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We report evidence of a deep interplay between cross-correlations hierarchical properties and
multifractality of New York Stock Exchange daily stock returns. The degree of multifractality displayed by
different stocks is found to be positively correlated to their depth in the hierarchy of cross-correlations. We
propose a dynamical model that reproduces this observation along with an array of other empirical
properties. The structure of this model is such that the hierarchical structure of heterogeneous risks plays a
crucial role in the time evolution of the correlation matrix, providing an interpretation to the mechanism
behind the interplay between cross-correlation and multifractality in financial markets, where the degree of
multifractality of stocks is associated to their hierarchical positioning in the cross-correlation structure.
Empirical observations reported in this paper present a new perspective towards the merging of univariate
multi scaling and multivariate cross-correlation properties of financial time series.

F
inancial markets dynamics is driven by forces that show their signatures ubiquitously through the complex
behaviour of the price historical time series1. A major challenge is to seek connections between different
aspects of complexity and to come up with some common mechanism able to explain these aspects

coherently. There are two main elements that define the complexity of financial time series: the first is multi-
fractality2–4, which is associated to the behavior of each single variable and the way it scales in time; the second is
the structure of dependency between time series5, associated with the collective behavior of the whole set of
variables. So far, these two manifestation of complexity have been investigated separately. In this paper we point
out that -in fact- they are related and we propose a model that can reproduce the observed relationship.

In spite of their intrinsic complexity, prices show remarkable regularities, which are commonly referred to as
stylised facts6–8. These empirical features are somehow the footprint of some underlying layout which distin-
guishes prices from purely random processes. Indeed, researchers have been progressively stranding away from
the hypothesis of Brownian motion, originally proposed by Bachelier in 19009, as a realistic model for the price
evolution and more complex dynamics along with more refined models and mechanisms have been proposed
over the past twenty years10. For instance, prices increments at low frequencies (intra-day to weekly) are known to
show non-Gaussian behaviour and other distributions, for example Student-t with degrees of freedom in the
range [3, 5] have been shown to better fit financial returns11. Another ubiquitous property not exhibited by
random noise is the presence of persistence in the price increments, responsible for a phenomenon which is
commonly referred to as volatility clustering12,13. Volatility tends to cluster particularly over turbulent periods,
where large fluctuations are observed more frequently than in tranquil market periods. Both fat tails and time
persistence are captured by a more general behaviour widely observed in financial markets across different asset
classes: multifractality. Multifractality is a measure of the complexity of the process, but at the same time it reflects
its regularities, mirroring some of the most relevant stylised facts. Many studies have investigated the multifractal
behaviour of financial time series14–20 and several models have been proposed in order to explain its
phenomenology21–25.

Further to the complex and regular properties of the single prices, financial markets also exhibit distinctive
cross-dependency patterns, which are well captured in the framework of network theory26–28. The complex
dependency structure of a multivariate dataset can be mapped into a structure of nested hierarchies of correlations
through clustering methods29–31 which extract a hierarchy of nested clusters of stocks. The hierarchical organisa-
tion provides a very useful display of the hidden dependency patterns governing a set of stocks: it reveals which
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prices are more strongly correlated with respect to the rest of the
market and it has been shown to match the intuition of explaining
market moves in terms of few hierarchical factors32.

In this article we investigate the interplay between two measures of
complexity in the stock prices time series, namely their multifractal-
ity and their hierarchical order measured through a clustering algo-
rithm. The first measure reflects properties of the single time series
and, as repeatedly shown in many works34,35, is influenced by two
main factors: (a) a broad unconditional distribution of the process
increments and (b) the long-range non-linear time dependence of
the increments. The second deals with the complex cross correlation
structure of a multivariate set of time series and therefore necessarily
reflects some forms of interaction between stock prices. Here we
show that these two measures of complexity, associated with the
irregularities present in the prices, are remarkably intertwined and
show cogent correlations, especially for certain classes of stocks
belonging to specific sectors of the market and to the set of clusters
which best express the corresponding sectors. Starting from these
observations, we postulate the existence of a hierarchical structure of
risks which can be deemed responsible for both stock multivariate
dependency structure and univariate multifractal behaviour. We
then construct a model that reproduces these empirical observations,
built on the hypothesis that a complex hierarchy of risk factors affects
the stocks heterogeneously. We show that a simple assumption of
nested multiplicative risks can explain the observed correlations
between multifractality and hierarchical order, hence providing
new insights into the underlying mechanism governing financial
markets.

Among different clustering algorithms, in this paper we consider
the DBHT, a new deterministic clustering technique which has been
shown to outperform many other methods33.The hierarchical orga-
nisation generated by the DBHT can be visualised by means of a
dendrogram. The reason for choosing the DBHT clustering algo-
rithm among many that return the hierarchical trees of stocks is
because this is the only one which, together with hierarchy, uniquely
defines clusters and therefore provides a way to identify inter-cluster
as well as intra-clusters hierarchy33. While the intra-cluster hierarchy
reveals the dependence between the different clusters, the inter-clus-
ter hierarchy provides additional information about the nested orga-
nisation of stocks inside each cluster. We will refer to the junctions in
the dendrograms as dendrogram nodes (or simply nodes) and to the
hierarchical structure above (under) the cluster level as super (sub)-
cluster hierarchy respectively.

