
Taconet et al. Parasites Vectors          (2021) 14:345  
https://doi.org/10.1186/s13071-021-04851-x

RESEARCH

Data‑driven and interpretable 
machine‑learning modeling to explore 
the fine‑scale environmental determinants 
of malaria vectors biting rates in rural Burkina 
Faso
Paul Taconet1,2*  , Angélique Porciani1, Dieudonné Diloma Soma1,2,3, Karine Mouline1, Frédéric Simard1, 
Alphonsine Amanan Koffi4, Cedric Pennetier1,2, Roch Kounbobr Dabiré2, Morgan Mangeas5 and 
Nicolas Moiroux1,2 

Abstract 

Background:  Improving the knowledge and understanding of the environmental determinants of malaria vector 
abundance at fine spatiotemporal scales is essential to design locally tailored vector control intervention. This work is 
aimed at exploring the environmental tenets of human-biting activity in the main malaria vectors (Anopheles gambiae 
s.s., Anopheles coluzzii and Anopheles funestus) in the health district of Diébougou, rural Burkina Faso.

Methods:  Anopheles human-biting activity was monitored in 27 villages during 15 months (in 2017–2018), and envi-
ronmental variables (meteorological and landscape) were extracted from high-resolution satellite imagery. A two-step 
data-driven modeling study was then carried out. Correlation coefficients between the biting rates of each vector 
species and the environmental variables taken at various temporal lags and spatial distances from the biting events 
were first calculated. Then, multivariate machine-learning models were generated and interpreted to (i) pinpoint 
primary and secondary environmental drivers of variation in the biting rates of each species and (ii) identify complex 
associations between the environmental conditions and the biting rates.

Results:  Meteorological and landscape variables were often significantly correlated with the vectors’ biting rates. 
Many nonlinear associations and thresholds were unveiled by the multivariate models, for both meteorological and 
landscape variables. From these results, several aspects of the bio-ecology of the main malaria vectors were identified 
or hypothesized for the Diébougou area, including breeding site typologies, development and survival rates in rela-
tion to weather, flight ranges from breeding sites and dispersal related to landscape openness.

Conclusions:  Using high-resolution data in an interpretable machine-learning modeling framework proved to be 
an efficient way to enhance the knowledge of the complex links between the environment and the malaria vec-
tors at a local scale. More broadly, the emerging field of interpretable machine learning has significant potential to 
help improve our understanding of the complex processes leading to malaria transmission, and to aid in developing 
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Background
Malaria is a vector-borne disease transmitted by Anoph-
eles mosquitoes still affecting 229 million people and 
causing more than 400,000 deaths worldwide annually 
[1]. Malaria control efforts, mainly through the massive 
use of long-lasting insecticidal nets [2], led to a sustained 
decrease of the disease burden between 2000 and 2015 
[1]. However, malaria cases have plateaued in the past 5 
years or even increased in certain areas [1]. Vector resist-
ance to insecticides, population growth and environmen-
tal changes are involved in such worrying trends [3, 4]. 
For effective and sustainable vector control (VC), locally 
tailored interventions, built on a thorough knowledge 
of the local determinants of malaria transmission, are 
needed [3–5]. To do so, it is of particular importance to 
decipher with vector bio-ecology at fine and operational 
spatiotemporal scales [3, 4, 6].

To develop efficient (i.e. species-, place- and time-
specific) vector control strategies, important features of 
malaria vector ecology such as breeding site typologies, 
development and survival rates, flight ranges, or dispersal 
have to be considered. Meteorological conditions (tem-
perature, precipitation) and land cover are major envi-
ronmental factors frequently used to define the ecological 
niche of malaria mosquitoes [5] in complex, sometimes 
hardly hypothesizable, ways. Temperature affects the 
mosquito life history traits, nonlinearly, at each stage 
of its life cycle (e.g. larval growth, adult survival, biting 
rate). For example, the daily mortality rate of several 
adult Anopheles species follows a unimodal relationship 
with air temperature, with an optimal adult survival rate 
at around 25 °C [7–9]. Rainfall generates additional mos-
quito breeding sites and is therefore an important factor 
explaining the seasonality in species abundance. How-
ever, excessive rainfall can destroy developing larvae by 
flushing them out of their aquatic habitat [10, 11]. Land 
cover may affect mosquito population dynamics by creat-
ing breeding sites in hydromorphic areas or altering the 
dispersal ability of mosquitoes. A modification of land 
cover/use may therefore either increase or decrease vec-
tor abundance relative to species ecological preferences. 
As an example, deforestation can increase larval breed-
ing sites of malaria vectors growing in sunny puddles, 
whereas it destroys habitats of some deep-forest Anoph-
eles species [5, 12]. Moreover, even when found together, 
Anopheles species often exhibit specific ecological 

preferences [13, 14]. As an example, Anopheles gambiae 
s.s. was more frequently observed in temporary, rainfall-
dependent breeding sites [15–17], whereas Anopheles 
coluzzii showed a preference for more permanent breed-
ing sites [17–19]. Altogether, these examples illustrate 
that vector ecology is finely tuned with the environment. 
Using large-scale environmental indicators could there-
fore jeopardize the characterization of ecological niches 
of malaria vectors and consequently lead to subopti-
mal or even inappropriate VC intervention at a smaller 
scale [5]. To overcome this issue, we propose the use of 
high-resolution Earth observation (EO) data and develop 
novel statistical modeling approaches.

Indeed, in malariometric statistical modeling studies, 
“data” models [20] like linear or logistic regression are 
traditionally used with environmental variables extracted 
from EO data [21–23]. These models are well suited for 
testing pre-established hypotheses about theoretical con-
structs (e.g. to answer questions like “how much higher 
is mosquito abundance for each additional millimeter of 
rainfall?”); however, to explore hypotheses and extract 
knowledge in complex systems, machine-learning (ML) 
“algorithmic” models might be more suitable [20, 24]. In 
fact, these models are inherently able to capture complex 
patterns (such as nonlinear relationships and complex 
interactions between variables) contained in data. After 
a good predictive algorithm is fitted to a dataset, post hoc 
interpretation methods may uncover the complex rela-
tionships contained in the data and learned by the model, 
which in turn can be carefully linked to prior knowledge 
to identify meaningful—possibly unforeseen—cause–
effect relationships, valuable thresholds or interactions 
[25–27]. This predict-then-explain modeling workflow 
is being increasingly used to generate knowledge from 
complex datasets [24, 26] and is commonly referred to as 
“interpretable machine learning” (IML) [25, 26].

The main objective of this study was to improve our 
overall understanding of the ecological niche and deter-
minants of the biting rates of the main malaria vectors in 
a rural area of southwestern Burkina Faso. To do so, we 
used entomological collections and environmental vari-
ables extracted from high-resolution EO data, in a data-
driven and IML modeling framework. In this research 
article, after a presentation of the methods and results, we 
discuss the environmental (landscape and meteorological) 
drivers of the human-biting activity of the main malaria 

operational tools to support the fight against the disease (e.g. vector control intervention plans, seasonal maps of 
predicted biting rates, early warning systems).
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vectors in the Diébougou area. We also briefly present 
some potential practical uses of our results to support the 
conceptualization and deployment of locally tailored VC 
interventions. We conclude with methodological insight 
regarding the use of algorithmic models and IML for 
knowledge-building in the field of landscape entomology.

Methods
Data collection and preparation
Entomological data
Anopheles human-biting activity was monitored as part of 
a study carried out in the Diébougou rural health district 
located in southwest Burkina Faso [28]. Twenty-seven 
villages in this 2500 km2 wide area were selected accord-
ing to the following criteria: accessibility during the rainy 
season, 200–500 inhabitants per village, and distance 
between two villages greater than 2 km. Seven rounds 
of mosquito collection were conducted in each village 
between January 2017 and March 2018. The periods of 
the surveys span some of the typical climatic conditions of 
this tropical area (three surveys in the “dry-cold” season, 
two in the “dry-hot” season, one at each extremum of the 
rainy season) (see Additional file 1: Summary of the mete-
orological conditions around the sampling points).

Mosquitoes were collected using the human landing 
catch (HLC) technique from 17:00 to 09:00 both indoors 
and outdoors at four sites per village for one night dur-
ing each survey. The procedure for conducting HLC was 
for a person to sit on a stool, and mosquitoes to alight on 
his exposed legs, where they were then collected using a 
hemolysis tube. Collectors were rotated hourly between 
collection sites and/or position (indoor/outdoor). Inde-
pendent staff supervised rotations and regularly checked 
the quality of mosquito collections. Malaria vectors were 
identified using morphological keys [29, 30]. Individu-
als belonging to the Anopheles gambiae complex and the 
Anopheles funestus group were identified to species by 
PCR [31–33]. Mosquito collection design for this study 
has been described extensively elsewhere [28].

