
materials

Article

Enhanced Optical and Antibacterial Activity of Hydrothermally
Synthesized Cobalt-Doped Zinc Oxide
Cylindrical Microcrystals

Awais Khalid 1,* , Pervaiz Ahmad 2,* , Abdulrahman I. Alharthi 3, Saleh Muhammad 1,
Mayeen Uddin Khandaker 4 , Mohammad Rashed Iqbal Faruque 5 , Abdulhameed Khan 6, Israf Ud Din 3,
Mshari A. Alotaibi 3, Khalid Alzimami 7, Abdulrahman A. Alfuraih 7 and David A. Bradley 4,8

����������
�������

Citation: Khalid, A.; Ahmad, P.;

Alharthi, A.I.; Muhammad, S.;

Khandaker, M.U.; Faruque, M.R.I.;

Khan, A.; Din, I.U.; Alotaibi, M.A.;

Alzimami, K.; et al. Enhanced Optical

and Antibacterial Activity of

Hydrothermally Synthesized

Cobalt-Doped Zinc Oxide Cylindrical

Microcrystals. Materials 2021, 14, 3223.

https://doi.org/10.3390/ma14123223

Academic Editor: Marta Miola

Received: 3 May 2021

Accepted: 7 June 2021

Published: 11 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Physics, Hazara University Mansehra, Khyber Pakhtunkhwa 21300, Pakistan;
saleh@hu.edu.pk

2 Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
3 Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University,

P.O. Box 173, Al-Kharj 11942, Saudi Arabia; a.alharthi@psau.edu.sa (A.I.A.); i.din@psau.edu.sa (I.U.D.);
alosaimi@psau.edu.sa (M.A.A.)

4 Center for Applied Physics and Radiation Technologies, School of Engineering and Technology,
Sunway University, Bandar Sunway 47500, Selangor, Malaysia; mayeenk@sunway.edu.my (M.U.K.);
d.a.bradley@surrey.ac.uk (D.A.B.)

5 Space Science Centre, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
rashed@ukm.edu.my

6 Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan;
abdulhameed.khattak81@gmail.com

7 Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University,
P.O. Box 10219, Riyadh 11433, Saudi Arabia; kalzimami@ksu.edu.sa (K.A.); aalfuraih@ksu.edu.sa (A.A.A.)

8 Department of Physics, University of Surrey, Guilford GU2 7XH, UK
* Correspondence: awais.phy@hu.edu.pk (A.K.); pervaiz_pas@yahoo.com (P.A.)

Abstract: Cobalt (Co) doped zinc oxide (ZnO) microcrystals (MCs) are prepared by using the hy-
drothermal method from the precursor’s mixture of zinc chloride (ZnCl2), cobalt-II chloride hexahy-
drate (CoCl2·6H2O), and potassium hydroxide (KOH). The smooth round cylindrical morphologies
of the synthesized microcrystals of Co-doped ZnO show an increase in absorption with the cobalt
doping. The antibacterial activity of the as-obtained Co-doped ZnO-MCs was tested against the
bacterial strains of gram-negative (Escherichia coli, Klebsiella pneumonia) and gram-positive bacteria
(Staphylococcus aureus, Streptococcus pyogenes) via the agar well diffusion method. The zones of inhibi-
tion (ZOI) for Co-doped ZnO-MCs against E. coli and K. pneumoniae were found to be 17 and 19 mm,
and 15 and 16 mm against S. Aureus and S. pyogenes, respectively. The prepared Co-doped ZnO-MCs
were thus established as a probable antibacterial agent against gram-negative bacterial strains.

Keywords: cobalt-doping; microcrystals; absorption; antibacterial; synthesis

1. Introduction

The difference of dimensions seen between the atomic and molecular scale of basic
science and the microstructural scale of engineering and fabrication is balanced by the
characteristic function of nanoscale materials [1]. Scientific research on crystalline nano-
materials has evolved exponentially at various levels over the last few decades. Several
visualized application possibilities for such novel materials encourage intensive investiga-
tions. Semiconductors of the group (II–VI) are commonly studied because of their novel
size-dependent electrical, optical, and optoelectronic properties.

