
Vol.:(0123456789)

Journal of Network and Systems Management            (2023) 31:2 
https://doi.org/10.1007/s10922-022-09697-x

1 3

Efficient Intelligent Intrusion Detection System 
for Heterogeneous Internet of Things (HetIoT)

Shalaka Mahadik1 · Pranav M. Pawar1  · Raja Muthalagu1

Received: 18 February 2022 / Revised: 2 September 2022 / Accepted: 26 September 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2022

Abstract
Moving towards a more digital and intelligent world equipped with internet-of-
thing (IoT) devices creates many security issues. A distributed denial of service 
(DDoS) attack is one of the most formidable and challenging security threats that 
has taken hold with the emergence of the heterogeneous IoT (HetIoT). The massive 
DDoS attacks have exhibited their impact by continuously destroying a variety of 
infrastructures, resulting in huge losses, and endangering the overall availability of 
the digital world. The emphasis of this research is to identify and mitigate various 
DDoS attacks for HetIoT. The research proposes an intelligent intrusion detection 
system (IDS) using a convolutional neural network (CNN), i.e., HetIoT-CNN IDS, a 
novel deep learning-based convolutional neural network for the HetIoT environment. 
The proposed intelligent IDS successfully identifies and mitigates various DDoS 
attacks in the HetIoT infrastructure. The feasibility of the new proposed HetIoT-
CNN IDS is assessed by considering binary and multi-class (8- and 13-classes) clas-
sification. The performance of the proposed intelligent IDS is compared with two 
state-of-the-art deep learning approaches for HetIoT, and the results reveal that the 
proposed HetIoT-CNN IDS outperforms it. The proposed HetIoT-CNN IDS success-
fully identifies various DDoS attacks with an accuracy rate of 99.75% for binary 
classes, 99.95% for 8-classes, and 99.99% for 13-classes. The work also compares 
the individual accuracy of binary classes, 8-classes, and 13-classes with state-of-
the-art work.
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1 Introduction

The digitization of the world has led to extensive research into the IoT [1–4], which 
is a collection of many devices that are interlinked and communicate via the internet. 
If we look at IoT devices today, there are a massive set of diversified applications. 
This broad-scale IoT is used in almost every domain with distinct functional areas, 
e.g., smart cameras, smartphones, smart glasses, smartwatches, and many more [5]. 
The IoT network uses different protocols, different architectures like wireless sen-
sor network (WSN), wireless mesh network (WMN), cellular network, etc., different 
designs, patterns, and standards [6, 7]. Therefore, the heterogeneity of devices, pro-
tocols, and network architecture makes wider deployment of IoT networks challeng-
ing to manage and operate. IoT systems also produce a number of heterogeneous 
data streams. Consequently, such a complex and large IoT system is also referred to 
as HetIoT [7].

The growth of IoT networks shows that the use of several HetIoT networks is 
increasing daily, and by 2025 it will go beyond 17 billion [8–12]. It is projected 
that this large-scale HetIoT will involve billions of heterogeneous devices in the near 
future. As technology advances, the number of security vulnerabilities also contin-
ues to increase [13]. The security of HetIoT is a significant challenge owing to its 
complexity, heterogeneity, and many interconnected resources. Also, it is evident 
from the discussion that the issue of protecting HetIoT devices is significantly inten-
sified by their resource-constrained design [14]. As a result, attack mitigation and 
privacy protection measures used in conventional networks cannot be used effec-
tively on HetIoT networks [15].

Major research studies concentrate on different security threats and defense 
mechanisms in HetIoT. The DDoS attack is one of the most powerful attacks that 
have taken hold with the emergence of HetIoT [16–18]. According to Corero Net-
work, Security’s study [19], the probability of DDoS attacks almost doubled in 2017 
compared to 2016 due to the rising number of HetIoT devices. The Mirai Botnet 
infected millions of HetIoT devices and targeted DNS servers to break Internet con-
nections to major websites [20–22]. The year 2020 has become noteworthy in sev-
eral ways, especially when cyber-attacks are on the rise. The Covid-19 pandemic 
offered cybercriminals a great opportunity to hack and dismantle the IT infrastruc-
ture of any organization. The work-from-home system adopted by such organiza-
tions has been credited to the increase in cyber-attacks [23, 24].

1.1  Motivation

A security mechanism can be formulated to overcome security threat measurements. 
Deep learning IDS are well-suited for classification and prediction because of their 
conscious architecture [25, 26]. Deep learning (DL) will deliver promising results 
for HetIoT networks. An immense amount of data is produced by the HetIoT system, 
where learning techniques can be used for better and wise decision-making. Fur-
thermore, the security solution can be enhanced by incorporating intelligence using 
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learning-based approaches. The Fig. 1 below shows the impact of DDoS attacks on 
various IoT applications. The trend of using different DL models is booming, which 
motivates the research to focus on developing an IDS for DDoS attacks using DL 
techniques. The graph (2020–2022) demonstrates that, despite extensive research 
being conducted to defend HetIoT infrastructure, DDoS attacks continue.

With the motivation of all of the aforementioned, this research proposes a novel 
CNN-based IDS called the HetIoT-CNN IDS to anticipate various types of DDoS 
attacks. The proposed approach is capable of identifying DDoS attacks with high 
accuracy. The dataset considered in this research is well-known, recent, and exten-
sively used in the research world for creating IDS for HetIoT networks. The research 
also provides a survey of several DL-based models by considering binary and multi-
class classification. The proposed HetIoT-CNN IDS performance is compared with 
two recent state-of-the-art techniques; namely, DL-based IDS model [27] and Flow-
guard model [28]. Furthermore, the research examined a time complexity analysis in 
comparison to the DL-based IDS model [27]. In terms of performance, the proposed 
HetIoT-CNN IDS outperforms the state-of-the-art intelligent IDS. The following are 
the significant contributions made in this research work.

