
and has been studied as an important marker of CVD in the pathogenesis of vascular calcification and 
atherosclerosis9, 10. Elevated serum OPG levels seem to be associated with increased morbidity and mortality 
in patients with coronary artery disease and heart failure. A recent meta-analysis demonstrated a significant 
association between circulating OPG levels and mortality in the general population11.

OPEN

1Department of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, General Carneiro, 181, 
Curitiba, PR 80060‑900, Brazil. 2Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, 
Intervention and Technology, Karolinska Institute, Karolinska University Hospital in Huddinge, Stockholm, 
Sweden. 3School of Health and Welfare, Jönköping University, Jönköping, Sweden. 4Royal Institute of Technology, 
Stockholm, Sweden. 5ProRenal Foundation, Curitiba, PR, Brazil. 6Pontifícia Universidade Católica Do Paraná, 
Curitiba, PR, Brazil. *email: gustavolencimarques@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-82072-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2473  | https://doi.org/10.1038/s41598-021-82072-z

www.nature.com/scientificreports/

OPG has also been associated with higher mortality in patients undergoing hemodialysis12. In a preliminary 
observational study, our research group found a significant association between elevated OPG levels and the 
presence of increased all-cause mortality in a cohort of patients with CKD stages 3–5 over a 3-year follow-up 
period13. To date, our research group has not studied the association between elevated serum OPG levels and 
cardiovascular mortality or its interaction with other myocardial injury markers.

We hypothesized a possible correlation between elevated serum OPG levels in patients with CKD stages 3–5 
and markers of presence and severity of CVD, and investigated whether OPG is a possible independent marker 
of cardiovascular mortality in patients with CKD over a 5-year follow-up period.

Materials and methods
Patients with CKD stages 3–5, including those undergoing dialysis at Pró-Renal Foundation in Curitiba, Brazil, 
were considered for enrollment in this study. All patients gave written informed consent and the ethics com-
mittee of the Hospital Evangelico de Curitiba approved the study protocol and all the study procedures were 
carried out in accordance with relevant guidelines. The exclusion criteria were dialysis treatment lasting for less 
than 1 month, age younger than 18 years, the presence of HIV or hepatitis B/C infection, and other chronic 
inflammatory diseases.

Study design.  All patients enrolled through the cohort study design underwent a baseline investigation 
comprising blood sampling and cardiovascular assessment. They were subsequently followed up for up to 
66 months for the analysis of survival. The observation period was from March 2008 to December 2015.

Cardiovascular and laboratory assessment.  The intima-media thickness (IMT) was evaluated using 
semiautomatic edge detection software (GE Vingmed Ultrasound, Horten, Norway) according to the recom-
mendations of the American Society of Echocardiography14. All two-dimensional and Doppler variables were 
acquired and analyzed according to the guidelines of the American Society of Echocardiography15, 16. All ultra-
sound examinations were performed only once, when the patient was included in the cohort.

Blood samples were collected from patients after overnight fasting. The samples were collected midweek 
from hemodialysis patients and at regular clinic visits from other patients with CKD stages 3–5, including those 
undergoing peritoneal dialysis. All analyses were performed using automated analyzers at the Renal Medicine 
Laboratory, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden13. Serum OPG was measured 
using a ELISA assay commercial kit (R&D Systems Inc.). Plasma and serum were stored at − 70 °C for transport, 
the analyzes were carried out as soon as the material reached its destination.