The hierarchical structure produced by the DBHT provides a
natural way to associate with each stock a hierarchical order, that
is the number of nodes above each stock along the path from the
stock at the bottom of the dendrogram to the top of the dendrogram.
We will denote with n the generic order and with ni the hierarchical
order of a specific stock i, where i 5 1, …, N. In other words, ni

measures how deep down the hierarchical tree lies a certain stock i. A
schematic hierarchical structure is given in Figure 1. The hierarchical
tree Ci is defined to be the set of nodes along the simple path Ci from
the stock to the top of the dendrogram, i.e. Ci 5 {am:m g ci}, where
we denote by ci the set of positive numbers identifying the nodes
above stock i. Note that there’s only one such simple path for each
stock i. Then the hierarchical order is defined as the cardinality of Ci,
ni 5 card(Ci). In the example reproduced in Figure 1, for the stock
labeled by i, we have ci 5 {1, 2, 4, 5, 8, 10}, Ci 5 {a1, a2, a4, a5, a8, a10},
i.e. the set of nodes denoted by the red dots and ni 5 6.

In this paper we conjecture that the hierarchical order ni can be
actually viewed as a measure of the riskiness of stock i, because of its
positive dependence with multifractality. This entails that the cross-
correlation properties of the multivariate dataset are somehow
entangled with the stylised facts displayed by the univariate time
series. In particular the hierarchical structure of correlation provides
likewise a snapshot of the hierarchy of risks in the market. To the best

of our knowledge, up to now no attempt to uncover this kind of
underlying structure has been made in the literature.

Results
Cluster detection and sectors. We have considered daily stock prices
comprising the 342 most capitalised stocks continuously traded in
the NYSE in the period 2-01-1997 to 31-12-2012. Data have been
provided by Bloomberg. The dataset includes stocks from 9 different
market sectors, according to the Bloomberg classification. The
taxonomy of the stocks in the respective sectors is given in
the Supplementary Material (SM), where we also report details on
the clusters detected through DBHT clustering algorithm. We have
also performed the clustering by means of a different clustering
procedure, namely the Single Linkage Cluster Analysis (SLCA)36,
whose comparison with DBHT we report in SM. In particular, in
Figure S1 in SM we report the two hierarchical structures obtained
with DBHT and SLCA: comparing the two one can appreciate how
the SLCA returns a range of hierarchical orders n g [2, 115] of the
stocks much larger than the one obtained through the DBHT, n g
[5, 19]. With such a wide range of variability of n it is nearly
impossible to distinguish the effect of cross-correlation on
multifractality and, this is a reason why, we chose the DBHT as the
clustering algorithm to perform the analysis. Moreover, as already
mentioned in the introduction, the DBHT identifies clusters
uniquely from topological constraints, whereas the SLCA only
provides the hierarchical organisation33.

Correlation between multifractality and hierarchical order. We
have looked at the correlation between the hierarchical order and
the multifractal properties of the stocks. As an indicator of degree of
multifractality we have considered, as in previous studies37,38, the
quantity

DH 1, 2ð Þ~H 1ð Þ{H 2ð Þ, ð1Þ

where H(q) for q 5 1, 2 is the generalised Hurst exponent computed
from the linear scaling of the empirical q-moments (see Methods
Section for more details). We have removed from the analysis all
stocks whose multifractality cannot be statistically distinguished
from zero, which correspond to weak multifractal behaviour and
hence would not be relevant in this context. The benchmark value
for multifractal stocks has been set to DH(1, 2) . 0.015 (see

Figure 1 | Example of hierarchical structure. The path highlighted in red

isCi, while the thick red bullets are the nodes am, m g ci, which correspond

to the risks stock i is exposed to. Note that the risk a1 is common to all

stocks, while other risks affect groups of stocks only. The dashed branches

of the dendrogram indicate an arbitrary hierarchy.
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Methods). We plot in Figure 2 the mean value ÆDH(1, 2)æ with

standard error s
. ffiffiffiffi

N
p

(with s the standard deviation on the mean)

for each observed hierarchical order on all stocks analysed (see
Methods for details). We observe a positive dependence between
the two variables up to n 5 14, with correlation coefficient 0.8,
followed by some noisier flat trend. The positive correlation
between ÆDH(1, 2)æ and n is also confirmed by performing a t-test
on the correlation coefficient validated with p-value p 5 0.002. All
stocks with hierarchical order in the range [5, 14] (which accounts for
90% of all stocks) exhibit multifractal properties increasing along
with their depth in the hierarchy of correlations. On the other
hand, the apparent saturation observed for orders larger than 14
suggests that the hierarchical structure of cross-correlations may
be responsible for the multifractal properties of the stocks only up
to a certain order. Let us note in particular that the number of stocks
found with hierarchical order n . 14 is too small to allow any robust
statistical conclusion, which is also the reason why standard errors in
Figure 2 are very large for n . 14.