1.1.1  Contributions

• The research provides a comprehensive insight into the current state-of-the-art 
work, focusing mainly on DL techniques that have used the CICDDoS2019 data-
set [29] for IDS development.

• The research presents detailed data pre-processing steps using feature selection 
technique, memory optimization, data cleaning, and feature scaling after thor-
ough exploratory data analysis.

• Deep learning-based convolutional neural network for detecting DDoS attack on 
HetIoT, the HetIoT-CNN IDS.

• Performance analysis with binary and multi-class classification (8-class and 
13-class) using HetIoT security datasets, namely, CICDDoS2019. The perfor-

Fig. 1  Growth of DDoS attack, IoT applications and DL techniques (Source Google trend)
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mance is evaluated against the following parameters, Precision, F1-score, Recall, 
and Accuracy.

• The proposed HetIoT-CNN IDS effectively identifies DDoS attacks for binary 
and multi-class (8- and 13-class) classification with good accuracy, i.e., 99.75% 
for binary class classification, 99.95% for 8-class classification, and 99.99% for 
13-class classification.

• The individual accuracy of each class of attack is also measured and compared 
with state-of-the-art work.

• The research also examined state-of-the-art DL-based IDS [27] and compared it 
with the proposed HetIoT-CNN IDS using asymptotic time complexity analysis. 
The result shows that the proposed HetIoT-CNN IDS is lightweight, simple, and 
less complex in terms of computation time and the number of layers used.

The remaining content of the research paper is structured as follows. Section  2 
reviews the related work with a comparative review. Section 3 presents the proposed 
HetIoT-CNN IDS architecture and algorithm in detail. Also, this section articulated 
CICDDoS2019 dataset pre-processing, i.e., feature selection, memory optimization, 
data cleaning, and feature scaling. Section 4 presents an asymptotic time complex-
ity analysis of the proposed intelligent IDS. Section 5 provides experimental set-up, 
performance metrics, and performance results with discussion. Lastly, Sect. 6 pre-
sents conclusions and future work.

2  Related Work

This section aims to review the related work in HetIoT DL based intelligent security. 
The review mainly focused on the state-of-the-art work from 2018 to 2021.

The study [30] suggested an approach for detecting DDoS attacks in a software-
defined network (SDN) environment entitled DDoSNet, which is based on a recur-
rent neural network (RNN) with an autoencoder. This approach concentrates on 
the binary classification of attacks with an accuracy of 99%. A CNN based real-
time SDN security system is created to combat DDoS attacks [31]. This approach 
shows a 95.4% accuracy rate for binary classification of DDoS attacks. The study 
[28] focuses on IoT-DDoS defense approaches and offers FlowGuard, an edge-cen-
tric IoT defensive strategy. The CNN model’s accuracy rate is 99.9% for multi-class 
classification whereas, for binary classification, long-short-term memory (LSTM) 
measures 98.9%.

In an SDN context, Assis et al. [32] proposed a gated recurrent unit (GRU) model 
for detecting DDoS attacks, which is for binary classification of attacks, and it 
achieves an accuracy of 99.6%. The study in [33] proposed the energy-based flow 
classifier, a binary classification model with an accuracy of 97%. A hybrid deep 
learning approach for the detection of DDoS attacks for the SDN environment is 
proposed in [34]. The author considered eight different DDoS attacks and achieved 
a 99.74% accuracy.

In tandem with Edge computing, Nie et al. [35] presented a deep learning-based 
IDS model for social-IoT (SIoT), which is based on the generative adversarial 
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network (GAN) strategy. The overall accuracy rate of this multiple attack based 
GAN model is 98.53%. The deep learning-based IDS for agriculture 4.0 is proposed 
in [27] to detect different classes of DDoS attacks. The research proposed three dif-
ferent models using RNN, CNN, and dense neural network (DNN) for 13 and 7 class 
classification of attack. The CNN approach shows the highest accuracy of 95.12% 
for 13-class and 95.90% for 7-class classification.

Beyond 5th generation (B5G) architecture is suggested for DDoS attack detec-
tion using multilayer DNN [36]. The pearson correlation coefficient (PCC) method 
is employed for feature selection, and the model is formulated for multi-class clas-
sification. It shows an accuracy of 99.66% for 10 class classification. GRU based 
method for recognizing DDoS attacks is suggested in [37]. The accuracy of the 
models is 99.69% for reflection-type DDoS attacks and 99.94% for exploitation 
DDoS attacks. The model’s average performance rate is 99.7%. This model achieves 
the highest accuracy for SSDP attacks, which is 99.91%. The cuda-base LSTM 
(cu-LSTM) model proposed in [38], is used for multi-class classification of DDoS 
attacks and achieved a 99.6% accuracy rate.

Table 1  DDoS attack binary class classification

References Model name DL techniques No. of features Accuracy %

[27] DL-based IDS model CNN 67 99.95
[28] Flowguard model LSTM 40 98.9
[30] DDoSNet model RNN with autoencoder 77 99
[31] IoT based SDN environment CNN 87 95.4
[32] GRU deep learning model GRU-model 83 99.6
[33] Energy based flow classifier model EFC model 84 97

Table 2  DDoS attack multi-class classification

*Exploitation attack
× Reflection attack

References Model name DL techniques No. of features Accuracy % No. of classes

[27] DL-based IDS model CNN 67 95.12 13
95.90 7

[28] Flowguard model CNN 40 99.9 12
[34] Hybrid DL approach in 

SDN
CuDNN-LSTM, 

CuDNNGRU 
80 99.74 8

[35] SIoT with edge computing GAN-algorithm 10 98.53 12
[36] Efficient framework for 