Statistical analysis.  Data are reported as median (interquartile range) or mean ± standard deviation (SD), 
and as frequencies and percentages for categorical variables, as appropriate. For determining cutoff values for 
OPG associated with cardiovascular death, receiver operating characteristic (ROC) curves were adjusted and 
the corresponding area under curve (AUC) was evaluated. Best cutoff was determined using Youden index cri-
teria. To compare two groups with continuous quantitative variables, we used a Student’s t-test for independent 
samples. The non-normally distributed variables were log-transformed and parametric tests were applied. We 
used Fisher’s exact test for categorical variables. Three groups were compared using Chi-square test or one-way 
analysis of variance (ANOVA) and Bonferroni post-hoc test. For analyzing factors associated with the OPG 
(pg/mL) level initially, a univariate analysis was performed estimating Spearman’s correlation coefficients. Sub-
sequently, a multivariate linear regression model was adjusted, including as explanatory variables those that 
presented significant correlations with OPG in the univariate analysis. The response variable for multiple linear 
regression was log-OPG and included log-transformed explanatory variables. Residuals were checked by normal 
probability plot and predicted values versus residuals scatterplot. Fine and Gray models were adjusted to analyze 
mortality. For all-cause mortality models, transplantation was considered as the competing risk. For cardiovas-
cular models, other causes of mortality and transplantation were considered as competing risks. The estimated 
association measure was the subdistribution hazard ratio (SHR) provided for unit change with 95% confidence 
interval. Aalen–Johansen cumulative incidence curves were presented for OPG. The selection of variables for 
multivariate analysis models used clinically relevant predictors. The first multivariate analysis model that used 
OPG added age and gender. The second model used the same variables as the first one and included the pres-
ence of established CVD and diabetes. The third model used all previous variables and included an inflamma-
tory activity marker, C-reactive protein (hsCRP). The final model included all the aforementioned variables, 
and patients CKD stages. The normality of the variables was evaluated using the Kolmogorov–Smirnov test. p 
values < 0.05 were considered statistically significant. Data were analyzed using Stata/SE v. 14.1 (StataCorp LP, 
College Station, TX, USA).

Results
Baseline characteristics.  Altogether, 145 (89 males) patients, including 54 non-dialysis patients with 
CKD stages 3–5, 36 hemodialysis (HD) patients, and 55 peritoneal dialysis patients, fulfilled the study eligibil-
ity criteria and agreed to participate in the study. All dialysis patients did not present residual diuresis. Of the 
patients under conservative treatment, 9 started dialysis therapy during the period observed. The median follow-
up was 36, 5 months, the minimum 0, 4 month and the maximum 66 months.

The OPG cutoff value determined using the ROC curve for all causes mortality was 10 pmol/L (area under 
de curve [AUC] 0.81; CI 95%: 0.73–0.88; p < 0.001) and 10.08 pmol/L for CV mortality (AUC 0.75; CI 95%: 
0.65–0.85, p < 0.001) (Fig. 1).
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Clinical and biochemical characteristics of the 145 patients included in the study are summarized in Tables 1 
and 2. The levels of OPG for the whole cohort had a median value of 8.91 (25–75th percentiles 6.51–12.43) 
pmol/L.

Univariate correlations, assessed using Spearman’s rank, demonstrated that OPG levels were significantly 
associated with age (r = 0.37, p < 0.01), left ventricle mass index (r = 0.23, p = 0.007), S100 calcium-binding protein 
A12 (S100A12) (r = 0.21, p = 0.010), receptor for advanced glycation end products soluble form (sRAGE) (r = 0.33, 
p < 0.001), IL-6 (r = 0.39, p < 0.001), FGF-23 (r = 0.26, p = 0.001), hsCRP (r = 0.25, p = 0.003), troponin I (r = 0.54, 
p < 0.001), IMT (r = 0.40, p < 0.001), and ejection fraction, EF (r = −0.22, p = 0.010). However, when a multivariate 
analysis was performed, only age (p < 0.001), fibroblast growth factor-23 (p = 0.005), IL-6 (p = 0.017), troponin I 
(p = 0.002) and sRAGE (p = 0.002) were independently correlated with OPG levels.

