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Abstract: Genomic prediction (GP) across different populations and environments should be en-
hanced to increase the efficiency of crop breeding. In this study, four populations were constructed
and genotyped with DNA chips containing 55,000 SNPs. These populations were testcrossed to
a common tester, generating four hybrid populations. Yields of the four hybrid populations were
evaluated in three environments. We demonstrated by using real data that the prediction accura-
cies of GP across structured hybrid populations were lower than those of within-population GP.
Including relatives of the validation population in the training population could increase the pre-
diction accuracies of GP across structured hybrid populations drastically. G × E models (including
main and genotype-by-environment effect) had better performance than single environment (within
environment) and across environment (including only main effect) GP models in the structured
hybrid population, especially in the environment where yields had higher heritability. GP by im-
plementing G × E models in two cross-validation schemes indicated that, to increase the prediction
accuracy of a new hybrid line, it would be better to field-test the hybrid line in at least one environ-
ment. Our results would be helpful for designing training population and planning field testing in
hybrid breeding.

Keywords: maize; genomic prediction; genotype by environment; hybrid prediction; yield per plant

1. Introduction

Global climate change and population growth are impending threats to food secu-
rity; crop varieties with wide adaptability and high yield should be developed to feed
the growing population [1]. Rich genetic resources are the basic materials for breeding
new varieties, and the favorable alleles from genetic resources should be introgressed into
elite inbred lines or varieties [2,3]. Genomic prediction (GP) can predict the performance
of crop germplasm, and can be used to accelerate the introgression [4]. Compared with
other molecular breeding tools such as marker-assisted selection and marker-assisted re-
current selection, GP simultaneously estimates the marker effects and computes breeding
values and removes the need for testing marker–trait association and selecting signifi-
cant marker/QTL (quantitative trait locus/loci). Moreover, GP can increase breeding
efficiency by accelerating the breeding cycle and enhancing annual genetic gain [5]. There-
fore, GP shows great prospects in commercial crop breeding in the context of continuing
population growth.

In GP, two populations need to be established: the training population with both
phenotypic and genotypic data, and the validation population with only genotypic data.

Plants 2021, 10, 1174. https://doi.org/10.3390/plants10061174 https://www.mdpi.com/journal/plants

https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0003-3942-6386
https://orcid.org/0000-0002-5737-6151
https://doi.org/10.3390/plants10061174
https://doi.org/10.3390/plants10061174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/plants10061174
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants10061174?type=check_update&version=1


Plants 2021, 10, 1174 2 of 12

The phenotype of the validation population can be predicted once phenotypic effects
of genome-wide molecular markers are estimated in the training population. Generally,
the prediction accuracy (PA) of GP was defined as the correlation between the predicted
and observed phenotype of the validation population. The PA of GP was related to
many factors including training population size, number of markers, heritability, and the
relationship between training and validation populations [6–8]. The low PA of GP across
different populations reduced the selection efficiency and had become a major obstacle
for implementing GP in crop breeding [7,9]. Although several studies had examined the
rationales of the low PAs of GP across different populations [7,10], few efficient methods
were proposed on how to solve this problem.

Compared to the prediction of inbred line performance, predicting hybrid perfor-
mance has practical significance in crop breeding. If selection can be made on the basis of
predicted hybrid performance, hybrid seeds production and field evaluation will be unnec-
essary for a majority of hybrid lines, especially when the field performance of an extremely
large number of testcrosses or hybrids needs to be evaluated. For example, instead of
evaluating the performance of 21,945 potential hybrids that could be developed by crossing
210 recombinant inbred lines, Xu et al. [11] used 278 hybrids as the training population and
predicted the performance of the 21,945 potential hybrids. In another report, the population
containing 1495 hybrids from a public resource was used as the training population [12],
the performance of 44,636 potential hybrids that could be developed through using
3000 germplasm accessions were predicted, and 200 best potential hybrids were iden-
tified on the basis of predicted performance [13,14]. Generally, hybrid prediction would
save the investments for developing and evaluating hybrid lines and increase the efficiency
of breeding hybrid varieties.