The positive correlation between ÆDH(1, 2)æ and n has been also
observed by considering single stocks rather than the average for
each fixed n: we show in Figure 3 DH(1, 2) as a function of n for
single stocks and the fits obtained when one considers the single
stocks instead of the averages for each hierarchical order. By limiting
the fitting region to the range of orders n g [5, 14], we found a
correlation coefficient between the two variables DH(1, 2) and n of
0.19, validated with p-Value p 5 0.001. By comparing the two plots of
Figures 2 and 3 one can note how the averages are much more
correlated to the hierarchical order than the single points. Also, from
Figure 3 one can see that only a small percentage of stocks shows
hierarchical order above 14: thus limiting the fitting to n # 14 gives a
more robust statistical validity of the linear trend.

We have investigated this relationship for other markets as well,
namely: London Stock Exchange (LSE), Tokyo Stock Exchange
(TSE) and Hong Kong Stock Exchange (HKSE). Results and details
are reported in Sections 2–3 of the SM. The interdependence between
multifractality and hierarchical cross-correlation order has been
confirmed on data from LSE (see Figure S4). The two Asian markets
show a much wider range of hierarchical order due to the appearance
of one very large hub in the correlation network, which includes most

of the stocks. This hub biases the evaluation of the proper hierarch-
ical order. However, by detrending the time series we can remove the
large hubs and, at least for TSE data and only for the small hierarch-
ical orders, retrieve a similar behaviour to that observed in Figure 2
(see Figure S6). As explained in detail in the SM though, detrending
the series seriously affects the scaling properties of the data and the
overall trend in the plots ÆDH(1, 2)æ vs n is fundamentally flat.
Nonetheless we mention (and report in Figure S5) that without
detrending the series the positive dependence between DH(1, 2)
and n is observed (for small n) in both TSE and HKSE data.

We have also detected the same positive dependence between
hierarchical order and multifractality on specific market sectors
and on clusters found through DBHT clustering algorithm. We show
in the top of Figure 4 plots of the multifractality indicator versus the
hierarchical order computed on stocks belonging to Financial and
Industrial sectors. The black dots are values for single stocks whereas
the red squares are the average multifractal indicators for each order.
Both sets of stocks show a very well defined positive correlation
between the hierarchical order n and the multifractality indicator
DH(1, 2), which is evident from the positive trend recovered in both
examples.

In Figure 4 we also report the trends observed on two of the largest
clusters found through the DBHT, namely clusters 2 and 3. These
clusters are found to be those better expressing Financial and
Industrial sectors: the Financial sector has large components in clus-
ters 2, 4 and 6, whereas a large component of stocks from the
Industrial sector is found in cluster 3 (see Table 2 in the SM for full
details). All stocks belonging to the largest clusters and the corres-
ponding sectors that better match the clusters show a tendency to
pair high multifractality with depth in the hierarchy of correlations
(for other examples see SM, where we also report the results of the
significance tests). The positive correlation between multifractality
and n has been validated via the t-test already performed for the
entire set of stocks shown in Figures 2 and 3: for the plots in
Figure 4 we found for correlation and p-value (clockwise from top
left plot): (0.48,0.0007), (0.61,0.05), (0.30,0.03) and (0.24,0.11). These
results confirm the statistical significance of the trends observed.
Moreover, the positive trends have been also observed when restrict-
ing the attention on sub clusters, i.e. groups of stocks below the
cluster level in the hierarchy. More details about the analysis on
sub clusters is reported in the SM. We also report in the SM a boot-
strap study which retains only the stocks whose hierarchical order is
validated after resampling with replacement the empirical time ser-

Figure 2 | Demonstration that multifractality and hierarchical order are
positively correlated. (Color online) We plot in blue circles with error bars

the multifractal indicator ÆDH(1, 2)æ averaged over the stocks sharing the

same hierarchical order, against the hierarchical order n. The blue solid line

is the linear fit over the averages, while the orange horizontal dashed line

marks the limit up to which the increasing trend is observed. The error bars

are the standard errors computed as s
. ffiffiffiffi

N
p

, where s is the standard

deviation over the stocks having same hierarchical order.

Figure 3 | Demonstration that multifractality and hierarchical order are
positively correlated on single stocks. We plot in black dots the

multifractal indicator ÆDH(1, 2)æ against the hierarchical order n. The blue

solid line marks the linear fit over all hierarchical order in5,20, whereas the

orange solid line marks the fit on all stocks such that n g [5, 14].

www.nature.com/scientificreports
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ies. We find that the most robust hierarchical orders show even
neater correlation with the corresponding multifractality indicators
and this further analysis helps reinforcing the significance of the
trends shown in Figure 4.

Although in all cases shown multifractality is found to depend on
the hierarchical order, this dependence is likely to be non-linear. Let
us consider for example the stocks in cluster 2: the trend is clearly
increasing for n g [9, 14], then there is some oscillation around
somewhat less than the value of multifractality attained for n 5 14
similarly to what observed on the complete set of stocks in Figure 2.