Zinc oxide (ZnO) is among the most promising semiconductor materials from many
perspectives [2–4]. It is an eco-friendly, thermally stable, biocompatible, versatile material
with the potential to experience photocatalysis in a neutral, basic, and acidic medium.
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Such attractive properties, easy method of synthesis, and sophisticated growth develop
ZnO-based devices in photonics, electronics, sensing, and acoustics [5,6]. This material is
promising for optoelectronic devices of short wavelength [7,8], due to very high exciton
binding energy (60 MeV), high photosensitivity, high electron mobility, inexpensive route of
synthesis with diverse morphologies, flexibility in chemical functionality, biocompatibility,
high transparency, and wide direct band gap (Eg = 3.37 eV) at room temperature [8].
Due to the huge electronegative value difference between O2− (3.44) and Zn2+ (1.65), the
bonding in ZnO is ionic. Even so, the alternating layers populated by Zn2+ and O2−

atoms form a crystal structure in which Zn2+ (cation) is coordinated tetrahedrally with
four O2− (anions). The non-centrosymmetric structure that results from this coordination
(tetrahedral) produces pyroelectric and piezoelectric properties of ZnO [9]. The effective
way of getting unique properties in ZnO is the introduction of impurities into the ZnO host.
In the past decades, several research groups have done interesting research to work widely
on the unique arrangement of transition metal (TM) ion-doped ZnO nanoparticles with
magnetic and optical properties [10,11]. The TM oxide-doped ZnO holds place in various
applications including sensors [12], solar cell [13], optoelectronics [14], spintronics [15],
and piezoelectric devices [16]. The analysis of the variations in the properties arising due to
doping of different transition metals such as Cu, Ni, Co, Mn, Cr, and Fe to ZnO has always
been the matter of controversial studies [17–25].

Cobalt has its significance among the various TM ions due to its comparable ionic
radius (0.74 Å) to that of ZnO (0.745 Å) [26]. It can change the morphology and properties
of ZnO nanostructures. It has a strong magnetic moment compared to other transition
metals [2]. Co-doped ZnO diluted magnetic semiconductor (DMS) may possess the fer-
romagnetic property at room temperature [27]. Similarly, Co-doped ZnO nanostructures
are found to have more thermal stability in comparison to pure ZnO [28,29]. Co-doped
ZnO structures have many potential applications in medical [30], electronics [31], photo-
catalysis [32], solar cells [33], thermoelectric [34], 3D printing [35], light-emitting diodes [36],
humidity sensors [37], and biosensors [38]. It can also be used as an antifungal and an-
tibacterial agent [39]. Co-doping also makes ZnO more flexible for the above-mentioned
applications compared with pure ZnO [40]. However, it is a well-known fact that structural,
electrical, optical, luminescence, and magnetic properties of Co-doped ZnO are strongly
dependent on the synthesis, doping, and processing techniques. Co is considered as one
of the most effective elements to be doped in ZnO. In this regard, Lu et al. [41] hydrother-
mally prepare Co-doped ZnO nanorods to study their photocatalytic degradation. Kalpana
et al. [42] prepare Co-doped ZnO by co-precipitation method and also study their pho-
tocatalytic degradation. Some other synthesis techniques have also been reported in the
past, including polymeric sol-gel, polymeric precursor method, co-precipitation, auto com-
bustion method, RF magnetron sputtering, mechanical synthesis, solvothermal synthesis,
acrylamide polymerization synthesis, and thermal decomposition, to synthesize ZnO and
Co-doped ZnO [43–47]. The impact on the band gap, in particular, its association with
near band edge (NBE) emissions in Zn1−xCoxO is still unclear, as many literature studies
have provided conflicting results [44]. The environmental exposure of Co is extremely high
and location dependent, making it generally difficult to measure. Dietary consumption
is thought to be the most common route of exposure for the general public. Cobalt is
present in almost all nutrition, with the exception of vitamin B12 and other supplements.
Background Co (blood) level is calculated using a normal dietary Co exposure; based on
this, it is thought that it will not pose a threat to human health. Many questions about
the dose-response characteristics of Co-related adverse health effects have been addressed
by a newly developed biokinetic model, which shows that less than 300 µg/L blood Co
concentrations are unlikely to cause clinically significant indications in healthy people.
Furthermore, regular exposure at acceptable doses is unlikely to cause serious health
problems [48–50].