B5G network
DNN 10 99.66 10

[37] DIDDoS model GRU 82 99.69× 9
99.94* 3

[38] Cuda base-LSTM model LSTM – 99.6 4
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Tables 1 and 2 below presents a comparative summary of reviwed DDoS attack 
detection techniques using DL. Table 1 shows binary class classification techniques 
for DDoS attack and Table 2 shows multi-class classification techniques for DDoS 
attack. According to the literature, existing models address either binary class clas-
sification or multi-class classification, excluding DL-based IDS model [27], and the 
Flowguard model [28], which addresses both classification. The CICDDoS2019 
dataset includes all recent types of DDoS attacks. However, the existing state-of-the-
art models fail to address these attacks. Even though existing state-of-the-art models 
using binary class classification achieve good accuracy; still, binary classification 
will only help to detect if a DDoS attack is present or not without providing specifics 
about the type of DDoS. Such specific information is essential for the good setup of 
any infrastructure. Hence the research further studied existing multi-class classifica-
tion models. It is observed that existing state-of-the-art models didn’t focus on all 
the various types of DDoS attacks except [27].

A DL-based HetIoT-CNN IDS is developed in this research to safeguard against 
DDoS attacks in a heterogeneous environment. Furthermore, the Portmap DDoS 
attack, part of the CICDDoS2019 dataset, receives minimal attention from the 
researchers. This attack is addressed by [34, 35]. The model developed by [35] 
detects Portmap attacks with an accuracy of 98.34%, whereas the proposed HetIoT-
CNN IDS detects the Portmap with an accuracy of 100%. The strength of the pro-
posed HetIoT-CNN IDS is lightweight, simple, and less complex, i.e., the number 
of layers used in the model is less when compared to the existing state-of-the-art 
models and can be easily processed at the network layer. Also, the proposed HetIoT-
CNN IDS considers all the recent DDoS attacks present in the CICDDoS2019 data-
set. This research employed three types of classification, binary and multi-class (8- 
and 13-class) classification, to identify DDOS attacks and obtain higher accuracy 
than previous techniques reported in the literature. The implementation of the pro-
posed HetIoT-CNN IDS is addressed in detail in the next section.

3  Research Methodology

3.1  Proposed HetIoT‑CNN IDS Architecture

CNN is a unique kind of artificial neural network used for pattern detection. It has 
proven to produce promising results in a wide range of domains, including image 
classification, computer vision, image and video recognition, and many others 
[39–41]. The potential of applying these methods in the security realm has captured 
many researchers’ interest. As mentioned by [42, 43], CNN utilizes various building 
blocks like convolution layers, pooling layers, and fully connected layers to acquire 
spatial hierarchies of features automatically and constructively through the training 
process.

This research focused on deep learning-based IDS premised on the CNN model. 
To reduce the dimensionality and evaluate essential features, the proposed HetIoT-
CNN IDS considers two 1D-convolution layers, two 1D-max-pooling layers, flat-
tened, and one fully connected dense layer as an output layer with the SoftMax 
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activation function to give an adequate classification performance. In addition to 
this, two dropout layers are included exclusively for binary classification to avoid 
over-fitting and achieve better accuracy results. The model extracts important fea-
tures, i.e., feature learning, and uses them to classify various DDoS attacks correctly 
during each processing layer. The following are the functions of each layer present 
in the proposed HetIoT-CNN IDS: 

(i) Convolution layer: Convolution is a linear operation used for feature extraction 
that takes the input, processes it, and obtains the feature map, also known as a 
convoluted map. Stride is used to move the kernel, whereas padding is used to 
preserve the information while changing the kernel size.

(ii) Pooling layer (max): This layer extracts both strong and fine features after con-
volution. It is also utilized to cut down the computation time and errors. The 
feature map will be either max-pooled or avg-pooled to extract the maximum 
value or average value, respectively. The proposed HetIoT-CNN IDS considers 
max-pooled to extract maximum activated features since it is the most commonly 
used method, as well as less complex than other methods [40, 44].

(iii) Dropout layer: This layer prevents the model from over-fitting during the train-
ing process. The research considers two dropout layers for binary classification 
to regularise and improve the proposed HetIoT-CNN IDS performance. The 
datasets used for binary classification exhibit data distribution and behavior dif-
ferences. As a result, two dropout layers with a value of 0.5 are employed during 
the training process for binary classification [31, 45].

(iv) Flatten layer: This layer aids in the flattening of all information into a format 
appropriate for use by the subsequent layer. It converts any dimensional data into 
one-dimensional data, subsequently sent to the fully connected dense layer.

(v) Fully connected dense layer: This layer works the same as an artificial neural 
network. The proposed HetIoT-CNN IDS considers one fully connected dense 
layer as an output layer that gives the SoftMax activation function input to detect 
and classify the various DDoS attacks.

After conducting empirical research and applying the RandomSearch-hyperparam-
eter tuning technique [45], the following hyperparameters are adopted for the pro-
posed HetIoT-CNN IDS: 32 and 64 filters with the kernel of size 5, Stride is set to 
2, and padding is set as ’same.’ The max-pooling of size two is considered. The Sig-
moid and SoftMax activation functions are employed. The Sigmoid is a non-linear 
activation function used after each convolution layer to provide the weighted sum of 
inputs to the subsequent layer. Another activation function (also known as the clas-
sification function) called SoftMax is adopted to classify the various DDoS attacks. 
The proposed HetIoT-CNN IDS architecture is shown in Fig. 2.