OPG levels and clinical outcome.  Univariate analysis of mortality showed that elevated OPG levels 
(> 10 pg/mL for general causes death and > 10.08 pg/mL for CV death) were related to higher mortality for both 
general and cardiovascular causes (SHR 6.81; CI 95%: 3.69–12.6, p < 0.001 and SHR 5.47; CI 95%: 2.24–13.4, 
p < 0.001, respectively), together with levels of serum troponin (SHR = 7.73, CI 95%: 3.17–18.8, p < 0.001 and 
SHR 10.8, CI 95%: 4.79–22.8), p < 0.001, respectively) and log(sRAGE) levels (SHR = 1.47, CI 95%: 0.87–2.49, 
p = 0.150 and SHR 2.07; CI 95%: 1.07–3.95, p = 0.035, respectively), and treatment by dialysis (SHR 4.80, CI 95%: 
2.17–10.6, p < 0.001 and SHR 8.73, CI 95%: 1.86–32.5, p = 0.003, respectively).

Aalen–Johansen cumulative incidence curves showed a higher mortality for general (Fig. 2) and cardiovas-
cular (Fig. 3) causes in the group with elevated OPG (> 10 pmol/L for general causes and > 10.08 pmol/L for CV 
causes) early in the follow-up period, with an increase in the gap over time (during the follow-up period, 25 
patients had undergone kidney transplantation and 16 were lost to follow-up, of which 9 were in the non-dialysis 
group). The number of deaths was 56 (cardiovascular: 25; infection: 17; malignances: 4; and other causes: 10).

In multivariate analysis, in a model including gender and age, OPG was found to be an independent marker 
of all-cause and cardiovascular mortality. When presence of previous CVD and diabetes, and hsCRP, were added, 
the results were similar. However, when CKD stages were included in the analysis, OPG was an independent 
marker only for all-cause mortality. (Tables 3, 4).

Discussion
The main cause of death in our cohort was cardiovascular diseases, accounting for 45% (25 cases) of all deaths. 
This result is in line with those reported in the current literature, wherein large population studies have shown a 
progressive increase in the incidence of cardiovascular mortality with worsening renal function17.

The main finding in the present study was that OPG was a marker of higher cardiovascular mortality in 
patients with CKD, regardless of gender and age and other cardiovascular risk factors such as presence of diabe-
tes, previous history of CVD as well as inflammation. We have been previously reported that an increased OPG 
concentration was associated with increased all-cause 3-year mortality risk among patients with CKD stages 
3–513. In the current study, the follow-up of this cohort was extended to 5, 5 years and, in addition to all-cause 
mortality risk, we also analyzed the association of OPG with cardiovascular mortality. Furthermore, the quality of 
the analysis was improved as we applied a ROC derived cut-off level of OPG in the survival analyses. The present 
results corroborate the results of several other studies, including those by Morena et al. and Matsubara et al. who 
found higher mortality in dialysis patients with high OPG levels18, 19. Recently, Alderson et al. reported that OPG 
levels were associated with increased mortality risk in the CKD population8. Kuźniewski et al. proposed that the 
relationship between OPG and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) would act as a 

Figure 1.   ROC curves for OPG—(A) All causes mortality (AUC 0.81, CI 95%: 0.73–0.88); (B) CV mortality 
(AUC: 0.75; CI 95%: 0.65–0.85).
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marker of increased cardiovascular mortality risk in stage 5 CKD patients, and, in their study, isolated OPG values 
were also able to predict all-cause and cardiovascular mortality20. In a recent meta-analysis Huang et al. found a 
relationship between OPG and increased cardiovascular mortality in patients with CKD, however, cited as some 
limitations: most studies including only dialysis patients, lack of adjustment for potential confounders and the 
lack of several studies in the area21. Altogether these studies suggest that an elevated circulating concentration 
of OPG appears to be a marker for increased all-cause and cardiovascular mortality risk in patients with CKD.

Although OPG is classically associated with vascular calcification, the exact mechanisms by which OPG may 
lead to higher mortality are still unknown. One of the current theories is that OPG is also a marker of atheroscle-
rotic disease and myocardial ischemia22–26. Our results demonstrated that circulating OPG levels were directly 
correlated with serum troponin levels, one of the main markers of myocardial damage, corroborating these data.