Likewise, many researchers have previously investigated the bactericidal properties of
ZnO nanostructures in B. subtilis, S. dysenteriae, V. cholerae, E. coli, S. aureus, and S. Typhi [50].
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It has been found that the chemical interactions between membrane proteins and nano-
materials, as well as the creation of free radicals due to ZnO-NPs, might be the reason for
extraordinary bactericidal properties of undoped and Co-doped ZnO-NPs. In comparison
to previous work on Co-doped ZnO nanostructures [51], including nanoparticles [45,52]
and nanorods [53], the current work is unique not only for the type of precursors and ex-
perimental procedures, but also for the size and cylindrical morphology of the as-obtained
Co-doped ZnO, as shown in Table 1, and their effective use as a strong antibacterial agent
against two (gram-positive and gram-negative) bacterial strains.

Table 1. Comparison of the experimental procedure and other parameters of Co-doped ZnO-MCs with the literature.

S. No/Reference Precursors Temperature/Time Technique Morphology Product Confirmation Year

[52] Zn(NO3)2 6H2O,
Co(NO3)2 6H2O 100 ◦C/16 h Sol-gel combustion Granular surface Co-doped-ZnO FE-SEM * 2014

[14] ZnO, CoO 250 rpm/12 h Ball milling Nano-particles Co-doped-ZnO SEM ** 2016

[54] Zn(CH3COO)2·2H2O,
Co(CH3COO)2·4H2O

Room
temperature /3 h Wet precipitation Nano-particles Co-doped-ZnO SEM 2017

[55] Zn(CH3COO)2·2H2O,
Co(CH3COO)2·4H2O 325 K/2 h Co-Precipitation Nano-particles Co-doped-ZnO SEM 2017

[56] Zn(CH3COO)2·H2O,
Co(NO3)2·6H2O 60 ◦C/0.5 h Sol-gel dip-coating Clustered grains Co-doped-ZnO SEM 2017

[36] Zn(OAc)2·2H2O,
Co(II)(Acac)2

250 ◦C/0.25 h Microwave-assisted
polyol Nano colloids Co-doped-ZnO SEM 2018

[57] Zn(NO3)2·6H2O,
Co(NO3)3·6H2O 95 ◦C/6 h Chemical bath

deposition Nano rods Co-doped-ZnO SEM 2019

Our Article ZnCl2, CoCl3·6H2O 120 ◦C/23 h Hydro-thermal Cylindrical
microcrystals Co-doped-ZnO FE-SEM 2021

* Field emission scanning electron microscope, ** Scanning electron microscope.