HLC enabled us to measure the presence and abun-
dance of aggressive malaria vectors in time and space. In 
fact, landing on human legs is the behavioral event pre-
ceding the biting event. To avoid exposing mosquito col-
lectors to infectious bites, we used landing as a proxy for 
biting, and in turn biting probability/rate as a proxy for 
the overall presence/abundance of aggressive vectors at 
the time and place of collection.

Landscape data
A land cover map of the study area was produced by 
carrying out a geographic object-based image analy-
sis (GEOBIA) [34] using multisource very-high- and 
high-resolution satellite-derived products. The GEOBIA 

involved the following main steps: acquisition/collation 
of the satellite products (Satellite Pour l’Observation de 
la Terre (SPOT)-6 image acquired on 2017-10-11, Senti-
nel-2 image acquired on 2018-11-16, and a digital eleva-
tion model (DEM) from the Shuttle Radar Topography 
Mission [35]), acquisition of a ground-truth dataset com-
posed of 420 known land cover samples by both fieldwork 
(held in November 2018) and photo-interpretation of sat-
ellite images, and classification of the land cover over the 
whole study area using a random forest (RF) algorithm 
[36]. The definitions of land cover classes were those 
proposed by the Permanent Interstate Committee for 
Drought Control in the Sahel [37]. The resulting dataset 
was a georeferenced raster image, where each 1.5 × 1.5 m 
pixel was assigned a land cover class. The confusion 
matrix was generated using the internal RF validation 
procedure based on the out-of-bag observations, and the 
quality of the final classification was assessed by calculat-
ing the overall accuracy from the confusion matrix [38].

Spatial buffers were then defined to characterize the 
environmental conditions at the neighborhood of each 
HLC collection point. Four buffer radii were considered: 
250 m, 500 m, 1 km, 2 km. The distance of 2 km was cho-
sen as the largest radius to minimize overlaps among 
buffers coming from different villages and because local 
dispersal of Anopheles beyond this distance can be con-
sidered negligible [29, 39–41]. We calculated the percent-
age of landscape occupied by each land cover class in 
each buffer zone around each collection site.

Additional indices related to the presence of water were 
calculated. The theoretical stream network was produced 
for the study area by first generating a flow accumulation 
raster dataset from the DEM and then applying a thresh-
old value to select cells with accumulated flow greater 
than 1000 [42]. The quality of the product was assessed 
visually by overlaying it on the SPOT-6 satellite image. 
We then derived two indices for each collection site: the 
length of streams in each buffer zone, and the shortest 
distance to the streams.

In order to describe attractiveness and penetrability of 
households for malaria vectors, the geographical location 
of the households in the villages were recorded and two 
indices were computed. First, the Clark and Evans aggre-
gation index [43] was calculated to describe the degree of 
clustering of the households in each village, as it has been 
suggested that scattered habitations in a village might 
increase the attractiveness for some vector species [44]. 
Second, we calculated the distance from each collection 
point to the edge of the village (defined as the convex hull 
polygon of each village—i.e. the minimum polygon that 
encompasses all the locations of the households), as it 
has been suggested elsewhere that living on the edge can 
increase biting rates [45].
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Meteorological data
Daily rainfall estimates were extracted from the Global 
Precipitation Measurement (GPM) Integrated Multi-sat-
ellitE Retrievals for GPM (IMERG) Final products [46]. 
The raw satellite products were resampled from their 
original 10-km spatial resolution to a 1-km resolution 
using a bilinear interpolation method.

Daily diurnal and nocturnal temperatures were derived 
from the Moderate Resolution Imaging Spectroradiom-
eter (MODIS) Land Surface Temperature (LST) Terra 
and Aqua products [47, 48]. Terra and Aqua daily prod-
ucts were first combined, keeping the highest (or lowest) 
available pixel values for the diurnal (nocturnal) tempera-
ture. Missing values in pixels (mostly due to cloud pres-
ence) were then filled by temporally interpolating the 
values of the closest preceding and following available 
dates.

These meteorological data (daily rainfall, daily diurnal 
temperatures, daily nocturnal temperatures) were col-
lected up to 42 days (i.e. 6 weeks) preceding each mos-
quito collection, so as to encompass largely the whole 
duration of the Anopheles life cycle in the field (including 
aquatic and aerial stages) [49]. They were then aggregated 
pixel-by-pixel on a weekly scale (cumulative 7-day rain-
fall and average 7-day diurnal and nocturnal LST). This 
temporal granularity represents a reasonable trade-off 
between the raw, daily information—which might over-
fit in the statistical models—and larger scales, which 
might prevent them from capturing fine-scale temporal 
relationships. Next, we calculated the cumulative rain-
fall and average temperatures for all possible intervals of 
time available in the data (e.g. b/w 0 and 1 week before 
the dates of collection, b/w 0 and 2  weeks, b/w 1 and 
2 weeks, etc.). The data were finally averaged in the 2-km 
buffer zone only (considering the 1-km spatial resolution 
of the source data).

Statistical analyses
Overall approach
We used a two-step statistical modeling approach to 
study the relationships between the biting rates of each 
vector species and the environmental conditions. We 
first calculated correlation coefficients between the bit-
ing rates and the environmental variables at the various 
buffer sizes/time lags considered. The objectives of this 
bivariate analysis were twofold: (i) to better apprehend 
several aspects of the ecology of the vectors in the study 
area, and (ii) to screen out variables for the multivariate 
analysis. In a second stage, we integrated selected vari-
ables in multivariate algorithmic models that we fur-
ther analyzed using interpretable machine-learning 
tools, to search for potential complex links (nonlinear 

relationships, relevant thresholds) between the environ-
mental factors and the biting rates.

We ran the whole modeling framework separately for 
each species, as they might exhibit different ecological 
preferences.

From a statistical point of view, most algorithmic 
machine-learning models, although nonparametric, have 
difficulty coping with zero-inflated negative binomial 
response variables [50, 51], which are typically found in 
insect count data such as mosquito biting rates [52]. An 
alternative approach to model such data is the hurdle 
model that considers the data responding to two pro-
cesses: one causing zero versus nonzero and the second 
process explaining the nonzero counts [53]. The hurdle 
methodology in the frame of a widely used algorithmic 
model (random forest) was proposed elsewhere to deal 
with such distributions of data [51]. Besides, this sepa-
ration is biologically pertinent since it has been shown 
that the drivers of the presence might differ from those of 
the abundance [17, 44, 54]. Lastly, separate modeling of 
presence and abundance might enable us to identify dis-
tinct targets for vector control answering to, respectively, 
eradication (absence of bites) and control (reduction of 
the number of bites) [17].

We therefore separately modeled the probability of 
human–vector contact (called “presence” models in the 
rest of this article) and the positive counts of human–
vector contact (called “abundance” models). Given that 
HLC data are used as a proxy for human-biting rate, 
presence models analyzed the probability of at least one 
individual biting a human during a night, while abun-
dance models analyzed the number of bites received by 
one human in one night conditional on their presence 
(i.e. zero-truncated data). Hence, in our presence mod-
els, the dependent variable was the presence/absence of 
vectors (binarized as 1/0) collected during 1512 nights of 
HLC (27 villages × 4 collection sites × 2 places (indoors 
and outdoors) × 7 surveys), while in the abundance mod-
els, the dependent variable was the number of bites per 
human during the positive catch sessions—i.e. the ses-
sions with at least one bite.

Bivariate analysis using correlation coefficients
The bivariate relationship between the presence/abun-
dance of each vector species and the environmental vari-
ables was assessed using multilevel Spearman correlation 
coefficients [55] with the village entered as a random 
effect. Multilevel correlations, contrary to simple corre-
lation, account for non-independency between observa-
tions in a dataset, by introducing a factor as a random 
effect in the correlation (on the same principle as random 
effects in mixed linear regressions).
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Landscape variables: The correlation coefficient was 
calculated for each landscape variable (i.e. percentage 
of landscape occupied by each land cover class in each 
buffer zone).

Meteorological variables: Past weather is likely to influ-
ence the size of the sampled mosquito generation with 
varied delays. For example, (i) past weather in the week 
preceding the collection may influence adult survival 
rates of the collected generation, (ii) weather during 1 or 
2 weeks preceding the collection may influence the devel-
opment rates of the collected generation during the larval 
stages, and (iii) weather beyond the third week preced-
ing the collection date may influence the development 
rates of parent generations. For the meteorological vari-
ables, cross-correlation maps (CCM) were hence com-
puted [56] to assess the relationships between the biting 
rates and the precipitation and temperatures preceding 
the dates of collection. A CCM enables one to study the 
influence of environmental conditions during time inter-
vals (instead of single time points) prior to the collection 
event. CCMs hence allowed us to account for the effects 
of cumulative precipitation and average temperature on 
the collected mosquito generation over intervals of weeks 
preceding the bites (e.g. average diurnal temperature 
between 1 and 3  weeks preceding the bite), instead of 
single weeks (e.g. average diurnal temperature during the 
third week preceding the bite).