The correlation between multifractality and hierarchical order has
been also detected dynamically in time. We have performed DBHT
clustering in time on 50 overlapping time windows of length 752
days. The hierarchical structure evolves significantly in time reveal-
ing time varying topological properties of the dendrograms. In par-
ticular we tracked the number of clusters N c,t observed on the time
window t. This gives a measure of how compact the hierarchy is: a
large number of clusters corresponds to a hierarchy sprawled hori-
zontally, while a small number of clusters corresponds to a hierarch-
ical tree narrow and deep and therefore compact. The observed
behaviour ofN c,t is reported in the left plot in Figure 5. We observed
a systematic decrease ofN c,t with time, with the trend being steeper
in the period preceding the 2007–2008 financial crisis. Hence, the
overall contraction of the market already reported in other stud-
ies39–41 corresponds to a contraction of the hierarchy, which reflects
the fact that the market tends to show less heterogeneity in correla-
tions. Note that to the shrinkage of the hierarchical structure corre-
sponds an increase of the average correlation Æræt in the market, as

shown in the right plot in Figure 5. Remarkably, the increasing
coalescence of the hierarchical structure is followed through by an
increase in both average multifractality ÆDH(1, 2)æt and average hier-
archical order Ænæt, whose behaviours in time are reported in Figure 6.
The increase in multifractality can be explained through the exposure
of the prices to a larger set of risks, which seem to be well captured by
the increase in the average hierarchical order.

The observed trends strongly suggest a deep interplay between the
cross dependence patterns of the market and the multifractal prop-
erties of the stock prices. A natural interpretation is then to consider
the hierarchical order as the number of different risks affecting each
stock together with all other stocks sharing the same hierarchical
structure. These observations give in fact a new insight into the
mechanism responsible for the heterogeneity of multifractality in
stock prices. Backed up by numerous empirical studies which have
confirmed the prominent role of the fat tailed nature of the distri-
bution of returns as the main source of observed multifractal-
ity34,35,42,43, the observations presented here point in the direction of
a mechanism of price formation where the measured multifractal
behaviour emerges from the collective action of many different risks,
which are in turn captured in the market hierarchical structure. The
combined action of many risks has the effect of swelling the tails of
the returns distribution, triggering an increase in the measured
degree of multifractality20.

A multivariate dynamical hierarchical model. In order to explain
the mechanism underlying the observed link between multifractality
and correlation hierarchy we introduce a dynamical hierarchical

Figure 4 | Correlation between multifractality and hierarchical order in single sectors and clusters. We plot in black dots DH(1, 2) against the

hierarchical order n for stocks in the Financial (top left) and Industrial (top right) sectors and cluster 2 (bottom left) and cluster 3 (bottom right). In all

plots the blue line is the best fit of the dots, while the red squares are the averages ofDH(1, 2) for each fixed order. The correlation coefficients and p-values

are respectively: (0.48,0.0007) top left; (0.61,0.05) top right; (0.30,0.03) bottom left; (0.24,0.11) bottom right.
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model (DHM), whose main novelty with respect to standard
multivariate models5 lies in the introduction of a perturbation term
on the correlation matrix associated to its hierarchical structure. We
model returns of stock i as

ri,t~Ei,tsi,t , ð2Þ

where Ei,t~ Etð Þi is a stationary multivariate Gaussian random
variable, i.e. Et*N 0,Sð Þ with S the covariance matrix and si,t is a
volatility factor. Differently from usual multivariate models, si,t is not
common to all stocks but depends explicitly on the hierarchical
structure of the market. We suppose there is a volatility factor xt

common to all stocks and then a latent hierarchical structure of
risks am with m 5 1, …, N 2 1, associated with the nodes of the
dendrogram. The process xt is chosen as a stationary log-normal
stochastic process autocorrelated in time, with the autocovariance
function decaying as a power law, i.e. Cov(xtxt1h) , h21, in line with
a sweeping amount of studies on multi fractals in finance22,23. For the
arbitrary stock i with hierarchical path Ci 5 {am, m g ci} we define
the volatility factor as

si,t~xt Pm[ci
eKm , ð3Þ

where Km are Bernoulli random variables with probabilities pm

associated to the nodes am along the hierarchical tree Ci. Returns

therefore take the form ri,t~Ei,tY
ið Þ

n,t xt , where Y ið Þ
n,t~Pm[ci

eKm . It is

worth remarking that the hierarchical term Y ið Þ
n,t introduces a richer

structure of dependence, where the topology of the risk organisation
plays a crucial role in creating heterogeneous dependence that
cannot be accounted for by standard multivariate models.
The correlation matrix r of this model has entries
rij~Corr rirj

� �
~Corr EiEj

� �
F ij p; Ci, Cj

� �
, where (see SM for proof)

F ij p; Ci, Cj
� �

~

P
l:al[Ci\Cj

f1 plð Þ P
h:ah[Cj\Ci

f1 phð Þ

P
l:al[Ci\Cj

f2 plð Þ P
h:ah[Cj\Ci

f2 phð Þ
� �1=2

: ð4Þ

In the last equation p denotes the set of probabilities involved in the
relevant dendrogram, f1(p) 5 p(e 2 1) 1 1 and f2(p) 5 p(e2 2 1) 1