2. Materials and Methods
2.1. Materials

Zinc chloride (ZnCl2), cobalt-II chloride hexahydrate (CoCl2·6H2O), and potassium
hydroxide (KOH) were procured from Sigma Aldrich, St. Louis, MO, USA. Reagents
(99% analytically graded) were used as received without further refinement. The surface
morphology of Co-doped ZnO-MCs was examined with a (QUANTA 250 FEI, FEI Com-
pany, Hillsboro, OR, USA) FE-SEM. Structural analysis of Co-doped ZnO were performed
using X-ray diffractometer (Ultima IV R.I.C Tokyo, Japan), recorded at 20–80◦ at CuK
radiation (λ = 1.54056 Å). To study the elemental composition, X-ray photoelectron spec-
troscopy (Thermo specific model K-α) was used. Ultraviolet–visible (UV–Vis, model T-60
Oasis Scientific Inc, Taylors, SC, USA) spectroscopy was used to study optical properties.
Four separate bacterial strains were tested for antibacterial activity, namely, gram-negative;
Escherichia coli (ATCC® 33876), Klebsiella pneumonia (ATCC® BAA-1144) and gram-positive;
Staphylococcus aureus (ATCC® 11632) and Streptococcus pyogenes (ATCC® 19615). Nutrient
agar (Oxoid® CM0003) was procured from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Synthesis of Co-Doped ZnO Microcrystals

Highly crystalline ZnO cylindrical microcrystals with Co doping were synthesized hy-
drothermally by using zinc chloride (ZnCl2), cobalt-II chloride hexahydrate (CoCl2·6H2O),
and potassium hydroxide (KOH) as precursors. At first, 1.6 g of ZnCl2 and 0.4 g of
CoCl2·6H2O were mixed. Cobalt II chloride hexahydrate is equal to the 25% of the total
weight of zinc chloride. This mixture was then dissolved in 40 mL of distilled water (DI).
Subsequently, 0.8 g KOH aqueous solution was added dropwise to get a precipitate with a
pale pink color. Consequently, at room temperature, the solution was stirred for 30 min
then the homogenous mixture was poured in an autoclave (Teflon lined) and kept in an
oven for 23 h at 120 ◦C. The as-obtained precipitate was first washed numerous times
with distilled water (DI) and then with ethanol and finally dried at 90 ◦C, for 30 min. The
schematic representation of the whole process is demonstrated in Figure 1.
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Figure 1. Schematic representation for the experimental setup.

2.3. Screening of Antibacterial Activity

To assess the efficiency (antibacterial) of Co-doped ZnO-MCs in Mueller–Hinton broth
media (from their pure cultures), all bacterial strains were sub-cultured and incubated
overnight. Fresh cultures were used in the antibacterial assay by moving stock suspensions
mounted on nutrient agar and incubated at 37 ◦C for a complete day. The bacterial
culture turbidity was measured by using the 0.5 McFarland standard [58], which equals
1.5 × 108 (CFU/mL) bacteria. A sterile glass spreader was used to spread each species
on a Mueller–Hinton Petri dish. Wells (4 mm) were made by using a sterile polystyrene
tip. Co-doped ZnO-MCs were prepared in 2% hydrochloric acid (HCL) with different
concentrations (0.1, 0.5, 1 mg/mL). Forty microliters (40 µL) taken from the prepared
stock solution was added to each well. Plates were placed entirely for incubation at 37 ◦C
in an incubator overnight. In a UV transilluminator, photoactivation of Co-doped ZnO-
MCs suspensions was carried out by exposure at 254 nm with UV light, for 30 min. The
inhibition zone was measured around each well in millimeters by a caliper. Clindamycin
phosphate, as a reference antibiotic (standard), was used at a concentration of 20 µg/mL.
Every experiment was performed three times and mean value was calculated.