3.2  HetIoT‑CNN IDS Algorithm

The working principle of the proposed HetIoT-CNN IDS for multi-class classi-
fications (refer to Fig. 3a) and binary classification (refer to Fig. 3b) along with 
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parameter settings such as a number of layers, filters, kernel size, activation func-
tion used, etc. are outlined in this section. The input for multi-class classification 
and binary classification is processed datasets (refer to Sect. 3.4 and Fig. 5) with 
an 80–20 train-test split. The section also highlighted the pseudocode used for the 
proposed HetIoT-CNN IDS. Algorithm 1 is used for multi-class (8- and 13-class) 
classifications, whereas Algorithm 2 is used for binary classifications.

Fig. 2  Architecture of the proposed HetIoT-CNN IDS

(a) (b)

Fig. 3  a Multi-class classification. b Binary classification. Proposed HetIoT-CNN IDS
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Algorithm 1 Pseudocode for multi-class classification

Require: Batch size=128, Epoch = 10, Input shape(I0,d) = (47,1)
Ensure: Accuracy, Precision, Recall, F1 score (for 8 class or 13 class)
1: Define sequential model
2: for Epoch = 1 to 10 do
3: Compute 1D-convolution (CL1 ) operation with filters f and kernel size

k using equation, CL1fi,j = σ(
∑k

p=0
∑k

q=0((I0,d)i+m,j+n ∗Wf
p,q +Bf ),

where (p, q) indices of f th filters, (i , j ) are indices of output, weight W
and bias B

4: Extract maximum activated features with 1D-maxpooling (MPL1 )
layer using equation, MPL1fi,j = MaxPool(CL1fi,j)

5: Compute 1D-convolution (CL2 ) operation with filters f and kernel size
k using equation, CL2fi,j = σ(

∑k
p=0

∑k
q=0((MPL1f)i+m,j+n ∗Wf

p,q +Bf )
6: Extract maximum activated features with 1D-maxpooling (MPL2 )

layer using equation, MPL2fi,j = MaxPool(CL2fi,j)
7: Flatten the resultant output of MPL2f

8: Detect and classify DDoS attacks using fully connected Dense layer
with neurons = 8 or 13 and activation = ‘softmax’i.e., eachMPL2f neuron
is fed to activation function to classify the output classes.

9: Compile the model using optimizer = ‘adam’, loss function =
‘sparse categorical crossentropy’

10: Fit the model on training set, validation set = 0.2, and batch size
11: Repeat steps 3 to 10 for each Epochs
12: end for
13: Evaluate and predict model for testing set
14: Print confusion matrix and classification report
15: Plot overall training and testing loss, accuracy
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Algorithm 2 Pseudocode for binary class classification

Require: Batch size=128, Epoch = 10, Input shape(I0,d) = (47,1)
Ensure: Accuracy, Precision, Recall, F1 score (for 2 class)
1: Define sequential model
2: for Epoch = 1 to 10 do
3: Compute 1D-convolution (CL1 ) operation with filters f and kernel size

k using equation, CL1fi,j = σ(
∑k

p=0
∑k

q=0((I0,d)i+m,j+n ∗Wf
p,q +Bf ),

where (p, q) indices of f th filters, (i , j ) are indices of output, weight W
and bias B

4: Dropped-out 0.5 neurons and enable the model to learn more relevant
features.

5: Extract maximum activated features with 1D-maxpooling (MPL1 )
layer using equation, MPL1fi,j = MaxPool(CL1fi,j)

6: Compute 1D-convolution (CL2 ) operation with filters f and kernel size
k using equation, CL2fi,j = σ(

∑k
p=0

∑k
q=0((MPL1f)i+m,j+n ∗Wf

p,q +Bf )
7: Dropped-out 0.5 neurons and enable the model to learn more relevant

features.
8: Extract maximum activated features with 1D-maxpooling (MPL2 )

layer using equation, MPL2fi,j = MaxPool(CL2fi,j)
9: Flatten the resultant output of MPL2f

10: Detect and classify DDoS attacks using fully connected Dense layer
with neurons = 2 and activation = ‘softmax’i.e., each MPL2f neuron is
fed to activation function to classify the output classes.

11: Compile the model using optimizer = ‘adam’, loss function =
‘sparse categorical crossentropy’

12: Fit the model on training set, validation set = 0.2, and batch size
13: Repeat steps 3 to 12 for each Epochs
14: end for
15: Evaluate and predict model for testing set
16: Print confusion matrix and classification report
17: Plot overall training and testing loss, accuracy

As shown in the Fig. 2, the first convolution layer takes the input as, I0 , with the 
number of channels, d, where d is initially set to 1. The input_shape, (I0, d) , is then 
convolved with thirty-two filters of kernel size 5, the stride of 2, padding as ’same’ and 
results in thirty-two feature maps of size Iconv1 . The feature map size, Iconv1 , is calcu-
lated using the following formula [46],

(1)Iconv1 =
I0 − K + 2P

S
+ 1

(2)P =
K − 1

2
,
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where K = kernel size, P = padding, S = stride.
The resultant feature map, Iconv1 , with thirty-two filters, then becomes the new 

input_shape, (Iconv1, 32) , for the first 1D-max-pooling layer. The 1D-max-pooling 
layer downsample it with the kernel size and stride of 2 yielding thirty-two fea-
ture map of size, Imax1 , calculated as,

Similarly, the second 1D-convolution layer convolves, Imax1 , with the sixty-four fil-
ters of kernel size 5 and outputs a sixty-four feature map of size, Iconv2 . The algo-
rithm is repeated for the second 1D-max-pooling layer, with a new input shape, 
(Iconv2, 64) , yielding sixty-four feature maps of size Imax2.