Regarding cardiovascular disease, another possible question would be the relationship between OPG and 
ventricular function, since it is possible that OPG can also be secreted by the heart27. While previous studies 
were divergent regarding this relationship, Lindberg et al. found a correlation between OPG levels and a lower 
ejection fraction in patients after an acute ischemic event in a study including 42 patients. However, Shetelig et al. 
did not find this relationship in 272 patients with coronary disease28, 29. While our study found no independent 
correlation between OPG and ejection fraction, diastolic dysfunction, or increased ventricular mass, OPG was 
a marker of increased mortality independent of the presence of previously known heart disease in patients with 
CKD, when this and other well established risk factors (age, sex, diabetes, and inflammation) were included in 
a multivariate analysis.

Some authors propose that high OPG levels may be a direct consequence of vascular inflammation19. Other 
studies have demonstrated that OPG expression can be induced by the vascular musculature through inflamma-
tory cytokines, reinforcing this idea30, 31. However, our study did not find a correlation between inflammatory 
markers and OPG, and when an inflammation marker (hsCRP) was included in the multivariate analysis, OPG 
remained as an independent marker of cardiovascular mortality. Sigrist et al. reported similar results, in that 
high levels of OPG were associated with higher mortality independently of hsCRP levels in patients with CKD32.

Recently, Wieczorek-Surdacka et al.33 reported that elevated levels of OPG were associated with a worse renal 
and cardiovascular outcome in patients with chronic renal disease and stable coronary artery disease and that 

Table 1.   Clinical and biochemical characteristics according to OPG levels. *Fisher exact test or Student’s 
t test; data of non-normal continuous variables were submitted to a logarithmic transformation; p < 0.05. 
Quantitative variables are expressed as mean ± standard deviation. Categorical variables are expressed as 
frequencies (percent). OPG, osteoprotegerin; Hb, hemoglobin; P, phosphate; hsCRP, high-sensitivity C-reactive 
protein; IL-6, interleukin-6; TNF-a, tumor necrosis factor alpha; PTX3, pentraxin-related protein; FGF-23, 
fibroblast growth factor 23; sRAGE, receptor for advanced glycation end products (RAGE) soluble form; LV, 
left ventricle; IMT, intima-media thickness; CV, cardiovascular.