3. Results and Discussion

Figure 2a–c shows the field emission scanning electron microscopy (FE-SEM) results
for the size and morphology of the as-synthesized Co-doped ZnO-MCs. Figure 2a shows
the lower magnification FE-SEM micrograph. Here, individual or isolated microcrystals
can be seen or observed randomly aligned in different directions. Along with randomly
aligned microcrystals, some smaller species or undeveloped structures are also visible.
Figure 2b shows the high magnification FE-SEM micrograph to observe the smaller as well
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as the larger size microcrystals. The larger size crystals are found to have a length of up
to 30 µm, whereas the smaller size crystal can be found in the range of a few to greater
than 5 µm. The smaller size crystals are mostly the undeveloped species observed in the
previous micrograph in lower magnification. However, some undeveloped species can still
be seen. Figure 2c shows the higher magnification micrograph. It confirmed the similar
cylindrical morphology of all the crystals in the sample. The larger size cylinder has a
diameter of 2 µm, whereas the smaller size is found to have a diameter in the range of
500 nm–1 µm. Smaller size particle-like structures can be seen stuck with the fine and
smooth surface of the crystals. It points towards the stages-wise growth and Co-doping
of the as-synthesized crystals. The growth and doping start from smaller particle-like
structures and developed into smaller cylindrical structures with their condensation due to
the increased growth duration. This condensation of the Co-doped ZnO continues with a
longer growth duration of 23 h. It means that the size of the crystals can easily be adjusted
by optimization of the growth duration.
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doped ZnO cylindrical microcrystals.

XRD pattern of Co-doped ZnO-MCs is observed and shown in Figure 3. It is an
analytical technique used to determine the size and nature of the material. Intensities
and position of the peaks were used to assess the crystallite size, structure, and phase
of the material. The miller indices have been calculated for each diffraction peak that
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confirms the formation of Co-doped ZnO-MCs in the sample. Miller indices for each
diffraction peak is (100), (002), (101), (102), (110), (103), (200), (112), (201), (004), and (202),
respectively. Crystalline phases were identified using X’Pert HighScore (version: 2.0a
(2.0.1), year: 2004, manufacturer: PANalytical B.V., Almelo, Netherlands) and compare
the diffraction pattern of the sample with the reference database from inorganic crystal
structure database (ICSD) card/ file no: 01-076-0704. Some low intensity peaks were also
observed in the sample, which is attributed to the existence of Co-based oxides (Co2O3 and
CoO). The antiferromagnetic nature of Co2O3 results in a decrease in Co atomic percentage
and sample’s magnetization. Cubic rock salt and hexagonal wurtzite are the two stable
phases of cobalt (II) oxide CoO. Given that Zn2+ and Co2+ have ionic radii of 0.74 and 0.745,
and that CoO can also crystallize in the hexagonal structure, doping and the change in NP
size should have no significant impact on the lattice parameters. A change in parameters is
observed due to an increase in Co concentration in ZnO [59].
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Figure 3. XRD pattern of the as-synthesized Co-doped ZnO microcrystals.