QTL controlling crop traits (such as yield-related traits and flowering time) showed
significant QTL × environmental interaction [15,16], indicating that field performances of
crop plants were not only related to their genetic basis, but also to their interactions with
environments. As GP was related to the genetic basis of the target trait and the genetic basis
interacted with environments, GP should be related to the interactions between genotypes
and environments (G × E) [17]. Previous reports found that including G × E effects in
GP models (G × E models) increased PAs in crop breeding populations [18,19], but the
performances of G × E models were rarely assessed in structured hybrid populations.

In order to find solutions to increase PA of GP across structured hybrid popula-
tions and environments, we constructed four maize hybrid populations and evaluated
yields of these populations. We firstly proved that the four populations shared different
levels of genetic relatedness. Then, we designed different GP schemes to find a better
way to increase PA of GP across structured hybrid populations. Through implementing
three multi-environment models in two CV (cross-validation) schemes, we found that
G × E models had the best performance in the structured hybrid population, and there
were differences between PAs of the two CV schemes.

2. Results
2.1. Phenotypic Data Analysis

Among the three environments, yield was largest in XJ (Xinjiang), followed by BJ
(Beijing) and HN (Henan) (Figure S1a). Among the four hybrid populations, popula-
tion 2 had the highest yield, followed by population 1, 4 and 3, respectively, suggesting
that population 2 had the best special combining ability with the tester PH6WC (Table 1;
Figure S1b). Population 4 had the largest coefficient of variance, followed by population 2,
1 and 3, suggesting that population 4 had the largest phenotypic variation (Table 1). The
large coefficient of variance of population 4 might be related to the fact that the parental
lines of population 4 were breeding materials, whereas those of other populations were
biparental populations. For each population, the correlation among the three environments
was mostly significant, suggesting that the genetic basis played a major role across the
three environments (Table S1). For each population, ANOVA (analysis of variance) revealed
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that the genotypic variation was significant. The linear model fitted well for each popula-
tion, the determination coefficients (R2) were 91.24%, 86.05%, 84.52%, and 88.94%, respec-
tively (Table 2). H2 (entry-mean broad sense heritability) across environments ranged from
0.58 for population 3 to 0.73 for population 4. Meanwhile, H2 values of the four pop-
ulations (as a whole) were 0.63, 0.68 and 0.59 in BJ, XJ and HN environments, respec-
tively, and the final heritability of whole population across three environments was
0.72 (Table S2), suggesting yield was stable across environments. Generally, the genotypic
variation was significant and genetic factors played an important role in determining yield
across environments.

Table 1. Summary of basic statistics of yields of the four populations.

Population N Mean (Kg) SD (Kg) Minimum (Kg) Maximum (Kg) Range (Kg) CV (%)

Population 1 475 753.71 43.55 641.95 947.32 305.37 5.78
Population 2 72 815.52 54.11 691.36 959.49 268.12 6.63
Population 3 60 656.97 34.87 587.86 745.70 157.83 5.31
Population 4 68 687.40 58.63 539.14 840.69 301.55 8.53

Note: N is the population size, SD is standard deviation, and CV is coefficient of variation. Population 1 to population 4 are introduced in
detail in the Materials and Methods.

Table 2. Variance dissection of yield of the four hybrid populations.

Population
ANOVA H2 R2 (%)

Source DF SS MS F p

Population 1

Rep/Env 3 122,714.40 40,904.80 11.24 0.00 0.63 91.17
Genotype 474 5,459,187.50 11,517.27 3.17 0.00

Environment 2 39,391,468.00 19,695,734.00 5413.62 0.00
G by E 935 4,392,113.50 4697.45 1.29 0.00
Error 1314 4,780,569.00 3638.18

Population 2

Rep/Env 3 24,789.26 8263.09 2.23 0.09 0.66 85.47
Genotype 71 957,095.81 13,480.22 3.63 0.00

Environment 2 2,448,691.25 1,224,345.63 329.97 0.00
G by E 130 651,743.31 5013.41 1.35 0.03
Error 187 693,851.19 3710.43

Population 3

Rep/Env 3 3349.01 1116.34 0.34 0.80 0.62 84.52
Genotype 59 548,701.06 9300.02 2.83 0.00