OPG ≤ 10.08 pmol/L (n = 85) OPG > 10.08 pmol/L (n = 60) p value*

Age (years) 55.0 ± 15.2 64.4 ± 13.0  < 0.001

Gender (male) 57 (67.1) 32 (53.3) 0.119

Diabetes (yes) 23 (27.1) 20 (33.3) 0.462

Dialysis (yes) 36 (42.4) 55 (91.7)  < 0.001

Hemodalysis (yes) 19 (22) 17 (28) 0.439

Peritoneal Dialysis (yes) 17 (20) 38 (63)  < 0.001

CVD 14 (16.5) 17 (28.3) 0.102

Hb (g/dL) 12.3 ± 2.0 11.1 ± 2.1 0.001

Albumin (g/dL) 4.2 ± 0.6 3.7 ± 0.6 0.001

P (mg/dL) 4.5 ± 1.7 4.8 ± 1.6 0.351

hsCRP (mg/dL) 5.5 ± 7.6 10.6 ± 14.7 0.017

IL-6 (pg/mL) 5.7 ± 11.9 10.4 ± 13.6  < 0.001

TNF-a (pg/mL) 16.9 ± 6.1 19.5 ± 9.3 0.063

PTX3 (pg/mL) 4.0 ± 2.4 6.1 ± 7 0.001

Fetuin (pg/mL) 0.43 ± 0.10 0.40 ± 0.11 0.109

FGF-23 (pg/mL) 4273 ± 11,106 5013 ± 12,023 0.019

S100A (ng/mL) 63.6 ± 74.4 101.8 ± 96.3 0.008

sRAGE (pg/mL) 1981 ± 1214 2577 ± 1124  < 0.001

Troponin I (ng/mL) 0.07 ± 0.07 0.19 ± 0.29  < 0.001

Diastolic dysfunction 52 (61.2) 47 (78.3) 0.031

Ejection fraction > 45% 76 (93.8) 50 (89.3) 0.356

LV mass index (g/m2) 58.1 ± 16.6 68.0 ± 23.9 0.008

IMT mean (cm) 0.67 ± 0.21 0.85 ± 0.42 0.001

Death (all-cause) 13 (15.3) 43 (71.7)  < 0.001

CV death 6 (7.1) 21 (35.0)  < 0.001
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Table 2.   Clinical and biochemical characteristics according to CKD stage. *Chi-square test or one-way 
ANOVA; data of non-normal continuous variables were submitted to a logarithmic transformation; 
p < 0.05. a,b Different letters indicate significant difference (p < 0.05). Quantitative variables are expressed as 
mean ± standard deviation. Categorical variables are expressed as frequencies (percent). OPG, osteoprotegerin; 
Hb, hemoglobin; P, phosphate; hsCRP, high-sensitivity C-reactive protein; IL-6, interleukin-6; TNF-a, tumor 
necrosis factor alpha; PTX3, pentraxin-related protein; FGF-23, fibroblast growth factor 23; sRAGE, receptor 
for advanced glycation end products (RAGE) soluble form; LV, left ventricle; IMT, intima-media thickness; CV, 
cardiovascular.

CKD

p*Stage 3 (n = 26; 17.9%) Stage 4 (n = 30; 20.7%) Stage 5 (n = 89; 61.4%)

Age (years) 61.8 ± 11 62.2 ± 14.3 57.0 ± 16.0 0.163

Gender (male) 16 (61.5) 21 (70) 52 (58.4) 0.530

Diabetes (yes) 7 (26.9) 13 (43.3) 23 (25.8) 0.182

OPG pmol/L 6.3 ± 2.2a 7.8 ± 3.2a 11.9 ± 5.8b  < 0.001

OPG > 10 pmol/L 2 (7.7)a 5 (16.7)a 53 (59.6)b  < 0.001

CVD 4 (15.4) 5 (16.7) 22 (24.7) 0.462

Hb (g/dL) 13.2 ± 1.7a 12.9 ± 2.1a 11.1 ± 1.9b  < 0.001

Albumin (g/dL) 4.4 ± 0.2 4.1 ± 0.9 3.8 ± 0.6 0.083

P (mg/dL) 3.4 ± 0.8a 3.7 ± 0.8a 5.2 ± 1.7b  < 0.001

hsCRP (mg/dL) 6.4 ± 10.9 7.2 ± 14.4 8.1 ± 10.4 0.099

IL-6 (pg/mL) 3.3 ± 4.7a 9.3 ± 18.6b 8.3 ± 11.8b  < 0.001

TNF-a (pg/mL) 14.8 ± 5.5a 15.6 ± 8.6a 19.6 ± 7.4b 0.003

PTX3 (pg/mL) 3.2 ± 1.6a 3.6 ± 2.1a 5.8 ± 3.7b  < 0.001

Fetuin (pg/mL) 0.43 ± 0.09 0.44 ± 0.07 0.41 ± 0.11 0.283

FGF-23 (pg/mL) 154 ± 103a 192 ± 196a 7386 ± 13,981b  < 0.001

S100A (ng/mL) 59.7 ± 74.1 52.9 ± 34.1 93.9 ± 97.6 0.166

sRAGE (pg/mL) 1539 ± 876a 1710 ± 1053a 2600 ± 1200b  < 0.001

Troponin I (ng/mL) 0.05 ± 0.04a 0.10 ± 0.11a 0.15 ± 0.25b  < 0.001

Diastolic dysfunction 21 (80.8) 24 (80) 54 (60.7) 0.050

Ejection fraction > 45% 2 (8.3) 2 (6.9) 7 (8.3) 0.969

LV mass index (g/m2) 62.5 ± 17.2 65.6 ± 25.6 60.6 ± 19.2 0.620

IMT mean (cm) 0.67 ± 0.22 0.72 ± 0.25 0.78 ± 0.37 0.379

Death (all-cause) 5 (19.2)a 4 (13.3)a 47 (52.8)b  < 0.001

CV death 1 (3.8)a 2 (6.7)a 24 (27.0)b 0.005

Figure 2.   Aalen–Johansen cumulative incidence curves for all-cause mortality in 145 CKD patients with OPG 
levels ≤ 10 pmol/L or > 10 pmol/L.
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there was an independent relationship between elevated levels of OPG and low homoarginine (hArg)/symmetric 
dimethylarginine ratio (ADMA). However, our study did not include measurements of hArg or serum ADMA.