Multivariate analysis using random forests and interpretable 
machine learning
We used the results of the bivariate analysis to select 
the environmental variables to include as predictors in 
the multivariate analysis. We first excluded variables 
that were poorly correlated with the response variable 
(i.e. correlation coefficients less than 0.1 or p-values 
greater than 0.2 at all time associations or buffer radii 
considered), except for variables related to the presence 
of water—i.e. possible breeding sites—which were all 
retained whatever their correlation. Then, for each mete-
orological (or landscape) variable, we retained the time 
lag interval (buffer radius) showing the higher absolute 
correlation coefficient value (see Additional file  6: Fea-
ture selection for the multivariate models). Because the 
entomological data used in this study were part of a trial, 
different vector control strategies were implemented in 
the villages of the study after the third survey. The imple-
mented VC strategies and the place of collection (inte-
rior/exterior) were therefore introduced as adjustment 
variables in our models, but their effect on the biting rate 
was found to be negligible in our analysis (see “Results” 
section), and these results will not be discussed further.

Random forest classifiers were then trained for each 
species and response variable (presence and abundance 
models). Random forests are an ensemble machine-
learning method that generates a multitude of random 
decision trees that are then aggregated to compute a 
classification or a regression [36]. They are known for 
their good predictive capacity, which is mainly due to 
their ability to inherently capture complex associations 
between the variables [20]. Binary classification RFs were 
generated for the presence models and regression RFs 
were generated for the abundance models. The modeling 
process involved the following steps:

•	 Feature collinearity: Collinear covariates (i.e. Pearson 
correlation coefficient > 0.7) were checked for and 
removed based on empirical knowledge.

•	 Feature engineering: In the classification models, 
data were up-sampled within the model resampling 
procedure to account for the imbalanced structure of 
the response variable [57]. In the regression models, 
the response variables were log-transformed prior to 
the model resampling procedure in order to reduce 
their overdispersion.

•	 Model training, tuning, selection: Model hyperpa-
rameters were optimized using a random 10-com-
bination grid search [58]. For each set of hyperpa-
rameters tested, a leave-village-out cross-validation 
(LVO-CV) resampling method was used. The resa-
mpling method involved training the model using in 
turn the data from 26 of the 27 sampled villages, vali-
dating with the data from the remaining village using 
a predictive performance metric [for the presence 
model: the precision–recall area under the curve 
(PR-AUC); for the abundance model: the mean abso-
lute error (MAE)] and averaging the metric across all 
hold-out predictions at the end of the procedure. The 
model retained was the one leading to the highest 
overall PR-AUC (lowest MAE). The retained model 
was then fit to all the observations and further used 
for the interpretation phase.

•	 Model evaluation: The predictive power of each 
model was assessed by LVO-CV. We hence evalu-
ated the ability of the models to predict the pres-
ence or abundance of vectors on unseen nights of 
HLC, whilst excluding from the training sets all the 
observations belonging to the village of the evalu-
ated observation. Doing so enables us to limit over-
fitting and over-optimistic performance metrics due 
to spatial autocorrelation [59]. For the presence mod-
els, precision–recall plots were then generated from 
the observed and predicted values, and the PR-AUC 
was calculated and compared to the baseline of PR 
curve (i.e. the PR-AUC of a random-guess classifier 
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for the dataset). The PR-AUC is a measure of predic-
tive accuracy of a binary classification model particu-
larly suitable for imbalanced classification problems 
[60]. It makes sense when compared to the baseline 
PR-AUC, which is the rate of “presence” observations 
in the dataset. For example, a model with a baseline 
of 0.01 and a PR-AUC of 0.2 performs 0.2/0.01 = 20 
times better than a random-guess, or no-skill, clas-
sifier. We also calculated sensitivity and specific-
ity at the optimal probability threshold (i.e. the one 
maximizing the AUC). For the abundance models, a 
visual evaluation (i.e. graphical comparison between 
observed and predicted values) was preferred to a 
numerical one because performance metrics were 
expected to be low given the overdispersion of the 
response data and the type of model used [51]. Evalu-
ation plots for the abundance models included (i) the 
distribution of MAEs and (ii) observed versus pre-
dicted values for each out-of-sample village.

To interpret the models, we further generated permu-
tation-based variable importance plots (VIPs) [36] and 
partial dependence plots (PDPs) [61] including standard 
deviation bands (that can be interpreted as confidence 
intervals). These plots, part of the interpretable machine-
learning toolbox, enable us to study the effects of one 
predictor on the response variable while accounting for 
the effect of the other predictors in the model [25]. Vari-
able importance measures a feature’s importance by cal-
culating the degradation of the predictive accuracy of 
the model after randomly permuting the values of the 
feature: the higher a variable’s importance, the more that 
variable contributes to the prediction. Partial dependence 
plots, on their side, show the marginal effect that one fea-
ture has on the predicted outcome [25]. PDPs hence help 
visualize the relationship, learned by a model, between a 
feature and the response. A PDP is likely to reveal com-
plex (nonlinear, nonmonotonic) effects when a model 
has learned such relationships. Importantly, the informa-
tion provided by these tools should be trusted only if the 
underlying model has good predictive power [27].

We finally identified primary and secondary predictors 
for each model, according to the following criteria. Pri-
mary predictors were the top three most important pre-
dictors of the VIP. Secondary predictors were variables 
either presenting marked variations in their PDP (e.g. 
thresholds, significant slopes) or known to influence the 
bio-ecology of the vector.

Software used
The software packages used in this work were all free 
and open-source. The R programming language [62] and 
the RStudio environment [63] were used as the main 

programming tools. An R package was developed [64] 
to extract the NASA meteorological data (MODIS and 
GPM). The land cover layer was generated using the fol-
lowing R packages: “RSAGA” [65], “rgrass7” [66], “raster” 
[67], “sf” [68], “rgdal” [69] and “randomForest” [70]. The 
“spatstat” [71] package was used to compute the Clark 
and Evans aggregation index. The QGIS software [72] 
was used to create the map of the study area. The “land-
scapemetrics” package [73] was used to calculate the per-
centage of landscape occupied by each land cover class in 
the buffer areas. The “correlation” [55] package was used 
for the correlation analysis. The “caret” [74] and “ranger” 
[75] packages were used to fit the random forest models 
in the statistical analysis. The “CAST” [76] package was 
used to create the temporal folds for cross-validation. 
The “MLmetrics” [77] package was used to calculate the 
model evaluation metrics. The “iml” [78] and “pdp” [79] 
packages were used to generate the partial dependence 
plots. The “patchwork” [80] package was used to create 
various plot compositions. The “ggmap” [81] package was 
used to generate the map of the vector biting rates. The 
“precrec” [82] package was used to generate the preci-
sion–recall plots for the presence models. The “tidyverse” 
meta-package [83] was used throughout the entire 
analysis.

Results
Entomological data
A total of 1512 nights of HLC were conducted among the 
27 villages during the seven entomological surveys. Alto-
gether 3056 vectors belonging to the Anopheles genus 
were collected: 1322 An. coluzzii, 708 An. funestus, 616 
An. gambiae s.s. and 410 from other species. An. funes-
tus was present in 12% of the nights of HLC (182 times), 
while both An. coluzzii and An. gambiae s.s. appeared 
on 20% of the nights of HLC (respectively 297 and 302 
times). The distribution of the biting rates in the positive 
sessions (i.e. sessions with at least one bite) was highly 
left-skewed (for An. funestus: median = 2, SD = 4.7, 
max. = 36; for An. gambiae s.s.: median = 2, SD = 1.5, 
max. = 10; for An. coluzzii.: median = 2, SD = 6.8, 
max. = 50).

Figure  1 shows the distribution of the biting rates 
of the three main vector species by village and survey. 
Overall, the map reveals heterogeneous spatiotempo-
ral patterns of biting rates for the three main species. 
An. funestus was found in a few villages only, mainly at 
the end of the rainy season (November) and in the dry-
cold season (December, January) (see Additional file 1: 
Summary of the meteorological conditions around the 
sampling point). It almost disappeared during the dry-
hot season (March) and the beginning of the rainy sea-
son (May). An. gambiae s.s. and An. coluzzii were found 
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in almost all the villages at the beginning and the end 
of the rainy season (May, November). They were also 
found year-round in some villages, in particular, those 
located close to dams or to the Bougouriba River. An. 
coluzzii was particularly abundant at the beginning 
of the rainy season (May), while An. gambiae s.s. was 
found in similar abundance at the beginning and the 
end of the rainy season (May, November).