The synthesized cylindrical microcrystals of Co-doped ZnO were characterized via
XPS to confirm its elemental contents and chemical bonding states. The XPS results are
displayed in Figure 4a–d. The full range XPS survey for the synthesized microcrystals
shows several peaks (tagged for their respective elements: Zn, C, O, and Co) at different
values of binding energies. The C 1s peak at 285 eV corresponds to the unavoidable carbon
contamination, which might have occurred due to exposure of the sample in the air before
its XPS characterization. The high-resolution XPS spectra for Zn 2p peaks are shown in
Figure 4b. The first peak observed at 1021.5 eV corresponds to Zn 2p3/2, whereas the second
peak observed at 1044.5 eV corresponds to Zn 2p1/2, respectively. Both the peaks in the Zn
2p states have a difference of 23 eV, which, according to the available literature, confirms
the Zn2+ chemical states [53,60]. Figure 4c shows the high-resolution O 1 s spectrum with a
single peak centered at 530.2 eV. It corresponds to lattice oxygen surrounded by zinc and
cobalt ion in the hexagonal wurtzite structure [60]. Similarly, the Co 2p XPS wide scan is
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shown in Figure 4d with Co 2p3/2 peak centered at 780.5 eV and Co 2p1/2 peak at 796.5 eV.
Both Co 2p peaks have a binding energy difference of 16 eV, which corresponds to the
existence of Co2+. Thus, the XPS analysis demonstrates the doping of Co2+ in ZnO lattice
by the substitution of Zn2+ with no further impurities [53].
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Defects, dopant incorporation, and lattice disorder in the as-synthesized Co-doped
ZnO-MCs lattice have been analyzed via non-destructive Raman spectroscopy [61]. The
as-obtained Raman spectrum shown in Figure 5 has two main peaks at 97.5 and 433.5 cm−1,
respectively. The above-mentioned peaks correspond to nonpolar E2 (low) and E2 (high)
optical phonon modes of Co-doped ZnO. Unlike pure ZnO, these peaks are shifted towards
higher frequencies [62]. The high-intensity peak at 382.5 cm−1 is assigned to the A1 (TO)
mode of vibration [63]. The peaks observed at 162 cm−1 can be assigned to defect-induced
mode [64], whereas the one seen at 282 cm−1 corresponds to B1 (low) phonons [65,66]. The
Raman spectrum of the Co-doped ZnO also has a peak at 538.5 cm−1, which according
to the available literature is persuaded by the host lattice defects such as Zn interstitials
and oxygen vacancies. This, in other words, easily justifies the Co2+ doping into ZnO
lattice [63,67].
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Figure 6 shows UV-vis absorption spectra of Co-doped ZnO-MCs. The absorption
properties are recorded in the 200–800 nm range. The value of absorption is solely deter-
mined by various types of factors such as the size and defects in grain structure. At around
374 nm, there is a rapidly rising absorption edge due to exciton recombination or defects. At
higher levels of cobalt doping, the rate of absorption increases. The increase in absorption
in the visible region depends on the increase in the concentration of defects causing deep
levels in the ZnO band gap [68]. The increase in absorption of light is observed due to
increase in lattice defects by cobalt concentration and replacing Zn2+ ions with Co2+ ions
in the ZnO lattices [69].

Figure 7 shows PL spectra of Co-doped ZnO-MCs. The PL spectra show a UV near-
band edge emission and blue-green emission peaks of around 373 nm and 483 nm wave-
lengths, respectively. The emission peak (~380 nm) is due to band-to-band excitons’
transition, while the peak at 485 nm is caused by the transition of electrons from the level
of the ionized oxygen vacancies to the valence band [70]. Peak observed at ~373 nm is
due to the emission from the band edge by radiative annihilation of excitons. These are
linked to the recombination of excitons that are both free and shallowly bound [71,72]. The
peak observed appearing at 483 nm is attributed to the formation of hydroxyl radicals and
surface defects.
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The antibacterial efficacy of synthesized Co-doped ZnO-MCs is assessed by agar
method [73] against both gram-negative and gram-positive strains. The ability of ZnO
materials to kill bacteria is normally determined by reactive oxygen species [74]. The
hydrogen peroxide molecules, hydroxyl radical, and superoxide belong to the group of
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reactive oxygen species (ROS), which not only can cause DNA damage, but also can cause
cell death [75,76]. Photocatalytic formation of ROS was the main factor in the antibacterial
activity of various metal oxides [77]. Raghupati et al. [74] showed that an increase in the
antibacterial activity of ZnO was associated with an increase in the production of ROS
from ZnO under the influence of UV radiation. It is known that ZnO has a band gap
energy of about 3.2 eV and consequently its excitation is limited to the UV radiation range.
Electron-hole pairs are formed when ZnO nanostructures are exposed to UV or visible
light. From Co-doped ZnO-MC suspension, these photo-generated holes separated water
molecules into H+ and OH- ions. Oxygen species (dissolved) are condensed to superoxide
anions (•O-2), which react with H+ to generate (HO2•). The hydrogen peroxide (H2O2)
molecules are formed as they collide with the hydrogen ions and majority charge carriers
(e-). The hydrogen peroxide molecules produced can penetrate the cytoplasmic membrane,
killing the bacteria [78–80]. The schematic illustration for the antibacterial mechanism
of Co-doped ZnO-MCs is demonstrated in Figure 8. ROS in large amount is produced
during various photocatalytic processes. As a result, subcellular damage, including DNA
damage, membrane damage, and protein denaturation, appear. Co-doped ZnO-MCs have
greater antibacterial activity as a result of improved binding forces and the formation of
free radicals in the cell [81,82].
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microbial strains.