Environment 2 1,797,173.38 898,586.69 273.06 0.00
GE_interaction 118 431,993.81 3660.96 1.11 0.27

Error 156 513,373.16 3290.85

Population 4

Rep/Env 3 15,394.80 5131.60 1.56 0.20 0.74 88.79
Genotype 67 1,310,953.50 19,566.47 5.95 0.00

Environment 2 2,757,321.25 1,378,660.63 419.16 0.00
GE_interaction 133 762,263.31 5731.30 1.74 0.00

Error 186 611,768.25 3289.08

Note: DF is degree of freedom; SS is sum of squares; MS is mean square of variance; F is F value of F-test; p is p value of F-test; H2 is
broad-sense heritability; R2 is the multiple R-square of fitted linear model. Rep/Env is the replicate effect nested in each environment.

2.2. The Genetic Relationships of Multiple Populations

In total, 18,702 high-quality SNPs were obtained after SNP filtering and imputation.
These SNPs were distributed evenly across the ten chromosomes (Figure S2), and the
marker density was sufficiently high for implementing GP [8]. Considering there were
pedigree relationships among some populations, the genotypic data were used to show
the genetic relationships among the four populations. PC (principal component) analysis
showed that PC1 and PC2 explained 24.34% and 7.57% of total variances (Figure 1a). The
two PCs could divide the four populations into three groups, with population 1 and 2
in one group, and population 3 and 4 in another two groups (Figure 1a). The genetic
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similarity matrix was used to plot the heatmap, which showed that relationships among
population 1, population 2, and population 3 were close. The relationship between pop-
ulation 4 and other populations was distant (Figure 1b). The genetic similarity matrix
generally complied with their relationships in that population 1 and 2 had two common
parents, and population 3 had one common parent with population 1 and 2.
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2.3. GP across Different Populations

For within-population GP, the PA of GP within population 4 was higher than that
of GP within population 1, 2, and 3. PA was the highest when the four populations
were combined as a whole population to perform within-population GP (Figure 2a). The
large standard deviations of PAs of within-population GP for population 2 to 4 might be
caused by their small population size. For within-population GP of each population, no
significant differences were observed between the PAs of A (additive) and AD (additive
and dominance) models (Figure 2a). For the one-to-one GP, when population 1 was
used as the training population and each of the other three populations were used as the
validation population, the ranking PAs from high to low were population 2, population 3
and population 4 (as the validation populations) (Figure 2b), respectively. When population
2 was used as the training population, the PA was largest when population 1 was used as
the validation population and lowest for when population 4 was used as the validation
population (Figure 2b). When population 3 was used as the training population, the
PA was largest when population 1 was used as the validation population and lowest
when population 4 was used as the validation population (Figure 2b). When population
4 was used as the training population, the PA was negative when each of the remaining
populations were used as the validation population (Figure 2b). Generally, the PAs of
one-to-one GP models complied with their genetic relatedness.
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We performed GP through using the three-to-one scheme, in which one population
was used as the validation population, and the other populations were combined as the
training population. The result showed the PAs of GP using population 3 as the validation
population were the largest, followed by the PAs of GP using population 2, 1 and 4 as
the validation populations, respectively (Figure 2c). We further compared the PAs of the
three-to-one schemes with those of the one-to-one schemes. When population 1–3 was used
as the validation population, the PAs of the three-to-one scheme were generally larger than
those of the one-to-one scheme (Figure 2c). When population 4 was used as the validation
population, the PA of the three-to-one scheme was as low as the PAs of one-to-one GP
models (Figure 2c). The comparison indicated that the PA of GP using population 4 as
the validation population was low in both GP schemes (one-to-one and three-to-one),
which might be related to the fact that population 4 was genetically unrelated to other
populations (Figure 1a,b). Furthermore, because population 1–3 shared comment parents,
the comparison also indicated that including relatives of the validation population in the
training population increased the PAs of GP across structured populations.