Land cover map
Eleven land cover classes were discriminated: ligneous 
savanna (52% of the total surface), crop (25%), grass-
land (7%), marsh (5%), riparian forest (4%), woodland 
(3%), rice (1%), settlements (0.5%), bare soil (0.5%), 
main roads (0.3%) and permanent water bodies (0.3%). 
In the buffer areas considered for the modeling study 
(250  m, 500  m, 1  km, 2  km radii), similar trends were 
observed regarding the percentage of area occupied by 
each land cover class (see Additional file 2: Summary of 
the landscape conditions around the sampling points). 
Ligneous savanna included shrub savanna, tree savanna 
and wooded savanna. Grassland included herbaceous 
savanna and Sahelian short grass savanna. Permanent 
water bodies included dams and the Bougouriba River. 
Marshlands included wetland–floodplain and agricul-
ture in shallows and recessions. The overall accuracy 
of the classification was 0.84. The resulting land cover 
map of the study area, including the geographical posi-
tion of the study villages, is presented in Fig.  2. Pic-
tures representative of the main land cover classes are 

provided in Additional file 3: Pictures representative of 
the main land cover classes in the Diébougou area.

Bivariate analysis
Figure  3 shows the landscape variables that were sig-
nificantly correlated [multilevel Spearman’s correlation 
coefficient (cc) > 0.1 and p-value < 0.2] with the presence 
or abundance of each of the studied vector species. 
The presence or abundance of An. funestus was corre-
lated to two to six landscape variables depending to the 
buffer radius considered, one to five variables for An. 
gambiae s.s. and two to five for An. coluzzii. Overall, 
among the three species, the highest correlation coef-
ficients with the landscape variables were observed for 
An. funestus.

Both the presence and the abundance of An. funestus 
were positively correlated with the % of surface occupied 
by permanent water bodies in the 2-km radius buffer 
zone. They were also positively correlated with the % of 
surface occupied by marshlands in all buffer zones with 
radius ≥ 500  m, with increasing correlation coefficients 
as the buffer zone radii increased. The presence and the 
abundance of An. funestus were also positively correlated 
with the % of surface occupied by grasslands, and nega-
tively correlated with the % of surface occupied by ligne-
ous savannas, for all buffer radii. The correlation between 
the abundance and the % of surface occupied by grass-
lands and ligneous savannas increased (both in absolute 
value and significance) with smaller buffer radii. The 
presence of An. funestus was positively correlated with 
the % of surface occupied by crops in all buffer zones 

Fig. 1  Map of the biting rates of the three main vector species for each village and entomological survey. Unit: average number of bites/human/
night. Blue dots indicate absence of bites in the village for the considered survey. Background layer: OpenStreetMapers
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except for the 1-km radius. The abundance of An. funes-
tus was positively correlated with the length of streams in 
the 250-m and the 2-km radii buffer zones.

Both the presence and the abundance of An. gambiae 
s.s. were positively correlated with the % of surface occu-
pied by permanent water bodies in the 2-km radius buffer 
zone. Its presence was also positively correlated with the 
% of surface occupied by marshlands in all buffer zones 
with radius ≥ 500 m. The presence and abundance of An. 
gambiae s.s. were also positively correlated with the % of 
surface occupied by grasslands (in all buffer zones for the 
presence, and in the buffer zones with radius ≥ 1 km for 
the abundance), and negatively correlated with the % of 

surface occupied by ligneous savannas (in all buffer zones 
for the presence, and in the 2-km radius buffer zone for 
the abundance). The presence and abundance of An. 
gambiae s.s. were also positively correlated with the % of 
surface occupied by riparian forests, only in the 500-m 
radius buffer zone for the presence, and in buffer zones 
with radius ≤ 500 m for the abundance.

The presence of An. coluzzii was positively correlated 
with the % of surface occupied by permanent water bod-
ies in the 2-km radius buffer zone. The presence and 
the abundance of that species were positively correlated 
with the % of surface occupied by marshlands in all 
buffer zones with radius ≥ 1 km for the presence, and in 

Fig. 2  Map of the study area. The map includes the villages of the study, the land cover derived from geographic object-based image analysis of a 
SPOT-6 satellite image acquired on 2017-10-11, and the theoretical stream network derived from the SRTM DEM
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all buffer zones with radius ≥ 500 m for the abundance. 
Presence and abundance of An. coluzzii were also posi-
tively correlated with the % of surface occupied by grass-
lands, and negatively correlated with the % of surface 
occupied by ligneous savannas, in all the buffer zones 
(except in the 250-m radius buffer zone for the abun-
dance). The correlation between the abundance of An. 
coluzzii and the % of surface occupied by ligneous savan-
nas increased (in both absolute value and significance) 
with smaller buffer zones.

Figure 4 shows the meteorological variables that were 
significantly correlated [multilevel Spearman correla-
tion coefficient (cc) > 0.1 and p-value < 0.2] with the pres-
ence or abundance of bites for each of the studied vector 
species (in the form of cross-correlation maps). Overall, 
among the three species, the highest correlation coef-
ficients with the meteorological variables were observed 
for An. coluzzii, closely followed by An. gambiae s.s.

The presence and abundance of An. funestus showed 
quite weak correlations with the meteorological vari-
ables (Spearman’s correlation coefficient always < 0.25, 
with all the meteorological variables at all time frames) 
when compared to An. gambiae s.s. or An. coluzzii. 
Correlations between both response variables (pres-
ence and abundance) and the three meteorological vari-
ables (cumulative rainfall, diurnal LST, nocturnal LST), 
when significant, were negative. The maximum correla-
tion coefficients between each meteorological variable 
and both the presence and abundance were found for 
the following: cumulative rainfall recorded b/w 1–2 and 
3  weeks before the date of collection, diurnal tempera-
tures recorded b/w 3–4 and 6  weeks before the date of 
collection, and nocturnal temperatures recorded b/w 0–1 
and 3 weeks before the date of collection.

The presence and abundance of An. gambiae s.s. were 
positively correlated with cumulative rainfall, at all time 
lags. The maximum correlation coefficients for both 
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Fig. 3  Multilevel Spearman’s correlation between the vectors’ biting rates and the landscape variables. Biting rates were separated into presence/
absence of bites (left) and abundance of bites (i.e. positive counts only) (right). Unit of biting rates: number of landings on human/person/
night. Unit of landscape variables: % of landscape occupied by each land cover class. Landscape variables were extracted in four spatial buffer 
zones around the sampling locations (250 m radius, 500 m, 1 km, 2 km) for each main vector species. Only correlations with coefficient > 0.1 and 
p-values < 0.2 are displayed. Stars indicate the range of the p-value: *** p-value ∈ [0, 0.001]; ** p-value ∈ [0.001, 0.01]; * p-value ∈ [0.01, 0.05]; absence 
of stars: p-value ∈ [0.05, 0.2]
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presence and abundance were found for cumulative rain-
fall recorded b/w 2 and 6  weeks before the date of col-
lection. The presence and abundance of An. gambiae 
s.s. were also positively correlated with nocturnal tem-
peratures at all time lags, and the maximum correlation 
coefficients with both response variables were found for 
temperatures recorded b/w 3–4 and 6  weeks before the 
date of collection. The presence and the abundance of 
An. gambiae s.s. were negatively correlated with diurnal 
temperatures preceding the date of collection at almost 
all time lags. The maximum correlation coefficient with 
both response variables was found for temperatures 
recorded b/w 0 and 2 weeks before the date of collection.

The correlations between meteorological variables 
and both the presence and abundance of An. coluzzii 
exhibited similar trends as An. gambiae s.s., with few 
notable differences. The presence and abundance of An. 
coluzzii were positively correlated with cumulative rain-
fall preceding the date of collection at all time lags. The 

maximum correlation coefficient with cumulative rainfall 
was found b/w 1 and 3 weeks before the date of collec-
tion for presence, and b/w 0 and 1 week before the date 
of collection for abundance (the correlation coefficient 
b/w 1 and 3  weeks was also among the highest for the 
abundance). The presence and abundance of An. coluzzii 
were positively correlated with nocturnal temperatures 
at all time lags with maximum correlation coefficients 
found b/w 1–3 and 6 weeks before the date of collection 
for both response variables. The presence and abundance 
of An. coluzzii were, overall, negatively correlated with 
diurnal temperatures preceding the date of collection. 
The maximum correlation coefficient between diurnal 
temperatures and both response variables was found b/w 
0 and 1–2 weeks before the date of collection.