All bacterial strains in the current study were recognized by using different biochem-
ical tests conferring to the described method [83]. Pure bacteria culture was stored in a
freeze-dried atmosphere at 4 ◦C in agar slants until further use. Figures 9 and 10 show the
antibacterial effects of the pure and Co-doped ZnO-MCs, against four strains, of which two
are gram-negative (E. coli, K. pneumonia) and two are gram-positive (S. aureus, S. pyogenes).
The bacterial isolates were treated with varying doses of ZnO and Co-doped ZnO-MCs
(0.1, 0.5, and 1 mg/mL) dissolved in HCl (3%). Our outcomes show that, for all the tested
doses, the growth of all the microbes is inhibited by both ZnO and Co-doped ZnO-MCs.
An increase in ZOI with the increase in the Co-doped ZnO-MCs concentration is observed
in Figure 11a,b. According to our results, gram-negative microbes, in comparison with
gram-positive microbes, are more sensitive to Co-doped ZnO-MCs. Among gram-negative
microbes, E. coli forms 17 ± 0.34 mm and 13 ± 0.26 mm ZOI, whereas K. pneumonia (which
is more sensitive to Co-doped ZnO-MCs treatment) forms 19 ± 0.38 mm and 14 ± 0.28 mm
ZOI, as shown in Table 2. Among gram-positive microbes, S. pyogenes, forms a ZOI of
16 ± 0.32 mm and 9 ± 0.18 mm, whereas S. aureus forms a ZOI of 15 ± 0.30 mm and
13 ± 0.26 mm on the same dose. Bacterial resistance is found to improve significantly with
the increase in the Co content. These results suggest that Co-doped ZnO-MCs can be
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used as an antibacterial agent in a variety of pharmaceutical and biological applications in
the future.
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Table 2. Summary of the information of bacteria and other findings.

Bacteria
ZnO Co Doped ZnO

100 µg/mL 500 µg/mL 1 mg/mL 100 µg/mL 500 µg/mL 1 mg/mL

Gram-negative
E. coli

Inhibition zone (mm)

9 ± 0.18 11 ± 0.26 13 ± 0.26 10 ± 0.2 13 ± 0.26 17 ± 0.34

K. pneumoniae 10 ± 0.2 10 ± 0.21 14 ± 0.28 11 ± 0.22 15 ± 0.3 19 ± 0.38

Gram-positive
S. aureus 9 ± 0.19 12 ± 0.24 13 ± 0.26 9 ± 0.18 11 ± 0.22 15 ± 0.3

S. pyogenes 8 ± 0.16 9 ± 0.18 9 ± 0.18 10 ± 0.2 13 ± 0.26 16 ± 0.32

4. Conclusions

A simple and cost-effective hydrothermal technique is used to synthesize the unique
cylindrical Co-doped ZnO-MCs. XRD, XPS, and Raman characterizations effectively
confirmed the incorporation of Co+2 ions into the Zn+2 ions lattice site. UV-vis results
showed that, at a higher dopant concentration (0.4 g/0.025 M), the rate of absorption
increases. The increase in absorption in the visible region depends on the increase in
the concentration of defects causing deep levels in the ZnO band gap, and this broad
absorption is due to d–d transition of Co2+ ions. Co-doped ZnO-MCs can efficiently work
against gram-negative and gram-positive bacteria. The results showed that Co-doped
ZnO-MCs have better antibacterial activity against gram-negative bacteria, compared with
gram-positive bacteria. All the tested bacteria were inhibited by Co-doped ZnO-MCs and
the inhibitory effect was dose-dependently increased. Gram-negative microbes were shown
to be more sensitive to Co-doped ZnO-MCs, as compared with gram-positive microbes.
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