2.4. GP across Different Environments

To compare the PAs of GP across environments, we implemented three models (SE
(single environment model), AE (across environment model), and G × E models) by using
the four hybrid populations as a whole in two CV schemes (Table S3). For CV1, the PAs
ranged from 0.522 in AE model (when 20% lines in HN environment were treated as the
validation population and the other 80% of lines in all three environments were treated
as the training population) to 0.744 (when 20% of lines in XJ environment were treated
as the validation population and the other 80% of lines in both XJ and HN environments
were treated as the training population) in the G × E model (Table S4). G × E models
generally had higher PAs than SE and AE models (Figure 3a, Table S4). For CV2, the
PAs ranged from 0.543 in AE model (when 20% of lines in HN environment were treated
as the validation population and 80% of lines in all three environments were treated as
the training population) to 0.769 (when 20% lines in XJ environment were treated as the
validation population and 80% of lines in all three environments were treated as the training
population) in the G × E model. In all cases, the G × E model had the highest PA in the
CV2 scheme (Figure 3a,b, Table S4). These results indicated that the G × E model had the
best performance in both the CV1 and CV2 schemes.
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We also found that the PAs were always the highest when lines in BJ were used as the
validation population, and lowest when lines in HN were used as the validation population
for all models (Figure 3a,b, Table S4), which should be related to the fact that yield in XJ
had the highest heritability, and that in HN it had the lowest heritability (Table S2). In
addition, for both AE and G × E models, the PAs of the CV2 scheme were always higher
than those of the CV1 scheme. In the CV2 scheme, each line was evaluated in at least
one environment, suggesting that GP worked better for lines with phenotypic data in
some environments.

3. Discussion

GP had been proved useful for maize breeding, especially for complex traits (such
as yield and stress tolerance) [20,21]. Although research on GP on the basis of multiple
populations had been reported in plants and animals before [7,9,22], the populations
used in these published reports were natural populations or populations composed of
homozygous lines (such as DH (doubled haploid) populations). Although DH lines were
widely used in commercial maize breeding, second-cycle lines and backcross lines were
still used extensively in developing countries. Moreover, in practical breeding, breeders
would like to make decisions at different generations on the basis of field testing. Therefore,
investigating GP in multiple types of population (such as backcross populations and F4
population in this study) should have great significance. Our result demonstrated that GP
was reliable in DH, backcross, F4 populations, which would encourage early testing in
hybrid breeding in developing countries.

We showed that the PA of GP across different populations was related to the relation-
ship between the training and validation populations (Figure 2). For example, because
populations 1–3 shared one common parent, when population 1 was used as the training
population in the one-to-one scheme, the PA of GP was highest when population 2 was
used as the validation population, and lowest PA when population 4 was used as the
validation population (Figure 2b). Therefore, genetic relatedness between the training and
validation populations was an important factor causing variations of the PAs of GP. Further-
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more, the differences in genetic basis of yield among the four populations might be another
important factor influencing the PAs of GP [10]. If the training and validation populations
were unrelated, their genetic basis should be different, and the effective SNPs detected
in the training population might have no effects in validation population. Therefore, the
closer the genetic relationship between the training and validation populations was, the
more genetic basis they would have in common, leading to the consequence that the num-
ber of SNPs taking effects in both populations would increase, and the PAs of GP across
different populations would also increase. Based on this speculation, we assumed that
when the relatives of the validation population were included in the training population,
the overall genetic relationship between the training and validation populations would be
close. Therefore, we designed the three-to-one scheme to test this assumption. Comparison
between the PAs of the three-to-one and one-to-one schemes supported our speculation
and indicated that including relatives of the validation in the training population was
a good choice for increasing the PAs of GP across structured populations. Conclusively,
the increase in PA might be caused by the possibility that, when the individuals of the
validation population were included in the training population, the common genetic basis
between the training population and validation populations would increase.

The conclusion that including relatives of the validation population in the training
population could enhance GP will be helpful for the design of the training population. For
GP, if breeders wanted to select favorable lines from the offsprings of two lines, a training
population should be constructed through using the two lines [23]. In most cases, there
might be several GP projects in a company. For n projects (n is an integer≥ 2), n populations
needed to be constructed by using 2 × n parents (Figure S3). There might be two cases:
(1) some of the 2 × n parents may be common; (2) some parents may be genetically
related. In both cases, pooling the training populations as one training population would
enhance GP, because many relative lines of the validation populations were included in the
training population. Therefore, for GP on the basis of multiple populations, we suggested
combining multiple training populations as one training population, especially when the
parents used in different GP projects were common or genetically related.