Multivariate analysis
The PR-AUC of the presence models were 0.56 
(baseline = 0.12), 0.46 (baseline = 0.20) and 0.60 

Fig. 4  Multilevel Spearman’s correlation between the vectors’ biting rates and the meteorological variables (as cross-correlation maps). Biting 
rates were separated into presence/absence of bites (left) and abundance of bites (i.e. positive counts only) (right). Unit of biting rates: number 
of landings on human/person/night. Unit of meteorological variables: °C for land surface temperatures (LST), cumulative millimeters for rainfall. 
Meteorological variables were extracted on a weekly scale up to 6 weeks before the dates of collection for each main vector species. In each CCM, 
time lags are expressed in week(s) before the date of collection. The red-bordered square indicates the time lag interval that showed the highest 
correlation coefficient (absolute value) with the meteorological variable (the associated time lag interval and correlation coefficient are reported 
on the top-left corner of the CCM). The black-bordered squares indicate correlations close to the highest observed correlation (i.e. less than 10% of 
difference). Gray-filled squares indicate correlations with p-value > 0.2 or coefficient > 0.1



Page 11 of 23Taconet et al. Parasites Vectors          (2021) 14:345 	

(baseline = 0.20) for An. funestus, An. gambiae s.s. and 
An. coluzzii, respectively. The specificity and sensitivity 
of the models at the optimal probability thresholds were 
respectively 80% and 73% for An. funestus, 75% and 76% 
for An. gambiae s.s., and 79% and 75% for An. coluzzii. 
Overall, these results indicate good predictive accuracy 
of the presence models. The abundance models reflected 
the trends well for the three species, although they often 
underestimated high counts. The model evaluation plots 
are available in Additional file 4: Model evaluation plots 
for the presence models and Additional file  5: Model 
evaluation plots for the abundance models (for the pres-
ence models: precision–recall plots and observed versus 
predicted values for each out-of-sample village; for the 
abundance models: distribution of MAE and observed 
versus predicted values for each out-of-sample vil-
lage). Figures  5, 6 and 7 show the model interpretation 
plots (variable importance plot and partial dependence 
plots) for An. funestus, An. gambiae s.s. and An. coluzzii, 
respectively.  

The most important predictors of the presence and 
abundance of An. funestus were landscape-based, includ-
ing % of surface occupied by marshlands (in the 2–km 
radius buffer zone), grasslands (in the buffer zone radii 
≤ 500  m) and ligneous savannas (in the 500-m radius 
buffer zone). The probability of the presence of An. funes-
tus increased linearly with surface occupied by marsh-
lands in the range available in the data (0–10%), while the 
abundance was constant in the range of 0–3%, increased 
approximately linearly from 3 to 6%, and finally stabilized 
in the range of 6–10%. Both the probability of presence 
and the abundance increased linearly with surface occu-
pied by grasslands in the range of 0–20%, and stabilized 
above that threshold. Conversely, they decreased lin-
early with surface occupied by ligneous savannas in the 
range of 0–50%, and above that threshold stabilized for 
abundance and tended to diminish (with a lower trend 
though) for presence.

Secondary predictors of the presence and abundance 
of An. funestus were as follows: % of surface occupied 
by permanent water bodies in the 2-km radius buffer 
zone (increase in the range 0–0.1%, stable in the range 

0.1–1%), diurnal LST b/w 3 to 4  weeks and 6  weeks 
before the date of collection (negative, approximately 
linear, association), and nocturnal LST b/w 0 to 1 and 
3 weeks before the date of collection (stable in the range 
14–19 °C, decrease in the range 19–25 °C).

The most important predictors of the presence of 
An. gambiae s.s. were meteorological variables, namely 
nocturnal LST (b/w 4 and 6  weeks, i.e. 28 and 42  days, 
before the date of collection), rainfall (b/w 2 and 6 weeks 
before the date of collection), and diurnal LST (b/w 0 and 
2 weeks before the date of collection). The probability of 
presence of An. gambiae s.s. increased slowly for noctur-
nal LSTs in the range of 14–20 °C and more rapidly above 
that threshold. It increased linearly with the cumulative 
rainfall in the range of 0–10  mm, and was stable above 
that threshold. It decreased for diurnal LSTs in the range 
of 35–41 °C, and stabilized above that threshold. Second-
ary predictors of the presence of An. gambiae s.s. were as 
follows: % of surface occupied by grasslands in the 2-km 
radius buffer zone (increase in the range 0–15%, stable 
above), % of surface occupied by ligneous savannas in the 
500-m radius buffer zone (negative linear association), 
and % of surface occupied by marshlands in the 2-km 
radius buffer zone (positive linear association).

When An. gambiae s.s. was present, cumulative rainfall 
(b/w 2 and 6 weeks before the date of collection) was, by 
far, the most important predictor of its abundance. Other 
primary predictors were diurnal temperatures (b/w 0 and 
2  weeks before the date of collection) and % of surface 
occupied by marshlands (in the 2-km radius buffer zone). 
The abundance of An. gambiae s.s. increased linearly 
in the range of 0–50  mm cumulative rainfall and stabi-
lized above that threshold (range 50–80  mm). It slowly 
increased with the % of surface occupied by marshlands. 
Secondary predictors of the abundance of An. gambiae 
s.s. included the following: % of surface occupied by lig-
neous savannas in the 2-km radius buffer zone (negative 
linear association), % of surface occupied by permanent 
water bodies in the 2-km radius buffer zone (increase in 
the range 0–0.1%, stable in the range 0.1–1%), % of sur-
face occupied by riparian forests in the 250-m radius 
buffer zone (positive linear association), and % of surface 

Fig. 5  Interpretation plots of the random forest models for An. funestus. Biting rates were separated into presence/absence of bites and abundance 
of bites (i.e. positive counts only), and two models were therefore generated [presence (top) and abundance (bottom)]. For each model, the top-left 
corner plot is the variable importance plot. The other plots are partial dependence plots (PDPs) for each variable included in the models (1 plot/
variable). The y-axis in the PDPs represents: in the presence models, the probability of at least one individual biting a human during a night; in the 
abundance models, the log-transformed number of bites received by one human in one night conditional on their presence. The dashed lines 
represent the partial dependence function ± one standard deviation (i.e. variability estimates). The range of values in the x-axis represents the range 
of values available in the data for the considered variable. The rugs above the x-axis represent the actual values available in the data for the variable. 
LST = land surface temperature, b/w = between

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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occupied by grasslands in the 1-km radius buffer zone 
(positive linear association).

The most important predictors of the presence of 
An. coluzzii were as follows: cumulative rainfall (b/w 
1 and 3  weeks before the date of collection), nocturnal 
LST (b/w 1 and 6  weeks before the date of collection), 
and % of surface occupied by marshlands (in the 2-km 
radius buffer zone). A total of approximately 40  mm of 
rainfall b/w 1 and 3  weeks before the date of collection 
was enough to double the probability of presence of An. 
coluzzii (from an average 0.25 without rainfall to 0.55). 
Beyond that amount of rainfall, the probability of pres-
ence tended to diminish (range 50–65  mm). The prob-
ability of presence of An. coluzzii increased linearly with 
nocturnal LSTs and % of surface occupied by marshlands. 
Secondary predictors of the presence of An. coluzzii 
included the following: diurnal LST b/w 0 and 1  week 
before the date of collection (decrease in the range 
34  °C–40%, stable in the range 40–50  °C), % of surface 
occupied by ligneous savannas in the 500-m radius buffer 
zone (decrease in the range 0–40%, stable above), % of 
surface occupied by grasslands in the 250-m radius buffer 
zone (increase in the range 0–30%, stable above), and % 
of surface occupied by permanent water bodies in the 
2-km radius buffer zone (increase in the range 0–0.1%, 
stable in the range 0.1–1%).

When An. coluzzii was present, primary predictors of 
its abundance were nocturnal LST (b/w 3 and 6  weeks 
before the date of collection), cumulative rainfall (b/w 0 
and 1 week before the date of collection), and % of surface 
occupied by grasslands (in the 1-km radius buffer zone). 
The abundance of An. coluzzii was constant for noctur-
nal LSTs under 22 °C and strongly increased above, until 
23  °C. The association between abundance and cumu-
lative rainfall was quite weak, but overall positive. The 
abundance increased linearly with the surface of grass-
lands in the range of 0–20%, and stabilized above that 
threshold. Secondary predictors of the abundance of An. 
coluzzii were as follows: % of surface occupied by marsh-
lands in the 2-km radius buffer zone (positive linear asso-
ciation), % of surface occupied by riparian forests in the 
500-m radius buffer zone (positive linear association), % 
of surface occupied by ligneous savannas in the 250-m 

radius buffer zone (decrease in the range 0–40%, stable 
above), and distance to the closest stream (decrease in 
the range 0–100 m, stable above).

Notably, the confidence intervals of the partial depend-
ence functions were overall high for all species and vari-
ables and, with a few exceptions, no variable emerged as 
much more predictive than others (in the VIPs) nor had 
signals outstandingly strong (in the PDPs).