1. rij is therefore factorized into two contributions: the correlation
coefficient of the multivariate random vector Et and the hierarchical
factor F ij p; Ci, Cj

� �
. Although the expression of the perturbation

factor F ij p; Ci, Cj
� �

may look rather daunting, it has a very simple
interpretation. In both limit cases where the probabilities associated
with the risks are all zero or all one, one hasF ij p; Ci, Cj

� �
~1, which

corresponds to the hierarchy effect being turned off. For all other
possible values of the probabilities one has F ij p; Ci, Cj

� �
v1. The

Figure 6 | Average multifractality and hierarchical order in time. (Left) The blue diamonds are values of the average multifractality over 50 overlapping

time windows. The dashed green line is the best fit over the entire time period 2-01-1997 to 31-12-2012, while the blue line is the fit over the shorter

period preceding the 2007/2008 financial crisis, September 2002 through November 2007. (Right) The red circles are values of the average hierarchical

order over 50 overlapping time windows. The dashed green line is the best fit over the entire time period 2-01-1997 to 31-12-2012, while the blue

line is the fit over the shorter period preceding the 2007/2008 financial crisis, September 2002 through November 2007. In both plots the error bars are the

standard mean error on the mean s
. ffiffiffiffi

N
p

, with s the standard deviation.

Figure 5 | Coalescence of the hierarchy in time and dynamical correlation. (Left) The number of clusterN c,t as a function of time is plotted in time in

blue empty circles. The dashed red line is the best fit over the entire time period 2-01-1997 to 31-12-2012, while the magenta line is the fit over the

shorter period preceding the 2007/2008 financial crisis September 2002 through November 2007. Standard errors on the circles are not reported as too

small to be visible. (Right) Dynamical evolution of the average correlation (thick dots) in the same time period. The dashed coloured lines represent the

2.5%, 25%, 75%, 97.5%-quantiles, taken from the distribution of all the observed correlation coefficients.

www.nature.com/scientificreports
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correlation coefficient rij is therefore shrunk by a highly diversified
hierarchical structure but increases when the hierarchy coalesces,
which is exactly what has been observed empirically and reported
in Figure 5. Note that both cases pm 5 0, ;m 5 1, …, N 2 1 and pm 5

1, ;m 5 1, …, N 2 1 correspond to the absence of a diversified
hierarchical structure: in the first case indeed all nodes are switched
off, leaving only the common factor to contribute to the volatility, in
the second case all risks are active with probability one and thus there
is no diversification in the hierarchical configurations of each stock.
We show in the left plot in Figure 7 the distribution of measured
correlations on a multivariate synthetic DHM with probabilities pm,
m 5 1, … N 2 1 uniformly distributed in the range [0.1, 0.4]
compared to a multivariate log-normal model, which is recovered
from the DHM when all pm’s are one. One can see how the
distribution in the case of F ij p; Ci, Cj

� �
=1 is more skewed to the

left. Increasing the values of the probabilities progressively shifts the
median to the right (see SM). The limit F ij p; Ci, Cj

� �
~1

corresponds to the case where the market is dominated by one
single risk and the multi-branched hierarchical structure
disappears. This scenario corresponds to the single factor log-
normal volatility multivariate model, to which the DHM reduces
when the correlation increases. The conjecture of this underlying
hierarchical structure becomes even more appealing on account of
a recent study44 about the inadequacy of elliptical distributions to
describe the stock returns dependency structure. The authors have
shown that the single factor volatility seems to work quite well when
the correlation coefficient between two stocks is large, but performs
poorly for small correlations. Their observations fit well in the
framework of our model, where the hierarchical factor is needed to
explain small correlation. A comparison between multivariate log-
normally distributed synthetic time series (yellow dots), synthetic
DHM time series (green dots) and empirical data (magenta dots) is
reported in the right plot in Figure 7, where we also plot the
theoretical relation expected to hold between linear correlation and
Kendall’s t for the class of elliptical distributions, t 5 2/p arcsin r45.
We can see that, while the multivariate log-normal model cannot
fully explain the real stocks departing from the theoretical relation,
the DHM allows for a much broader dispersion and thus can better
explain the empirical observations. The width of the dispersion about
the theoretical relation depends on the probabilities pm and the green
cloud of dots collapses onto the yellow one in the limit pm R 1 or pm

R 0, m 5 1, …, N 2 1.
Overall one can say that the DHM allows for time varying cor-

relation and different correlation regimes are ascribed to a time
varying structural organisation of risks in the market. The non-sta-

tionary nature of correlations46,47 is a very relevant issue in quant-
itative finance, and any sound portfolio strategy should take this
feature into account48.