We used CV1 and CV2 to compare the multi-environment GP models, finding that
the PAs of CV2 were larger than those of CV1 in most cases (Figure 3; Table S4). The result
indicated that, to accurately predict the performance of an untested hybrid line in a specific
environment, it would be better to evaluate this line in at least one environment. The
multi-environment GP also found that G × E models had better performance than the SE
and AE models, especially in environments where the yield had higher heritability. Our
finding indicated that G × E models should be used to predict hybrid performance in
structured populations, and that the PAs of G × E models in a specific environment were
related to the heritability of the traits tested in the environment.

4. Material and Methods
4.1. Plant Materials

Through using Zheng58 as the donor parent and PH4CV as the recurrent parent, we
produced BC1F1 in the winter of 2013 in Sanya, Hainan province. In the summer of 2014,
BC1F1 were sown in Shunyi, Beijing. We used pollens bulking from at least ten BC1F1
plants to pollinate other BC1F1 plants because bulked-pollen pollination could increase
the proportion of genome from the recurrent parent in the backcross population [24]. The
seeds of these BC1F1 plants were called bulk-BC1F2. Bulk-BC1F2 seeds were sown and
self-pollinated to produce BC1F3 seeds in the summer of 2015 in Shunyi, Beijing [19]. In the
winter of 2015 in Sanya, Hainan province, 475 BC1F3 plants were testcrossed to PH6WC,
and this testcross population was called population 1. Here, PH4CV and PH6WC were the
male and female parents of Xianyu335, Zheng58 was the female parent of Zhengdan958.
Xianyu335 and Zhengdan958 were popular hybrid varieties in China [25,26]. The bulk-
BC1F2 seeds were used to generate 72 DH lines, which were testcrossed to PH6WC, and
this testcross population was called population 2. Zheng58 was crossed to the inbred line



Plants 2021, 10, 1174 8 of 12

D1-sel to produce F1 seeds, which were used to produce 60 F4:5 families through continual
self-pollination. These 60 families were testcrossed to PH6WC, and the testcross population
was called population 3. Here, the inbred line D1-sel was selected from the offsprings of
Demeiya 1, which was a popular hybrid variety in northeast China. Sixty-eight breeding
materials (Table S5), most of which were homozygous lines, were testcrossed to PH6WC,
and the testcross population was called population 4. A diagram illustrating how to
develop these four populations is shown in Figure S4.

4.2. Phenotype Evaluation and Phenotypic Data Analysis

In the summer of 2017, the four hybrid populations were sown in Shunyi (Beijing
Municipality, N 40◦07′, E 116◦39′), Xinxiang (Henan province, N 35◦22′, E 113◦54′) and
Changji (Xinjiang Uygur Autonomous Region, N 44◦0′, E 87◦18′). The whole population
was arranged in an incomplete block design with two replications. Specifically, because
populations 2, 3, and 4 were small populations, each of these populations was in one block.
As population 1 contained 475 families, population 1 was divided into eight random blocks
with five blocks containing 59 lines, and three blocks containing 60 lines. Each hybrid line
was sown in a two-row plot, and the row length, row space, and inter-plant space in the
same row were 500, 60, and 25 cm, respectively. The planting density was approximately
4444 plants per mu (mu is used widely in China), and one mu was equal to 666.67 square
meters. The management in the field followed the normal agricultural practice [27]. At the
harvest stage, the yield of each plot was measured and adjusted to 14% water content. Yield
(yield per mu) was calculated on the basis of the yield per plot. The three environments
were called BJ (Beijing), HN (Henan) and XJ (Xinjiang), respectively.

Best linear unbiased estimations (BLUEs) of each population were estimated based on
the experimental design following the model:

yijk = µ + gi + ej + geij + δ(j)k + εijk (1)

where yijk is the yield of ith genotype in the kth (k = 1,2) replicate nested in the jth (j = 1,2,3)
environment, µ is the overall mean, gi is the genotype effect, ej is the environment effect,
geij is G × E effect, δ(j)k is the replicate effect nested in each environment, and εijk is the
residual error. To calculate BLUEs, genotype was treated as a fixed effect, and the other
factors were treated as random effects following normal distributions. The linear mixed
model was fitted through using the lmer function in the R package “lme4” [28]. The BLUEs
of the four testcross population were available as Supplementary File S1.