When CKD stages were included in the multivariate analysis, OPG was an independent marker of all-cause 
mortality but not cardiovascular mortality. This may to some extent reflect the link between elevated OPG levels 
and poor renal function34, and by the fact that cardiovascular mortality is increased in patients CKD stage 5, 
especially in those undergoing dialysis35.

Figure 3.   Aalen–Johansen cumulative incidence curves for cardiovascular death in 145 CKD patients with 
OPG levels ≤ 10.08 pmol/L or > 10.08 pmol/L.

Table 3.   Multivariate analysis for all-cause mortality. Fine and Gray model for mortality (any cause) 
considering transplant as competing risk. a Stage 3 used as a reference for the analysis. OPG, osteoprotegerin; 
CVD, cardiovascular disease; hsCRP, high-sensitivity C-reactive protein; CKD, Chronic Kidney Disease; SHR: 
subdistribution hazard ratio.

Model Variable p valuea SHR CI 95%

Crude model OPG  < 0.001 1.10 1.06–1.14

Model 1

OPG  < 0.001 1.08 1.05–1.12

Age 0.079 1.02 1.00–1.05

Sex (male) 0.145 0.68 0.40–1.14

Model 2

OPG  < 0.001 1.08 1.05–1.12

Age 0.128 1.02 1.00–1.04

Sex (male) 0.109 0.64 0.40–1.10

Diabetes 0.654 0.87 0.48–1.58

CVD 0.277 1.44 0.74–2.79

Model 3

OPG  < 0.001 1.08 1.04–1.12

Age 0.121 1.02 1.00–1.05

Sex (male) 0.089 0.62 0.36–1.08

Diabetes 0.823 0.93 0.50–1.72

CVD 0.371 1.40 0.68–2.85

hsCRP 0.179 1.01 0.99–1.03

Model 4

OPG 0.048 1.04 1.00–1.08

Age 0.005 1.04 1.01–1.07

Sex (male) 0.389 0.78 0.45–1.37

Diabetes 0.816 0.93 0.49–1.74

CVD 0.643 1.18 0.59–2.36

hsCRP 0.029 1.02 1.00–1.04

CKD stage

3 (ref)a

4 0.164 0.35 0.08–1.53

5 0.061 2.55 0.96–6.79
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Conclusions
This study has some limitations that should be mentioned. First, this was an observational study, precluding 
any conclusions regarding causality. Second, the number of patients was relatively small, which did not allow 
us to include it in a specific multivariate analysis of mortality within non-dialysis group. Furthermore, only a 
single sample was collected, and the analysis was restricted to a certain time point, which may fail to reflect the 
natural course of the processes being studied. In addition, we did not measure other relevant markers that are 
associated with OPG and its actions such as RANKL and TRAIL or presence of vascular calcification asssed by 
coronary artery calcium score. Also, we do not have albuminuria measured in all cohort because most part of our 
dialysis patients did not have any residual function. Moreover, the lack of laboratory standardization to analyze 
albuminuria in a single urine sample made this analysis unfeasible. It would be necessary to collect 24 h urine 
samples which was not possible to perform in the present study.

In summary, we report that a high circulating OPG level was a prognostic indicator of increased all-cause and 
cardiovascular mortality risk in patients with CKD. These results suggest that OPG could be potentially useful in 
the prognostic evaluation of patients with CKD, as previously proposed by other authors. Future research should 
investigate correlations between OPG and other markers of cardiovascular mortality, such as the coronary artery 
calcium score, and explore whether therapies aimed at reducing the high circulating concentration of OPG in 
patients with CKD may reduce the high cardiovascular mortality in this patient population.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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