Further to the time varying correlation patterns, the DHM is also
capable of reproducing the observed correlation between hierarch-
ical order and multifractality. The intuitive idea behind the mech-
anism is that high multifractality of the signals is dominated by large
fluctuations rather than by a complex time dependence structure.
Hence, although the time correlation structure of the common vol-
atility factor stays the same, the upsurge in the number of observed
extreme events can trigger multifractality to increase dramatically.
As an example, we illustrate the properties of the model on a
restricted multivariate data set of 25 stocks, whose hierarchical struc-
ture retrieved via DBHT are reported in the SM. The hierarchical
order n is found to vary in the range [3, 8]. The behaviour of the
average ÆDH(1, 2)æ as function of the hierarchical order is shown in
Figure 8 for 1000 simulations of DHM with the same hierarchical
structure. We observe clearly that deeper stocks tend to have larger
multifractality, as a result of the coordinate action of the many risks.
Conversely, stocks with small hierarchical order show smaller multi-
fractality in comparison. The model also reproduces time varying
multifractality along with a varying hierarchical structure. We con-

Figure 7 | Modification in the correlation structure by means of the hierarchical model. (Left) We plot in blue bars the histogram of the observed pair

correlations on 342 DHM simulated time series, with hierarchical structure extracted from empirical data. The dashed red line is the histogram observed

on a multivariate log-normal model, corresponding to the absence of any hierarchical structure. (Right) We plot Kendall t against linear correlation r for

multivariate log-normally distributed synthetic time series (yellow dots), synthetic DHM time series (green dots) and empirical data (magenta dots),

compared with the theoretical relation expected for elliptically distributed random variables (red thick line).

Figure 8 | Demonstration that DHM time series with higher hierarchical
order show larger multifractality. We plot in squares the average values of

DH(1, 2) for each hierarchical order ni. The averages are computed over

1000 realisations of DHM simulations with the hierarchical structure

extracted from empirical data and probabilities initialised randomly with

values ranging in [0, 1]. The error bars are standard deviations over the

observed DH(1, 2) for each hierarchical order. The blue line is the best fit

on all the simulated stocks.
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sider a two-regime hierarchical structure extracted from empirical
data by means of DBHT over two different time windows, labelled T1

and T2 respectively. We fix T1 5 T2 5 2013 days, corresponding to
half the length of the empirical time series of returns. The two cor-
responding hierarchies are labelledHT1 andHT2 . We plot in Figure 9
the q-quantiles QT1

q and QT2
q for q 5 {2.5%, 50%, 97.5%} of the

distribution ofDH(1, 2) measured on the simulated DHM time series
with hierarchies HT1 in the first tranche and HT2 in the second.
Comparing the hierarchical orders of the stocks in both tranches,
we plot in different colours the quantiles on the two different time
windows, both for stocks whose hierarchical order increases (left)
and those whose hierarchical order decreases (right). We observe a
systematic shift of the distribution of DH(1, 2) towards larger values
for those stocks whose hierarchical order increases and a shift
towards smaller values for those whose hierarchical order decreases.
This confirms further that the underlying structure of risks can be a
good candidate to explain empirical observations presented above as
well as empirical observations of time-varying multifractality38.

Let us also mention that this model is capable of reproducing all
the relevant statistical properties of asset returns. The autocorrela-
tion function of the square returns simulated with probabilities in the
range [0, 1] is found to decay as a power law with the lag h, specifically
C r2

t r2
tzh

� �
*h{b with b g [0.3, 0.6], in line with what observed on

financial time series8. The model also reproduces tails thicker than
those accounted for by a simple log-normal volatility model49: the
common volatility factor is in fact not sufficient to explain the values
of the tail exponents a of financial returns probability distributions,
which, as discussed for example in11, are found to be in the range [1,
5]. The hierarchical structure instead can produce such small values
of a (particularly a , 2) thanks to the combined action of the many
hierarchical risks. The risks associated with the internal nodes
increase sensibly the excess kurtosis, which, particularly for prob-
abilities in the range [0.5, 1], assumes values comparable to those
observed on empirical data.

Discussion
We have shown that multifractality in financial markets is not inde-
pendent from the hierarchical order measured through a correlation
based clustering algorithm. We have detected that, within a reas-
onably large range of hierarchical orders, stocks deeper in the hier-
archy of correlations are also those showing higher degree of
multifractality. This result holds globally on the average multifrac-
tality measured on the entire market as well as locally for all major
market sectors and the corresponding clusters detected by the DBHT

clustering algorithm. This main empirical result has been also veri-
fied on a dataset from a different western market while it is less
evident in markets showing very large hubs of correlated stocks
(see example of the Japanese and Hong Kong market in SM). We
have also shown that to the contraction of the market typically
unfolding before a financial crisis corresponds a shrinkage of the
hierarchical structure and an average increase of multifractality.
Starting from these observations we have proposed a model which
incorporates explicitly a time varying hierarchical structure of risks
into the volatility factor. The presence of the hierarchical factor in the
volatility results in a perturbation to the correlation structure of the
multivariate time series which is shown to include also the empirical
observations not accounted for by a standard multivariate model
with one common volatility factor only. The latter is recovered in
the limit of no hierarchy of risks, which corresponds to a very com-
pact market where one single risk is enough to explain all correla-
tions. The model has been shown to faithfully reproduce the
correlation between multifractality and hierarchical order thus pro-
viding a new mechanism to explain the source of heterogeneity and
time dependence of multifractality in financial markets, already
reported in previous works37,38.