After two 1D-convolution and two 1D-max-pooling layers, the output with 
the input_shape, (Imax2, 64) , is flattened and becomes the input for the final layer, 
which is a fully connected dense layer that accurately classifies various DDoS 
attacks, with SoftMax classification function. The SoftMax classification func-
tion is given by the following,

The output of each 1D-convolution layer is fed to a Sigmoid activation function that 
is given by [47],

where z, is the resultant output of each convolution layer, i.e.

b = bias, Iw = weight of each input I, kw = weight of each element in the kernel, k.
In the last step, adaptive moment estimation (Adam) optimizer is used. The 

Adam optimizer [40, 48] yielded superior results and is the most widely used 
optimizer; hence model incorporates it as an optimizer. The Adam optimizer 
keeps an exponentially decaying average of previous gradients, gt [47, 49],

where mt is first moment and vt is second moment of the gradient , �1 and �2 is decay 
rates.

(3)Imax1 =
Iconv1 − K + 2P

S
+ 1

(4)SoftMax, �(xi) =
exi

∑K

j=1
exj

for i = 1, 2,… ,K

(5)Sigmoid, �(z) =
1

1 + e−z
,

(6)z =
∑

Iw ∗ kw + bk,

(7)mt =�1mt−1 + (1 − �1)gt

(8)vt =�2vt−1 + (1 − �2)g
2

t
,
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3.3  Dataset

CICDDoS2019 [29] dataset is provided by the Canadian Institute for Cybersecurity 
(CIC) and the University of New Brunswick (UNB). Figure 4 shows the composi-
tion of HetIoT based DDoS attacks present in the CICDDoS2019 dataset. The data-
set consists of samples of normal traffic and attack traffic of 13 different attacks.

This dataset is commonly utilized in HetIoT-based DDoS attack detection and 
mitigation studies [28, 31]. The dataset is split into two parts: training-day dataset 
and testing-day dataset. Tables 3 and 4 describe the details of these datasets, includ-
ing the name of the attacks present in each dataset, the number of samples (i.e., size 
of the attack), and features.

3.4  Data Pre‑processing

The performance of any learning mechanism relies on the data pre-processing per-
formed [39]. The research employed the following strategies to prepare the dataset 
for building a HetIoT-CNN IDS model. 

(a) Feature selection: Feature selection is an important data pre-processing strategy 
that helps to reduce the number of features and improve the performance [51, 
52]. The work uses an implementation of Random-forest regressor from the 
python sci-kit learn library [50, 53]. All the features were examined except Flow 
Id, Source IP, Destination IP, SimillarHTTP, and Timestamp. These exclusions 
were made because the features were either intrinsically uninformative or made 

Fig. 4  Composition of the CICDDoS2019 DDoS dataset [28, 50]
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up within a simulated context [33]. Table 5 below exhibits a list of the selected 
features after feature selection.

(b) Memory optimization: Memory optimization is a method of freeing or cleaning 
memory during a program in execution. An out-of-memory is a common error 
during the building model using huge datasets. The memory optimization is 
performed to save memory and fit the model with the entire dataset within the 
available system resources. The research used gc.collect(), del statement, down-
cast() feature from python libraries to save the memory for effective training and 
testing of the proposed model.

(c) Data cleaning: The data cleaning is performed to remove null, NAN, and infinity 
values from data. The work used isnull(), isinf(), and isNAN() methods from 
the python sci-kit libraries to remove it. Such values are replaced with constant 
integers.

Table 3  Details of CICDDoS2019 training-day dataset

Sr.no. Name of the files No. of samples Features Name of the attacks 
present in each file

1 DrDoS_DNS 5,074,413 86 DrDoS_DNS
2 DrDoS_LDAP 1,048,575 86 DrDoS_LDAP
3 DrDoS_MSSQL 4,524,498 86 DrDoS_MSSQL
4 DrDoS_NetBIOS 4,094,986 86 DrDoS_NetBIOS
5 DrDoS_NTP 1,217,007 86 DrDoS_NTP
6 DrDoS_SNMP 5,161,377 86 DrDoS_SNMP
7 DrDoS_SSDP 2,611,374 86 DrDoS_SSDP
8 DrDoS_UDP 3,136,802 86 DrDoS_UDP
9 Syn 1,582,681 86 Syn
10 TFTP 20,107,827 86 TFTP
11 UDP-Lag 370,605 86 UDP-Lag,WebDDoS

Total 48,930,145

Table 4  Details of CICDDoS2019 testing-day dataset

Sr.no. Name of the files No. of samples Features Name of the attacks 
present in each file

1 DrDoS_LDAP 2,113,234 86 LDAP, NetBIOS
2 DrDoS_MSSQL 5,775,786 86 LDAP, MSSQL
3 DrDoS_NetBIOS 3,455,899 86 NetBIOS
4 DrDoS_UDP 3,782,206 86 UDP, MSSQL
5 Syn 4,320,541 86 Syn
6 UDP-Lag 725,165 86 UDP-Lag, Syn, UDP
7 Portmap 191,694 86 Portmap

Total 20,364,525
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(d) Feature scaling: Feature scaling is another key part of data pre-processing. The 
most prevalent feature scaling technique is the Standard Scaler. The Standard 
Scaler from sci-kit learn is adopted for the proposed HetIoT-CNN IDS.

Since the CICDDoS2019 dataset is huge (refer Tables  3, 4), 70% data from the 
training-day dataset is taken at random while data from the testing-day dataset is used 
entirely. These datasets are used to create three distinct datasets, Dataset 1, Dataset 2, 
and Dataset 3. Dataset 1 is used for binary classification, Dataset 2 for 8-class classifi-
cation, and Dataset 3 for 13-class classification. The details of the three datasets used 
throughout the research are listed in Table 6.