Discussion
In this modeling study, we linked the biting rates of three 
major malaria vector species with environmental condi-
tions at vicinities of places and periods of time of biting 
events to better understand their bio-ecology at fine spa-
tiotemporal scales and identify important factors leading 
to increased biting risk. First, we correlated the biting 
rates of the vector species with (i) each meteorological 
variable at various time lags before the mosquito collec-
tion (using cross-correlation maps) and (ii) each land-
scape variable in various buffer zones around the HLC 
locations. Then, for selected time lags or spatial radii (the 
ones with the highest correlation coefficients), we gener-
ated multivariate models to study (i) the contribution of 
each environmental variable in predicting the biting rates 
and (ii) the nature of the relationship between each envi-
ronmental variable and the biting rates (all other environ-
mental conditions considered).

In this section, we first discuss the relationships 
between the biting rates of the malaria vectors and the 
meteorological and landscape conditions in the Diébou-
gou area, and link them to the bio-ecology of the species. 
We then discuss how the results of our study could con-
cretely support the conceptualization and deployment of 
locally tailored VC interventions. Next, we briefly sum-
marize some of the advantages of the modeling method 
used for knowledge generation in the field of landscape 
entomology. We conclude the discussion with some limi-
tations of this study and directions for future research.

Effects of meteorological variables
The cross-correlation maps enable us to study how mete-
orological conditions affect the various stages of the 
mosquito life cycle [56]. Here, we found that weather 

(See figure on next page.)
Fig. 6  Interpretation plots of the random forest models for An. gambiae s.s. Biting rates were separated into presence/absence of bites and 
abundance of bites (i.e. positive counts only), and two models were therefore generated [presence (top) and abundance (bottom)]. For each model, 
the top-left corner plot is the variable importance plot. The other plots are partial dependence plots (PDPs) for each variable included in the models 
(1 plot/variable). The y-axis in the PDPs represents: in the presence models, the probability of at least one individual biting a human during a night; 
in the abundance models, the log-transformed number of bites received by one human in one night conditional on their presence. The dashed 
lines represent the partial dependence function ± one standard deviation (i.e. variability estimates). The range of values in the x-axis represents the 
range of values available in the data for the considered variable. The rugs above the x-axis represent the actual values available in the data for the 
variable. LST = land surface temperature, b/w = between
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Fig. 6  (See legend on previous page.)
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conditions (rainfall, nocturnal LST and diurnal LST) 
were significantly correlated with, and almost always 
primary predictors of, the presence and abundance of 
the species of the Anopheles gambiae complex. Stronger 
effects of these meteorological variables were found at 
various time lags in the studied range (from 0 to 6 weeks 
before collections). As discussed by Lebl and colleagues 
[84], weather-dependent life expectancy and develop-
ment rates make it difficult to link time lags (of weather 
recordings) influencing mosquito abundance to different 
development stages. Given the mean life span and larval 
development duration of the Anopheles species collected 
in our area [49, 85, 86], weather during the first week 
(i.e. b/w 0 and 1 week) before collection was expected to 
influence the adult lifetime of collected mosquitoes, and 
weather during weeks 1–3 (i.e. b/w 1 and 2–3) before col-
lection was expected to influence the larval lifetime of 
collected mosquitoes. Weather during preceding weeks 
(i.e. beyond 3 weeks before the date of collection) might 
affect observed densities by influencing the survival and 
development rates of (i) parent generations through 
mechanical effects on the population dynamic [84], 
(ii) the current/sampled generation through maternal/
paternal effects [87, 88], or (iii) the current generation 
by preparing different biotic and abiotic conditions (for 
instance, by filling suitable larval development sites with 
water or by enabling the development of food sources, 
competitors or predators of Anopheles larvae).

In the spatiotemporal frame of our study, nocturnal 
LST ranged from 14 to 24  °C, and diurnal LST from 33 
to 50  °C. Both nocturnal and diurnal LST were impor-
tant predictors of the presence and abundance of An. 
gambiae s.s. and An. coluzzii, often with marked thresh-
olds. Indeed, for An. gambiae s.s. we were able to identify 
a threshold of minimal LST over which the probability 
started to increase (20  °C), and for both species we also 
identified a threshold of maximum LST over which the 
probability reached a minimum (40 °C). For both species, 
diurnal temperature had the strongest effect during the 
2 weeks preceding the dates of collection. This indicates 
that increasing diurnal temperatures probably reduced 
adult survival and larval development rates of the sam-
pled generation of mosquitoes, leading to lower observed 

abundance. Indeed, high temperatures are known to 
inhibit development of anopheline larvae [89] and to 
reduce adult survival [90]. Regarding nocturnal temper-
atures, the time period with the strongest effect on the 
presence and abundance of both An. gambiae s.s. and An. 
coluzzii was between 3 and 6  weeks before collection. 
This indicates that nocturnal (i.e. minimal) temperatures 
had their strongest impact by either affecting previous 
generations (low temperatures are known to reduce adult 
survival and inhibit larval development [89, 90]) or modi-
fying habitats (with a delay) for the collected generation 
(for instance, low temperatures may inhibit the develop-
ment of algae [91], whose biomass has been found to be 
associated with larval densities [92, 93]).

The high correlation coefficients between cumula-
tive rainfall and both the presence and abundance of An. 
gambiae s.s. and An. coluzzii, and the fact that rainfall 
was systematically an important predictor of these spe-
cies, might indicate that in our area An. gambiae s.s. and 
An. coluzzii are preferably attached to rainfall-depend-
ent breeding sites, confirming the results of other stud-
ies [19, 94, 95] and explaining their seasonality. The time 
period with the strongest effects of rainfall on the pres-
ence and abundance of An. gambiae s.s. was between 2 
and 6  weeks before collection, suggesting an effect on 
parental generations (as observed by Lebl and colleagues 
[84] for other mosquito species) or by modifying habitats 
(abiotic and/or biotic conditions) for the collected gen-
eration of these species. Conversely, rainfall had one of 
its highest correlation coefficients with the presence and 
abundance of An. coluzzii during weeks 1–3 before the 
dates of collection, indicating that rainfall might have had 
the greatest influence on the larval stages of the sampled 
generation of mosquitoes.

Different amounts of rainfall were needed for An. 
coluzzii and An. gambiae s.s. to be present or abundant, 
suggesting different breeding habitat preferences. Mini-
mal rainfall was needed for An. gambiae s.s. to increase 
its probability of being present; additionally, rainfall was 
by far the most important predictor of its abundance 
(with a strong positive and approximately linear associa-
tion). This could indicate that An. gambiae s.s. was more 
attached to breeding sites that quickly appear (presence) 

Fig. 7  Interpretation plots of the random forest models for An. coluzzii. Biting rates were separated into presence/absence of bites and abundance 
of bites (i.e. positive counts only), and two models were therefore generated [presence (top) and abundance (bottom)]. For each model, the top-left 
corner plot is the variable importance plot. The other plots are partial dependence plots (PDPs) for each variable included in the models (1 plot/
variable). The y-axis in the PDPs represents: in the presence models, the probability of at least one individual biting a human during a night; in the 
abundance models, the log-transformed number of bites received by one human in one night conditional on their presence. The dashed lines 
represent the partial dependence function ± one standard deviation (i.e. variability estimates). The range of values in the x-axis represents the range 
of values available in the data for the considered variable. The rugs above the x-axis represent the actual values available in the data for the variable. 
LST = land surface temperature, b/w = between

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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and abound (abundance) when limited rain falls and dis-
appear after it stops, i.e. temporary breeding sites like 
puddles. An. coluzzii needed more rainfall to be present, 
suggesting preferences for breeding sites that require 
more water to be flooded, i.e. semipermanent surface 
water collections like marshlands or streams, which are 
usually filled in by rainfall throughout the rainy season 
and shortly after. Indeed, the % of surface occupied by 
marshlands was significantly correlated with, and the 
fourth most important predictor of, the abundance of An. 
coluzzii. Overall, these hypotheses about the preferred 
breeding habitats of An. gambiae s.s. and An. coluzzii 
confirm the literature reports [15–19].

Effects of landscape variables
The biting rates of the three species were significantly 
correlated with several landscape variables, at varying 
distances from the collection points, and with fluctuating 
correlation coefficients. In addition, primary predictors 
of the presence and abundance of An. funestus were sys-
tematically landscape-based, and some were also primary 
predictors of the abundance of An. gambiae s.s. and An. 
coluzzii. Overall, this indicates that local landscape con-
ditions are important drivers of the bio-ecology of the 
malaria vectors in rural areas, confirming the literature 
[5, 12, 17].