The relevance of the observations presented in this paper lays in
the identification of a possible underlying mechanism where cross-
correlation and univariate time series properties are merged together
in a unified framework.

An interesting outlook is to devise a method to identify the under-
lying structure of risks conjectured in this paper in order to come up
with a reliable calibration scheme which could be further used to
develop portfolio strategies or asset allocation based on a perturbed
correlation matrix.

Methods
Multifractality measure. The multifractality proxy DH(1, 2) is estimated via the
generalised Hurst exponent (GHE) method4. The GHE H(q) is estimated from the

scaling of the empirical q-moments M q,‘ð Þ~ 1
N{‘z1

XN{‘

t~0
rt ,‘j jq*‘H qð Þq , where

we denote rt,, 5 log pt1, 2 log pt the log-return at time t and scale ,, with pt the asset
price at time t. The exponent H(q) is then estimated as average of several linear fits of
the relation log M(q, ,) , qH(q) log , with scale t g [1, ,max] and ,max varied in the
range [5, 19]. We have considered as significantly multifractal only those stocks
showing DH(1, 2) . 0.015. This value has been chosen as the 95% probability value of
DH(1, 2) on uniscaling processes. To obtain it we have simulated 1000 realisations of
fractional Brownian motion with Hurst parameter H randomly chosen in the range
[0.1, 0.9] and then computed the value of DH(1, 2) corresponding to (two side) 95%
probability. In our data base of 342 stocks we found 72 stocks excluded as weakly
multifractal.

Figure 9 | Time varying multifractality with two-regime hierarchical structure. (Left) The plot shows the q-quantiles QT1
q and QT2

q for q 5 {2.5%, 50%,

97.5%} for the 10 DHM simulated time series whose hierarchical order nT1 vnT2 . Red lines correspond to p-quantiles in T1 while black lines to p-quantiles

in T2. (Right) The q-quantiles QT1
q and QT2

q for q 5 {2.5%, 50%, 97.5%} for the 11 DHM simulated time series whose hierarchical order nT1 wnT2 . Blue

lines correspond to q-quantiles in T1 while orange lines to q-quantiles in T2. The probabilities of the risks are initialised to values ranging in [0.4, 0.6].
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The average values ofDH(1, 2) for each different order �n reported in Figures 2 and 4

have been computed as DH 1,2ð Þh i�n~
1

N�n

X
i:ni~�n

DHi 1,2ð Þ, where N�n is the number

of stocks with order �n. Likewise the standard deviation is computed as

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�n{1

X
i:ni~�n

DHi 1,2ð Þ{ DH 1,2ð Þh i�n
� �2

r
.

Dependency measure and DBHT. The clustering is performed on the weighted
graph associated with the correlation matrix of the empirical time series, whose
entries are computed via the weighted Pearson estimator50. We have implemented, in
order to reduce the impact of remote events on present correlations, exponential

weights wt~w0exp
t{Dt

h

� �
such that wt . 0 and

XDt

t~1
wt~1. The parameter h

has been set to h 5 Dt/3 according to criteria previously established50. This
corresponds to h 5 1342 for the entire time window and h 5 250 for the moving
windows of 752 days.

Model simulation. The DHM time series have been simulated multiplying a
multivariate Gaussian random vector Et with location parameter m 5 0 and
covariance matrix S times the volatility factor st. The covariance matrix S has been
chosen to be the covariance matrix of the real data. The volatility factor st has been
simulated multiplying a time correlated log-normal process xt times a hierarchical

factor Y ið Þ
n,t , whose components match the hierarchy detected through DBHT. The

process xt has been simulated as xt~eft , with jt*N 0,1ð Þ. The autocorrelation
function of jt has been chosen, according to the cascade picture in23, as

Cov jtjtzhð Þ~l2log
T

1zh
, where l and T are two parameters, which, in all

simulations reported in this paper, have been set to l 5 0.2 and T 5 800. Other values
have also been extensively tested, showing negligible effects on multifractality
properties compared to the hierarchical factor. We have initialised the probabilities of
the dendrogram nodes to random values uniformly drawn in different ranges, always
checking that the choice would not bias the outcome of the simulation. In the multi-
regime simulations, we have first computed the covariance matrices of the data
ST1 , . . . ,STd on different time windows T1, …, Td and then performed DBHT on each
time window. The different hierarchical structuresHT1 , . . . ,HTd recovered have been
plugged into the model, keeping both Et and xt stationary on all the different tranches.
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13. Miccichè, S. Empirical relationship between stocks’ cross-correlation and stocks’

volatility clustering. J. of Stat. Mech. 2013(05), P05015 (2013).
14. Di Matteo, T., Aste, T. & Dacorogna, M. Scaling behaviors in differently developed

markets. Phys. A 324(1), 183–188 (2003).
15. Barunik, J. & Kristoufek, L. On hurst exponent estimation under heavy-tailed

distributions. Phys. A 389(18), 3844–3855 (2010).
16. Liu, R., Di Matteo, T. & Lux, T. True and apparent scaling: The proximity of the

markov-switching multifractal model to long-range dependence. Phys. A 383(1),
35–42 (2007).