Figure 5 represents the deployment model for the proposed HetIoT-CNN IDS, which 
starts with data pre-processing steps and creates three unique datasets. The proposed 
HetIoT-CNN IDS is trained and tested on each of these datasets to check its perfor-
mance and identify DDoS attacks in the HetIoT environment. The proposed HetIoT-
CNN IDS is deployed at the edge of the network layer to block the traffic from the 
intruder devices. The gateways will serve as edge nodes, processing data locally. To 
provide security against DDoS attacks, the proposed HetIoT-CNN IDS benefits from 
edge computing over cloud computing [54, 55].

Table 5  List of the selected features

Sr.no. Feature name Sr.no. Feature name Sr.no. Feature name

1 Source Port 17 Idle Min 33 Active Mean
2 Destination Port 18 Idle Mean 34 Active Max
3 Protocol 19 act_data_pkt_fwd 35 Bwd IAT Total
4 Flow Duration 20 URG Flag Count 36 Bwd IAT Mean
5 Inbound 21 Subflow Fwd Packets 37 Bwd IAT Max
6 Min Packet Length 22 Subflow Bwd Packets 38 Bwd IAT Min
7 Flow IAT Std 23 Fwd Packet Length Min 39 Bwd IAT Std
8 Flow IAT Max 24 Init_Win_bytes_forward 40 Flow Packets/s
9 Flow IAT Min 25 Init_Win_bytes_backward 41 Flow Bytes/s
10 Fwd IAT Min 26 Total Fwd Packets 42 Fwd Packets/s
11 Fwd IAT Max 27 Total Backward Packets 43 Bwd Packets/s
12 min_seg_size_forward 28 Bwd Header Length 44 Fwd Packet Length Std
13 Active Min 29 Packet Length Std 45 Total Length of Bwd 

Packets
14 Avg Bwd Segment Size 30 Packet Length Variance 46 ACK Flag Count
15 Fwd Header Length 31 Bwd Packet Length Mean 47 Bwd Packet Length Min
16 Fwd Header Length.1 32 Bwd Packet Length Max 48 Label
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4  HetIoT‑CNN IDS Analysis

This section analyses the asymptotic time complexity of the proposed HetIoT-CNN 
IDS. The 1D convolution is the sum of the row-wise dot product of two matrices, 
where one matrix is the kernel of size, k, and another matrix is the input of size, 
Ic . Therefore, the total computational complexity for a single convolution layer 
is, O(Ickd) , where d is number of channels [56]. The convolution with number of 
filters, f  , is O(Ickdf ) . So, the time complexity with two 1D-convolution layers is, 
2 ∗ O(Ickdf ).

The max-pooling layer doesn’t contain any trainable parameters. It will help to 
reduce the computational overhead. It will search for the maximum weight from the 
given input data, Im , with the help of kernel size, k. Fundamentally it is a one dimen-
sional unsorted array. So, the time complexity with two 1D-max-pooling layers is, 
2 ∗ O(Im).

The fully connected dense layer, nothing but the output layer, takes input after 
flattening the data from the max-pooling layer and processes it to detect the vari-
ous DDoS attacks. This layer, connect each neuron, Ifc , to every SoftMax activa-
tion neuron, Is . Hence, the time complexity with one fully connected dense layer 
is , O(IfcIs) . The asymptotic time complexity for the proposed HetIoT-CNN IDS is, 
{ 2 ∗ O(Ickdf ) + 2 ∗ O(Im) + O(IfcIs) }

The research analyses the proposed HetIoT-CNN IDS time complexity with state-
of-the-art [27] model that comprises three 1D-convolution layers, one 1D-Globa-
lAveragePooling layer, and three fully connected dense layers. The global average 
pooling layer requires more computation time than the max-pooling layer. The 

Fig. 5  Deployment model of the proposed HetIoT-CNN IDS
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global average pooling will compute the average of first k, element, where k is ker-
nel size and then slide the window to the next k element to find the average and so 
on until it reaches the end of the list, Ig . Hence, the time complexity for the one 
1D-GlobalAveragePooling layer is, O(kIg) . Therefore, the asymptotic time complex-
ity for [27], is, { 3 ∗ O(Ickdf ) + O(kIg) + 3 ∗ O(IfcIs) }

The computational cost of the pooling layer is low [57]; so, by ignoring it, the 
overall comparative asymptotic time complexity for the proposed HetIoT-CNN IDS 
and state-of-the-art model in [27] is given in Table 7 below. The proposed HetIoT-
CNN IDS used less number of layers. Hence computational cost (i.e., addition and 
multiplication operations) is less. As a result, the proposed HetIoT-CNN IDS is 
lightweight, simple, and less complex.

The asymptotic time complexity analysis of both the IDS shows that the pro-
posed HetIoT-CNN IDS is efficient in computation time. Further, to quantify the 
time required for training and testing, the proposed HetIoT-CNN IDS and model in 
[27] have experimented on the CICDDoS2019 dataset. Table 8 shows the compari-
son of training and testing time required for both the IDS in the case of 8-class and 
13-class. The results in Table 8 reveal that the proposed HetIoT-CNN IDS outper-
forms as compared with state-of-the-art work in [27].

5  Result and Discussion

The section examines the performance of the proposed HetIoT-CNN IDS to appro-
priately detect DDoS attacks by considering binary class, 8-class, and 13-class 
classification. The section also provides a comparative performance analysis of 
the proposed technique with two state-of-the-art works, DL-based model [27], and 
Flowguard model [28]. The simulation set-up, as well as performance metrics used, 
are mentioned below. 

 (i) Simulation set-up: The specification of the software and hardware set-up are 
provided in Table 9.