The mere presence of permanent water bodies (irre-
spective of the surface that they occupied) was sufficient 
to increase (even moderately) the probability of presence 
and the abundance of the three species. Permanent water 
bodies, where available, are likely to form breeding habi-
tats for the Anopheles species [17, 44, 96–98], and explain 
why the few study villages located close to the dams and 
the main river are exposed to year-round bites of high 
densities of the three species [28]. The % of surface occu-
pied by marshlands at the vicinities of the biting sites was 
the most important predictor of the presence and abun-
dance models of An. funestus. In our study area, marsh-
lands, a semipermanent aquatic environment, hence 
seemed to be one of the preferred breeding habitats of 
An. funestus, as it has been observed in other places [96, 
97]. Notably, the correlation coefficients between the 
presence/abundance of bites and the % of surface occu-
pied by breeding habitat land cover types (marshlands 
and permanent water bodies) increased as buffer sizes 
increased. This might indicate that mosquitoes are able 
to fly over quite large distances to reach their biting site 
from these breeding habitats (≥ 2 km), as observed else-
where in similar landscapes [99, 100]. Proximity to the 
streams (< 100  m) and % of landscape occupied by the 
riparian forests (≤ 500  m) were secondary predictors of 
the presence and/or abundance of An. gambiae s.s. and 
An. coluzzii. Streams and riparian forests (which are 

spatially interrelated, i.e. streams flow under riparian 
forests) might hence form secondary, semipermanent 
breeding sites for the species of the Anopheles gambiae 
complex in the Diébougou area.

Grasslands—a very “open” landscape—and ligne-
ous savannas—the most “closed” landscape in our study 
area—were alone or together significantly correlated 
with, and important predictors of, the presence and/
or the abundance of the three malaria vectors studied. 
Increasing surfaces of grassland areas were associated 
with increasing probabilities of presence or abundance, 
while increasing surfaces of savannas were associated 
with decreasing probabilities of presence or abundance. 
With some rare exceptions, these landscape indicators 
were most highly correlated in small-radii (≤ 500  m) 
buffer areas around the collection sites. Although grass-
land may provide suitable breeding sites for, at least, An. 
gambiae s.s. and An. coluzzii [101], these results seem 
to indicate that the degree of openness of the landscape 
some hectometers around villages had a great impact on 
malaria mosquito biting rates. Our observations are sup-
ported by the hypothesis of the lower dispersal of Anoph-
eles mosquitoes in closed landscape (in comparison to 
open landscape) [102] leading to shorter gonotrophic 
cycle durations and therefore increased biting frequen-
cies and higher biting rates [103]. A similar observation 
was previously made with An. coluzzii in Benin [17]. In 
the Diebougou area, ligneous savannas seemed to act 
as natural protective barriers against the malaria vec-
tors and, conversely, grasslands as an aggravating biting 
risk factor. In a country which is increasingly replacing 
its closed landscapes (savannas) with opened ones [37], 
this observation is worrying for malaria transmission. 
Removal of savannas may significantly increase biting 
densities. This concern may however be mitigated for 
our study area, as savannas are usually mainly replaced 
by crops [37], which themselves did not seem to be an 
aggravating risk factor (i.e. crops did not emerge as an 
important variable in our models).

Back to the field: how can these models and knowledge 
concretely support the fight against malaria transmission 
at the local scale?
An important question is how these results can ulti-
mately help build locally tailored VC interventions (i.e. 
deploy the right VC tool at the right time and the right 
place) to support prevention and reduction of malaria 
transmission. The knowledge and models generated in 
this study could support at least three actions: (i) concep-
tualization of tailored vector control intervention plans, 
(ii) decisions regarding the places and times where recur-
rent (long-term) interventions should be deployed, in 
the form of seasonal maps of predicted biting rates, and 
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(iii) decisions regarding the places and times where occa-
sional (short-term) interventions should be deployed, in 
the form of an early warning system.

Support conceptualization of tailored vector control 
intervention plans
The scientific knowledge confirmed, clarified, or gained 
through the interpretation of the models could help con-
ceptualize tailored (i.e. species-, time- and place-spe-
cific) VC intervention plans. For example, management 
of temporary breeding sites (through e.g. larval control, 
or information education, and communication) during 
the rainy season is likely to be impactful, given the bit-
ing densities of An. coluzzii and An. gambiae s.s. in these 
seasons and their preferred breeding habitats. Similarly, 
larval source management in semi-temporary breed-
ing sites (marshlands) would be an interesting option to 
reduce the presence and abundance of An. funestus dur-
ing the dry-cold season, and if done, should cover quite 
large buffer zones (at least 2 km) around the households. 
Beyond these few examples, efficacious and cost-effec-
tive VC action plans could be designed on the basis of 
our characterization of the vectors’ local bio-ecology. 
Importantly, however, several important traits of the vec-
tors (e.g. physiological resistance, behavioral resistance) 
remain to be characterized in order to design highly effi-
cient action plans.

Support decisions regarding the places and times where 
recurrent interventions should be deployed through seasonal 
maps of predicted distribution of biting rates
Once VC interventions have been conceptualized, 
one must choose the places and times they should be 
deployed. Here, the multivariate models could be used 
to generate maps of the predicted distribution of biting 
rates for each species over the whole study area, at fine 
spatial resolutions (village or household), and spanning 
the typical meteorological conditions in the area (for 
instance, three maps could be generated for each species: 
one for the dry-cold, one for the dry-hot, and one for the 
rainy season). These maps could help target and possi-
bly prioritize the places and times for the deployment of 
recurrent, long-term VC interventions [4, 17, 21].

Support decisions regarding the places and times where 
occasional interventions should be deployed 
through an early warning system
A limitation of these maps is that they would only con-
sider “typical,” i.e. average, meteorological conditions 
within a given season. However, different-than-expected 
events, such as rainfall episodes in the dry season or 
longer/shorter rainy season, could possibly lead to 
higher-than-expected biting rates and consequently 

peaks of infectiousness and transmission of malaria. Our 
study has shown that meteorological conditions several 
weeks prior to the mosquito collections can accurately 
predict future biting rates. To help identify these poten-
tial “hot spots” of transmission in a timely manner, an 
early warning system (EWS) based on these predictive 
models could be built. Such an EWS, in the form of an 
automated algorithm, would routinely extract the up-to-
date meteorological data and use the models to generate 
high-resolution maps of short-term forecasts (1  week 
ahead, 2 weeks ahead, etc.) of the biting rates. The poten-
tial hot spots of malaria transmission identified in the 
maps could then benefit from special interventions that 
remain to be conceptualized (e.g. increased vector con-
trol, special prevention or curation actions).

Methodological bonus: on the use of algorithmic 
models and interpretable machine learning in landscape 
entomology
In our study, we have shown how complex statisti-
cal models and IML can be used to enhance the funda-
mental knowledge and understanding of the complex 
links between the environment and the malaria vectors. 
Advantages of this modeling workflow over more tradi-
tional modeling methods (e.g. linear of logistic regres-
sions) include the ability to (i) inherently capture and 
unveil complex patterns such as nonlinear or nonmono-
tonic relationships (e.g. effect of temperature and rainfall) 
and interactions and (ii) easily include more variables 
[20] and hence capture small—yet relevant—effects (e.g. 
effects from riparian forests or distance to streams). Nec-
essary conditions to perform causal interpretation from 
“black-box” models are to (i) generate a good predictive 
model and (ii) have some prior domain knowledge about 
the causal structure of the system under study [27]. Both 
conditions were met in our work.

Using machine-learning black-box models for scien-
tific discovery, i.e. to generate new knowledge from data, 
is an emerging trend in many disciplines [26, 104] that 
has been made possible by the recent development of 
both IML tools [78] and the know-how to interpret these 
complex models [25–27, 104, 105]. ML models enable 
us to integrate knowledge from existing theory in a less 
formal way than “data” models, and as such can be useful 
for theory development, provided that a careful linkage 
to existing knowledge is made [104, 106]. New theoreti-
cal insights generated from data and models may then in 
turn lead to unforeseen experimental research questions. 
We believe that the fields of landscape epidemiology 
and entomology still need to fully embrace the potential 
offered by these methods, in support not only of predic-
tion or forecasting, but also explanation, i.e. to improve 
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our understanding of the complex processes leading to 
malaria transmission.

Limitations and directions for future research
An important limitation of our work is linked to the spa-
tiotemporal sampling distribution of mosquito collec-
tion. First, no collection was conducted during the high 
rainy season (July to October) at the known mosquito 
abundance and malaria transmission peaks. Second, all 
the collection points were less than 800  m away from 
the theoretical hydrographic network (which is spatially 
interrelated with many breeding habitats such as marsh-
lands, streams, riparian forests), meaning that our study 
could not identify potential differences in the drivers of 
vector abundance for households further than this dis-
tance. Year-round longitudinal collections, including sites 
further away from permanent or semipermanent breed-
ing habitats, may enable a better understanding of the 
overall malaria mosquito spatiotemporal dynamics in the 
area. Meanwhile, these limitations must be accounted for 
if our models are used to generate predictive maps of the 
spatiotemporal distribution of vector abundance in the 
study area.