To calculate the broad-sense heritability (H2), the variance of each effect in model (1)
were dissected by using the ANOVA function in software IciMapping version 4.1 [29]. This
time, all effects in model (1) were treated as random effects. The equation for estimating
H2 was [30]:

H2 =
σ2

g

σ2
g +

σ2
ge
e + σ2

ε
er

, (2)

where σ2
g is the genotype variance, σ2

ge is the variance of G × E, σ2
ε is the error variance, and

e and r were the number of environments and replicates, respectively.

4.3. Genotyping and Genotypic Data Analysis

Leaves were collected from the populations, and DNA was extracted according to
a published protocol [31]. The DNA samples were sent to CapitalBio Corporation for
genotyping by using DNA chips containing 55,000 SNPs [32]. The raw genotype data was
filtered by using the following requirement: (1) SNPs with calling rate lower than 97%
were removed; (2) SNPs with no physical position information were removed; (3) SNPs
with missing rate larger than 1% were removed; (4) SNPs with minor allele frequencies
lower than 0.05 were removed; (5) the missing genotypes were imputed by using codeGen
function in the R package “synbreed”, the method “beagle” was used and the other settings
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were default [33]. The minor and major alleles were coded as “A” and “a”, respectively [34].
The genotype codes of each hybrid line were inferred from their parents according to
a previous report [14]. Briefly, the additive genotypes of hybrid lines were coded as
(0 + 1)/2 = 0.5 when the mating type for a locus was Aa × AA, and were coded as
(0 + (−1))/2 = −0.5 when the mating type was Aa × aa. For the dominance genotypes of
the hybrid line, both above-mentioned mating types were coded as 0.5. The additive and
dominance genotype codes were available as Supplementary File S2 and Supplementary
File S3, respectively.

PC analysis was performed by using 18,702 filtered SNPs following a previous re-
port [35]. Briefly, the genotype matrix was decomposed by using the svd (singular value
decomposition) function in R language, and the matrix whose columns contained the right
singular vectors was returned. PC was calculated by multiplying the scaled genotype
matrix by the returned matrix. The genetic similarity matrix among all lines was calculated
by using the Pearson correlation coefficients among the genotype matrix of all lines [9].

4.4. GP Model

BLUE values of the four hybrid populations were used to implement GS. A genomic
BLUP (GBLUP) model including additive and dominance genetic effects could be written
as [36]:

y = µ + ξa + ξd + ε (3)

where y is the BLUE of F1 hybrid, µ is the overall mean, ξa is the vector of additive
polygenic effect following the distribution ξa~N(0, Kaσ2

a ), ξd is the vector of dominance
polygenic effect following the distribution ξd~N(0, Kdσ2

d ), and ε is the residual with a
normal distribution ε ∼ N

(
0, Iσ2

ε

)
, where I is the identity matrix, and σ2

ε is the residual
variance. The design matrices of ξa and ξd are identity matrices. The kinship matrix of
additive polygenic effect Ka = K∗a/mean(diag(K∗a)), where K∗a= ZZT; the kinship matrix
of dominance polygenic effect = Kd/mean(diag(K∗d)), where K∗d = WWT [36]. Z and W are
the additive and dominance genotype matrices, respectively, and were coded following
a former study [14]. The linear mixed model was fitted by using a Bayesian Reproducing
Kernel Hilbert Spaces Regressions regression in BGLR package [37] (the parameter nIter
and burnin were 15,000 and 1000, respectively). The model only including additive effect
was named the A model, and the model including both additive and dominance effects
was named the AD model.

4.5. GP across Environments

Three GP models including the SE, AE and G × E models were implemented [18,19],
and only additive effect was included in these models. The phenotypic data (response
variable) were BLUE values calculated in each environment.