Table 7  Comparative 
asymptotic time complexity

Asymptotic time complexity

[27] { 3 ∗ O(Ickdf ) + 3 ∗ O(IfcIs) }
HetIoT-CNN IDS { 2 ∗ O(Ickdf ) + O(IfcIs) }

Table 8  Comparative 
experimental training, testing, 
and total-time

Time in second [27] HetIoT-CNN IDS

8-class 13-class 8-class 13-class
Training time 774 1173 659 1148
Testing time 297 451 152 241
Total time 1071 1624 811 1389
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 (ii) Performance metrics used: The measurement of the proposed IDS is per-
formed using the standard performance metrics, accuracy, precision, recall, 
and f1-score [42, 58, 59]. 

(a) Accuracy: Accuracy is the ratio of correctly predicted DDoS attacks and 
Benign Flow out of all predicted data. 

(b) Precision: Precision is a metric that quantifies a system’s ability to provide 
only relevant outcomes. 

(c) Recall: Recall is also considered as True-Positive-Rate(TPR). It is a metric 
that quantifies a systems’ ability to provide all relevant outcomes. 

(d) F1-score: F1-score calculates the harmonic mean of precision and recall. 

    Here in the above Eqs. (9), (10), (11), (12), true positive (TP) indicates 
attack data are correctly classified as DDoS attacks. False positive (FP) indi-
cates attack data are incorrectly classified as benign. True negative (TN) 
indicates benign flow is correctly classified as benign. False negative (FN) 
indicates benign flow is incorrectly classified as a DDoS attack.

 (iii) Performance analysis: To perform the comparative performance analysis of the 
proposed HetIoT-CNN IDS with state-of-the-art IDS mentioned in [27, 28], 
the research considered experimentation under binary and multi-class (8- and 
13-class) classification. Three datasets are prepared as per the details given 

(9)Accuracy =
TP + TN

TP + TN + FP + FN

(10)Precision =
TP

TP + FP

(11)Recall =
TP

TP + FN

(12)F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall

Table 9  Simulation set-up
Software specification
 Software tool Spyder 5.0.1 IDE
 Programming language Python 3.8, Sklearn 

library, Matplotlib 
3.5

 API tool Keras on TensorFlow
Hardware specification
 Processor: Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz, 

RAM: 16 GB
 OS: Windows 10, 64-bit, Dedicated 4 GB NVIDIA GEFORCE 

GTX 1650 Ti
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in Sect. 3.4. Following are the steps that are applied on the three datasets and 
are common throughout the research, data pre-processing, as mentioned in the 
preceding section 3.4, is the first step towards training the proposed HetIoT-
CNN IDS (refer Fig. 5). The considered datasets are split as 80% training 
data and 20% testing data. The number of training samples is further split into 
training and validation sets for 8- and 13-class classification to ensure that all 
results are consistent. The hyperparameter settings are depicted in Table 10.

 

5.1  Binary Classification

Dataset 1 is used for binary classification. In Dataset 1, there are two independent 
datasets: training_dataset1 and testing_dataset1. The training_dataset1 is used to 
train the proposed HetIoT-CNN IDS. Then the model is validated and tested on the 
testing_dataset1 with the ratio of 20:80 (i.e., the validation set is 20% and the test-
ing set is 80%). The proposed HetIoT-CNN IDS performed admirably and achieved 
a good accuracy rate. Table 11 shows the details of two unique training and testing 
datasets. 

The proposed HetIoT-CNN IDS hyper-parameter settings are depicted in Algo-
rithm 2. In addition to the convolution and max-pooling layers, two dropout layers 
are added to identify the binary class classification and accurately achieve better out-
comes. As mentioned in [29, 50], the training and testing sets are two independent 

Table 10  Hyperparameter 
settings

Hyperparameter settings Value

Learning rate 0.001
Activation function Sigmoid
Classification function SoftMax
Batch size 128
Epoch 10
Dropout 0.5
Optimizer Adam
Loss function Sparse_categori-

cal_Crossen-
tropy

Table 11  Dataset 1: binary classification

Sr.no. Dataset name No. of samples Total no. of samples

Benign DDoS attack

1 Training_dataset1 51,953 34,199,148 34,251,101
2 Testing_dataset1 56,965 20,307,560 20,364,525
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datasets collected on different days, times, and in various circumstances. As a result, 
the distributions of the two datasets diverge. As a result, the model is overfitted, 
and binary classification utilizes two dropout layers to avoid overfitting. The Fig. 6 
depicts the comparative performance accuracy to detect benign and DDoS attacks 
for the proposed HetIoT-CNN IDS. The HetIoT-CNN IDS show a 99.75% accuracy. 
The accuracy of the state-of-the-art model in [27], is 99.95%, and [28], is 98.9%. As 
indicated in Table 9, DL-based IDS model [27], performs somewhat better than the 
proposed HetIoT-CNN IDS. The performance of the HetIoT-CNN IDS, on the other 
hand, is superior to that of the Flowguard model [28].

5.2  8‑Class Classification

The Dataset 2 contains eight classes: LDAP, MSSQL, NetBIOS, UDP, Syn, UDP-
Lag, Portmap, and Benign. As previously mentioned, this research also focused on 
the Portmap attack, which receives comparatively little attention according to the 
literature review. The statistics for each class in Dataset 2 are reported in Table 12.

The proposed HetIoT-CNN IDS shows 100% accuracy for detecting six different 
classes of attacks such as LDAP, MSSQL, NetBIOS, UDP, Syn, and Portmap DDoS 
attacks. The outcomes of these specific attack identifications are compared with the 
model in [27]. The Fig. 7 depicts the performance outcomes of the same. Figure 7 
indicates that the proposed HetIoT-CNN IDS outperforms as compared to the state-
of-the-art model in [27]. As reported in the [27], it identifies UDP-Lag attacks with 
an accuracy of 0%, whereas a Portmap attack is not considered. However, the pro-
posed HetIoT-CNN IDS identifies UDP-Lag attack with an accuracy rate of 47% and 
Portmap with 100%.