Similarly, predicting vector abundance outside the 
study area using the models generated in this study 
would be of high interest, to extend the operational tools 
previously mentioned (maps, EWS) to other areas than 
the Diebougou health district. However, careful attention 
should be given because of well-known problems linked 
to predicting beyond the model sampling locations or 
range of values (e.g. overfitting) [107, 108]. The scalabil-
ity of our models to places with similar landscape and 
weather dynamics as the Diebougou area could be tested 
by collecting similar entomological data in another health 
district and comparing these ground-truth data with pre-
dictions generated by the models. In any case, these mod-
els should not be used to predict in remote ecoregions or 
urban settings, or at higher/lower spatial resolution.

Another limitation is the nature and diversity of the 
variables introduced in the models. Very fine-scale 
potential important drivers of mosquito abundance, such 
as the presence of alternative sources of blood meal (e.g. 
cattle), of domestic breeding sites, market gardening, or 
the micro-climatic conditions on the night of collection, 
have not been investigated. These variables were sig-
nificant drivers elsewhere in West African rural settings 
[17, 44, 109]. Yet, the good predictive accuracy of the 
models suggest that, most probably, the most important 
drivers of vector abundance in our study area have been 
identified.

The absence of a strong signal from single variables in 
the models and the large confidence intervals in the PDPs 
suggest that the models might have learned important 

interactions between variables. IML tools such as the 
H-statistic [110] might help reveal such interactions, and 
others like the two-variable PDP [78] might help explore 
their effect on malaria vectors abundance. Other tools 
can be used to analyze individual, or a target set of, pre-
dictions made by the models (these tools are called local 
interpretation methods, e.g. LIME [111] or Shapley val-
ues [112]). Local interpretation could be useful, for exam-
ple, to precisely determine the environmental drivers of 
vector presence/abundance for a village of interest, or to 
better identify the drivers of the spatial heterogeneity of 
biting rates within a season of interest. Altogether, these 
IML tools might enable us to dig deeper into the mod-
els and, hence, the complexity of the ecological niche of 
malaria vectors.

This work has revealed how landscape can influence 
the biting rates of vectors, either directly (by impact-
ing vector dispersal) or indirectly (by providing suitable 
breeding sites and hence increasing vector densities and 
consequently biting rates). Further investigations on the 
role played by the level of openness of the landscape are 
needed to confirm the various hypotheses that we have 
previously enumerated. A finer-grained land cover clas-
sification (e.g. discriminating shrub, tree and wooded 
savanna) could help test some of our hypotheses: for 
instance, is there a correlation between the gradient of 
closedness of the savannas and the abundance of vectors 
in our study area? Moreover, additional fieldwork could 
help identify the potential cause–effect relationship 
between surface of grasslands and malaria vector pres-
ence/abundance (i.e. breeding habitat or open landscape 
favoring dispersal).

Lastly, as stated previously, the scientific knowledge 
confirmed or acquired in this study and the good predic-
tive accuracy of our models lay the ground for the devel-
opment of operational tools to support vector control 
and improve forecasting of epidemic outbreaks at the 
local scale (e.g. locally tailored VC intervention plans, 
seasonal maps of the spatiotemporal distribution of vec-
tor abundance, EWS).

Conclusion
In this study, several aspects of the bio-ecology of 
the main malaria vectors in the Diébougou area were 
explored using field mosquito collections and high-reso-
lution EO data (reflecting both meteorological and land-
scape local conditions) in a state-of-the-art statistical 
modeling framework. Overall, the spatiotemporal distri-
butions of biting rates of An. coluzzii and An. gambiae s.s. 
were closely associated with meteorological conditions 
(temperature, precipitation), while those of An. funestus 
were more closely linked to landscape conditions. Mete-
orological conditions (temperatures, rainfall) putatively 
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affected all developmental stages of the mosquitoes (lar-
val, adult) at varying levels according to the species and 
the meteorological variable. Weather occasionally had an 
even greater impact on time periods preceding the life 
span of the sampled generation. Primary and possible 
secondary breeding habitats of each vector species were 
proposed: An. funestus, An. coluzzii and An. gambiae s.s. 
seemed to be distributed along a gradient of persistence 
of the breeding sites, from permanent to temporary, con-
firming the literature reports. The rate of openness of the 
landscape seemed to play a major role in the biting rates, 
which could represent a major concern in a context of 
progressive shrinkage of the savanna and forest surfaces 
in Burkina Faso. This work lays the foundation for the 
development of operational tools to enhance and opti-
mize the fight against malaria transmission at the local 
scale, such as vector control action plans, seasonal maps 
of predicted distribution of biting rates or early warning 
systems for the detection of malaria outbreaks.
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Additional file 1: Figure S1. Summary of the meteorological conditions 
around the sampling points. Average meteorological conditions in a 2 km 
radius buffer zone around the collection points (weekly aggregation). 
Vertical red lines indicate the dates of the entomological surveys. Ribbons 
indicate the mean ± one standard deviation considering all the sampling 
points for the week.

Additional file 2: Figure S2. Summary of the landscape conditions 
around the sampling points. Average percentage of surface occupied 
by each land cover class in the various buffer zones (250 m, 500 m, 
1 km, 2 km radii) around the collection points. Error bars indicate the 
mean ± one standard deviation considering all the sampling points.

Additional file 3: Figure S3. Pictures representative of the main land 
cover classes in the Diébougou area. Pictures were taken in November 
2018.

Additional file 4: Figure S4. Model evaluation plots for the presence 
models. A1, A2, A3 are precision–recall curves for the presence models of 
respectively An. funestus, An. gambiae s.s. and An. coluzzii. Precision–recall 
curves show the precision and the recall of the models for different 
probability thresholds of the “presence” class. Precision is the proportion 
of presence identifications that was actually correct, while recall is the pro-
portion of actual presence observations that were identified correctly. The 
horizontal dashed line represents the baseline (i.e. random or no-skill) clas-
sifier. A precision–recall curve above the horizontal line indicates a better-
than-no-skill classifier. The higher the area between the precision–recall 

curve and the horizontal line, the better the classifier. Plots B1, B2, B3 are 
observed vs. predicted presence probabilities for each out-of-sample 
village. The y-axis represents the sum over the 8 sampling points/village/
survey (4 points by village * 2 places (interior and exterior)). Overall, the 
plots A1, A2, A3 show that the models had good predictive accuracies 
(precision–recall curves are higher than the baseline curve, particularly for 
An. funestus and An. coluzzii). The plots B1, B2, B3 show that the models 
predicted well the spatiotemporal trends of presence/absence of bites 
(lines of predicted presence probabilities are generally close to lines of 
observed probabilities), although they usually slightly overestimated the 
probabilities of being bitten (predicted presence probability > observed 
presence probability).

Additional file 5: Figure S5. Model evaluation plots for the abundance 
models. A1, A2, A3 are violin plots of the distribution of the residuals for 
the abundance models of respectively An. funestus, An. gambiae s.s. and 
An. coluzzii, by observed counts of bites (4 classes: 1 bite, 2–3 bites, 4–10 
bites, > 10 bites). Black dots indicate the median value. B1, B2, B3 are 
observed vs. predicted number of bites/village/entomological surveys. 
The y-axis represents the sum of bites over the 8 sampling points/vil-
lage/survey (4 points by village * 2 places (interior and exterior)) on a 
logarithmic scale. The absence of a dot indicates that no vector was col-
lected. MAE = mean absolute error; n = number of observations. Overall, 
the plots A1, A2, A3 show that the models predicted well small observed 
counts of bites (1 bite, 2–3 bites) (cf. small MAEs, small residuals), which 
represent the vast majority of observations (high n). Larger counts (4–10 
bites, > 10 bites) tended to be underestimated by the models, especially 
for An. funestus and An. gambiae s.s. However, large counts (> 10 bites) 
represented few observations (small n). The plots B1, B2, B3 confirm these 
observations, and additionally show that general trends of biting rates 
over time were well predicted by the models (lines of predicted abun-
dance are generally close to lines of observed abundance).

Additional file 6: Figure S6. Feature selection for the multivariate 
models. The figure shows the Spearman correlation coefficient between 
the explanatory variables and each response variable (presence and 
abundance of An. funestus, An. gambiae s.s. and An. coluzzii). Based on 
these results, variables were retained for the multivariate models accord-
ing to the following criteria: we first excluded variables that were poorly 
correlated with the response variable (i.e. correlation coefficients less 
than 0.1 or p-values greater than 0.2 at all time associations or buffer radii 
considered), except for variables related to the presence of water—i.e. 
possible breeding sites—that were all retained whatever their correlation. 
Then, for each meteorological (resp. landscape) variable, we retained the 
time lag interval (resp. buffer radius) showing the higher absolute correla-
tion coefficient value. We finally excluded collinear variables (i.e. Pearson 
correlation coefficient between the variables > 0.7) based on empirical 
knowledge.
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