In the SE model, we used model (3) to implement GP with 100 five-fold CVs, where
dominance effects were excluded from the model. The response variable y was the BLUE
values in each environment. For the AE model, all marker effects were assumed to be con-
stant under all environments, so the genetic effect was also constant across all environments,
taking a pair of environments as an example, the GBLUP model was:(

y1
y2

)
=

(
1µ1
1µ2

)
+

(
ξ1
ξ2

)
+

(
ε1
ε2

)
(4)

and could be written as:
y = µ + ξ + ε (5)

where y1 and y2 are the BLUE values in each environment; µ1 and µ2 are the overall
means in each environment; ξ1 and ξ2 re the genetic effect containing only the additive
effect; ε1 and ε2 are the error term in each environment, where (ξ1, ξ2)~N(0, G0σ2

u), and
(ε1, ε2)~N(0, Iσ2

ε ), ε1 and ε2 are assumed to be homogeneous across different environments.
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For the G × E model, genetic effect was divided into two parts, one part was constant
across environments, and the other was environment specific G × E effect [18]. Taking
two environments as an example, the GBLUP model was:(

y1
y2

)
=

(
1µ1
1µ2

)
+

(
ξ1
ξ2

)
+

(
ξ1s
ξ2s

)
+

(
ε1
ε2

)
(6)

and could be written as:
y = µ + ξ + ξs + ε (7)

where y1, y2, ξ1 and ξ2 are same as those of the AE model; ξ1s and ξ2s are the G × E effect
in two environments, respectively. (ξ1, ξ2)~N(0, G0σ

2
u), (ξ1s, ξ2s)~N(0, G1), (ε1, ε2)

~N(0, Iσ2
ε), G0 is the same with the AE model, ε1 and ε2 are assumed to be homoge-

neous across all environments. For covariance matrices G0 and G1, more details can be
found in former research [18]. All the models were fitted in BGLR package by providing
corresponding covariance matrix G0 and G1, respectively.

For the AE and G × E models, GP were implemented using BLUE values across
two (or three) environments as the response variable (Table S4) [38]. The model was
run with 100 five-fold CVs, with an 80% lines training population and 20% validation
population (Table S3). Two CV schemes (CV1 and CV2) were used for the AE and
G × E models. In CV1, the phenotype data of some lines were deleted in all environ-
ments and were predicted by using the AE and G × E models. For CV2, the phenotype
data of some lines were deleted in only one environment and were predicted by using the
AE and G × E models. PA was the correlation coefficient of the predicted and observed
phenotype data in each environment.

4.6. GP across Different Populations

We used three GP schemes, named as within-population, one-to-one, and three-to-
one schemes. For the within-population GP scheme, GP was implemented by using
BLUE values in each population, 80% lines of each population were used as the training
population, and the left 20% lines were used as the validation population (Figure S5a); the
GP model was run with 100 five-fold CVs. For the one-to-one GP scheme, each population
was used as the training population to predict each of the remaining populations (Figure
S5b). For the three-to-one GP scheme, three populations were used together as the training
population, and the remaining one was used as the validation population (Figure S5c). PA
was the correlation between the predicted and observed phenotype value.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10061174/s1. Figure S1. Distribution of yield of each population in each environment.
(a) Distribution of yield of each population in each environment; BJ, XJ and HN indicate the three
environments; (b) Distribution of yield of each population; Figure S2. Density distribution of 18702
SNPs within 1-Mb window size. The marker physical position is based on the B73 RefGen_V3
sequence. Chr1, Chr2 . . . Chr10 represented ten maize chromosomes; Figure S3. The suggested
design of a multi-population GP project. Pa1, Pa2, . . . Pan indicate the female parents, Pb1, Pb2 . . .
Pbn indicate the male parents, n is an integer larger than 2; Figure S4. A diagram illustrating the
development of the four hybrid populations; Figure S5. GP schemes across different populations. (a)
The within-population scheme; (b) The one-to-one scheme; (c) The three-to-one scheme; TP and VP
are training and validation populations, respectively. Table S1. Phenotypic correlation coefficient
among yield of each population in the three environments, Table S2. Variance component dissection
by using single- and multi-environment yield data, Table S3. Two cross validation schemes—CV1
and CV2. Table S4. PAs of SE, AE and G × E model, Table S5 Genetic information of the parental
lines of population 4.
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