Furthermore, the proposed HetIoT-CNN IDS identifies 8-classes of attacks with 
an accuracy of 99.95% which is higher as compared with the state-of-the-art model 
accuracy of 95.90% [27].

Fig. 6  Performance result for binary classification
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5.3  13‑Class Classification

The 13 classes considered in the experimentation are DNS, LDAP, MSSQL, Net-
BIOS, NTP, SNMP, SSDP, UDP, Syn, TFTP, UDP-Lag, WebDDoS, and Benign. 
Further, Dataset 3 with 13 classes classifications is exposed to the proposed HetIoT-
CNN IDS. The statistics for each DDoS attack in Dataset 3 are reported in Table 13.

The HetIoT-CNN IDS accurately predicts DNS, LDAP, MSSQL, NetBIOS, NTP, 
SNMP, SSDP, UDP, Syn, TFTP, and UDP-Lag DDoS attacks with an accuracy rate 
of 100%; however, WebDDoS attack is identified with 44% accuracy. The reason 
behind this is that while training the proposed HetIoT-CNN IDS, the volume of 
WebDDos attacks is relatively low (refer to Table 13). Hence, the model performs 
poorly compared to other DDoS attacks mentioned above. Despite this, WebDDoS 
attacks have a precision of 1, and recall is 28%. The performance results for the 
same are shown in Fig.  8. Figure  8 indicates that the proposed HetIoT-CNN IDS 
explicitly outperforms the state-of-the-art model in [27]. Furthermore, the proposed 

Table 12  Dataset 2: 8-class 
classification

Sr.no. Attacks name Training sample Testing sample

1 Benign 45,572 11,393
2 DrDoS_LDAP 1,532,098 383,024
3 DrDoS_MSSQL 4,629,962 1,157,491
4 DrDoS_NetBIOS 2,925,998 731,499
5 DrDoS_UDP 3,093,724 773,431
6 Syn 3,913,200 978,300
7 UDP-Lag 1498 375
8 Portmap 149,568 37,392

Total no. of samples 16,291,620 4,072,905

Fig. 7  Performance result for 8-class classification
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model identiifes 13 classes of attacks with accuracy of 99.99% as compared with 
95.12% in [27] and 99.9% in [28].

5.4  Summary of Results

The summary of results is shown in Fig. 9. It shows that the proposed model out-
performs as compared with state-of-the-art models. The proposed model shows 
99.75% for binary classification, 99.95% for 8-class classification and 99.99% 
for 13-class classification, which is higher as compared with state-of-the-art 
model discussed in [27, 28]. The rationale for the proposed HetIoT-CNN IDS’s 

Table 13  Dataset 3: 13-class 
classification

Sr.no. Attacks name Training sample Testing sample

1 Benign 31,455 7864
2 DrDoS_DNS 2,839,784 709,946
3 DrDoS_LDAP 586,753 146,688
4 DrDoS_MSSQL 2,532,573 633,143
5 DrDoS_NetBIOS 2,292,221 573,055
6 DrDoS_NTP 673,491 168,373
7 UDP-Lag 205,205 51,301
8 DrDoS_SNMP 2,889,524 722,381
9 DrDoS_SSDP 1,461,928 365,482
10 DrDoS_UDP 1,755,430 438,858
11 Syn 886,086 221,522
12 TFTP 11,246,188 2,811,547
13 WebDDoS 242 61

Total no. of samples 27,400,881 6,850,220

Fig. 8  Performance result for 13-class classification



1 3

Journal of Network and Systems Management            (2023) 31:2  Page 23 of 27     2 

high accuracy includes data pre-processing steps after exploratory data analy-
sis, the number of selected features, dataset training, and many other aspects, 
which are represented in Table 14 below. It highlights that the proposed model 
is lightweight, simple, and less complex for various DDoS attack detection and 
classification compared to the state-of-the-art model [27]. Compared to the state-
of-the-art model [27], the proposed model uses two convolution layers, two max-
pooling, and one fully connected dense layer. In contrast, the state-of-the-art 
model [27] uses three convolution layers, one global average pooling, and three 
fully connected dense layers. As mentioned in Sect. 4, the asymptotic time com-
plexity of the proposed HetIoT-CNN IDS is less than the state-of-the-art mode 
[27].

Fig. 9  Comparative summary of results

Table 14  Comparative summary 
of HetIoT-CNN IDS with state-
of-the-art [27]

Model parameters [27] HetIoT-CNN IDS

No of features 67 47
Batch size 10,000 128
Epoch 35 10
Convolution layer 3 2
Filter 64, 32, 16 32, 64
Kernel size 3, 3, 2 5, 5
Pooling layer One Globa-

lAverage-
pooling

Two Max-pooling

Fully connected dense layer 3 1
Activation function Relu Sigmoid
Classification function SoftMax SoftMax
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6  Conclusions

This research proposed the HetIoT-CNN IDS, an innovative deep learning-based 
CNN for the HetIoT environment. The proposed IDS shows 99.75% accuracy for 
detecting benign and DDoS attacks (binary classification), 99.95% for detecting 8 
different classes of DDoS attack (8-class classification), and 99.99% accuracy for 
detecting 13 different classes of DDoS attack (13-class classification). The asymp-
totic time complexity analysis also revealed that the proposed IDS is efficient in 
terms of time, lightweight and less complex. The accuracy performance and time 
complexity of the proposed IDS is compared with state-of-the-art intelligent IDS. 
The work also concentrated on the individual detection accuracy of each attack in 
case 8-class and 13-class. The future work of the paper is to develop a RNN model 
for the detection and prediction of DDoS attacks. The work will also be extended 
further by considering reinforcement learning models for real-time detection of 
attacks in HetIoT systems.
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