17. Liu, R., Di Matteo, T. & Lux, T. Multifractality and long-range dependence of asset
returns: The scaling behaviour of the markov-switching multifractal model with
lognormal volatility components. Adv. in Comp. Syst. 11(5), 669–684 (2008).

18. Lux, T. Detecting multifractal properties in asset returns: The failure of the
‘‘scaling estimator’’ Int. J. of Mod. Phys. C 15(04), 481–491 (2004).

19. Lux, T. The markov-switching multifractal model of asset returns. J. of Bus. &
Econ. Stat. 26(2), 194–210 (2008).

20. Bouchaud, J.-P., Potters, M. & Meyer, M. Apparent multifractality in financial
time series. The Eur. Phys. J. B 13(3), 595–599 (2000).

21. Ding, Z., Granger, C. & Engle, R. A long memory property of stock market returns
and a new model. J. of Emp. Fin. 1(1), 83–106 (1993).

22. Calvet, L. & Fisher, A. Multifractality in asset returns: theory and evidence. Rev. of
Econ. and Stat. 84(3), 381–406 (2002).

23. Bacry, E., Delour, J. & Muzy, J.-F. Multifractal random walk. Phys. Rev. E 64(2),
026103 (2001).

24. Eisler, Z. & Kertesz, J. Multifractal model of asset returns with leverage effect. Phys.
A 343, 603–622 (2004).

25. Filimonov, V. & Sornette, D. Self-excited multifractal dynamics. Europhys. Lett.
94(4), 46003 (2011).

26. Caldarelli, G. Scale-Free Networks: Complex Webs in Nature and Technology, (Ox.
Univ. Pr. 2007).

27. Di Matteo, T., Pozzi, F. & Aste, T. The use of dynamical networks to detect the
hierarchical organization of financial market sectors. The Eur. Phys. J. B 73(1),
3–11 (2010).

28. Aste, T. & Di Matteo, T. Dynamical networks from correlations. Phys. A 370(1),
156–161 (2006).

29. Mantegna, R. Hierarchical structure in financial markets. The Eur. Phys. J. B 11(1),
193–197 (1999).

30. Tumminello, M., Aste, T., Di Matteo, T. & Mantegna, R. A tool for filtering
information in complex systems. Proc. Nat. Ac. Sci. 102(30), 10421 (2005).

31. Tumminello, M., Lillo, F. & Mantegna, R. Correlation, hierarchies, and networks
in financial markets. J. of Econ. Behav. & Org. 75(1), 40–58 (2010).

32. Tumminello, M., Lillo, F. & Mantegna, R. Hierarchically nested factor model from
multivariate data. Europhys. Lett. 78, 30006 (2007).

33. Song, W. M., Di Matteo, T. & Aste, T. Hierarchical information clustering by
means of topologically embedded graphs. PloS One 7(3), e31929 (2012).

34. Zhou, W.-X. The components of empirical multifractality in financial returns.
Europhys. Lett. 88(2), 28004 (2009).

35. Kantelhardt, J., Zschiegner, S., Koscielny-Bunde, E., Havlin, S., Bunde, A. &
Stanley, H. E. Multifractal detrended fluctuation analysis of nonstationary time
series. Phys. A 316(1), 87–114 (2002).

36. Gower, J. C. & Ross, G. Minimum spanning trees and single linkage cluster
analysis. Appl. stat. 54–64 (1969).

37. Morales, R., Di Matteo, T., Gramatica, R. & Aste, T. Dynamical generalized hurst
exponent as a tool to monitor unstable periods in financial time series. Phys. A
391, 3180–3189 (2012).

38. Morales, R., Di Matteo, T. & Aste, T. Non-stationary multifractality in stock
returns. Phys. A 392, 6470–6483 (2013).

39. Onnela, J.-P., Chakraborti, A., Kaski, K. & Kertesz, J. Dynamic asset trees and
black monday. Phys. A 324(1), 247–252 (2003).

40. Aste, T., Shaw, W. & Di Matteo, T. Correlation structure and dynamics in volatile
markets. New J. of Phys. 12, 085009 (2010).

41. Onnela, J. P., Chakraborti, A., Kaski, K., Kertesz, J. & Kanto, A. Dynamics of
market correlations: Taxonomy and portfolio analysis. Phys. Rev. E 68(5), 056110
(2003).

42. Barunik, J., Aste, T., Di Matteo, T. & Liu, R. Understanding the source of
multifractality in financial markets. Phys. A 391, 4234–4251 (2012).

43. Morales, R. PhD thesis, (2014).
44. Chicheportiche, R. & Bouchaud, J. P. The joint distribution of stock returns is not

elliptical. Int. J. of Theor. and Appl. Fin. 15, 03 (2012).
45. Lindskog, F., McNeil, A. & Schmock, U. Kendall’s tau for elliptical distributions.

111, in Credit Risk-Measurement, Evaluation and Management. Phys. Ver. 157
(2003).
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