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Abstract

Background. Current approaches for early identification of individuals at high risk for autism
spectrum disorder (ASD) in the general population are limited, and most ASD patients are not
identified until after the age of 4. This is despite substantial evidence suggesting that early
diagnosis and intervention improves developmental course and outcome. The aim of the current
study was to test the ability of machine learning (ML) models applied to electronic medical
records (EMRs) to predict ASD early in life, in a general population sample.
Methods.We used EMR data from a single Israeli Health Maintenance Organization, including
EMR information for parents of 1,397 ASD children (ICD-9/10) and 94,741 non-ASD children
born between January 1st, 1997 and December 31st, 2008. Routinely available parental socio-
demographic information, parental medical histories, and prescribed medications data were
used to generate features to train various ML algorithms, including multivariate logistic
regression, artificial neural networks, and random forest. Prediction performance was evaluated
with 10-fold cross-validation by computing the area under the receiver operating characteristic
curve (AUC; C-statistic), sensitivity, specificity, accuracy, false positive rate, and precision
(positive predictive value [PPV]).
Results. All ML models tested had similar performance. The average performance across all
models had C-statistic of 0.709, sensitivity of 29.93%, specificity of 98.18%, accuracy of 95.62%,
false positive rate of 1.81%, and PPV of 43.35% for predicting ASD in this dataset.
Conclusions.We conclude that ML algorithms combined with EMR capture early life ASD risk
as well as reveal previously unknown features to be associated with ASD-risk. Such approaches
may be able to enhance the ability for accurate and efficient early detection of ASD in large
populations of children.

Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by
impairments in social communication and restricted stereotyped behaviors [1]. Between
2000 and 2014, the number of children with ASDmore than doubled, and it is now estimated
that ASD affects about 1 in 59 children in the United States [1]. The diagnosis of ASD
typically relies on the observation of behavioral symptoms. Although these behaviors
manifest at an early age (~1 year), in the overwhelming majority of children, the diagnosis
is not ascertained until after the age of 2 [2]. This points to an important challenge because
mounting evidence indicates that early diagnosis and interventions improve the outcome for
affected children [3,4].

Existing studies have shown that ASD is highly heritable [5]. However, at present, genetic
screening cannot reliably predict ASD. For example, despite progress in identifying rare genetic
variants associated with ASD, single gene disorders only account for 3–7% of all ASD cases
[6]. Thus, unlike other single-gene disorders, such as Huntington’s disease, genetic screening
has limited utility in families with idiopathic ASD. In addition, due to the phenotypic
heterogeneity of ASD, identification of reproducible genetic variants with significant associa-
tions to ASD incidence remains challenging [7]. Furthermore, even the strongest known ASD-
risk factor, a sibling with ASD, is not useful inmore than 95% of ASD cases—because there is no
older sibling diagnosed with ASD before the case is born [8]. Taken together, risk-assessment
models that are based on genetic information alone do not perform reliably in the context of the
complex etiology of ASD.
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The overwhelmingmajority of studies into nongenetic ASD-risk
factors typically consider only one risk-factor in isolation, for
example, paternal age [9] or antidepressant use during pregnancy
[10]. However, individual features are not sufficiently accurate in
predicting individual risk [10–12]. Furthermore, such measures of
risk were often derived from studies that used traditional statistical
methods to identify risk factors. Traditional statistical approaches
are limited in their capacity to combine potentially predictive
features [13]. The effective combination of ASD-prevalence in the
family, prescription drugs, and socioeconomic variables may yield
greater predictive power than one factor alone.

Machine learning (ML) provides an approach to efficiently
combine features derived from large data, thereby generating
clinically-relevant predictions [13–15]. Studies based on analysis
of electronic medical records (EMRs) and application of ML have
discovered complex relationships among various features and
disease risk, from genomic analysis to activities in the emergency
room [13–16], but, to the best of our knowledge, has not yet been
applied to address the ASD epidemic.

The aim of the current study was to test the ability of ML models
applied to EMRs to predict ASD early in life. To address our aim, we
tested the ability of an array of parental characteristics available to
predict the risk ofASD inoffspring in a large population-based sample.

Methods

Study approval

This study was approved by the Institutional Review Board at the
University of Haifa and the Helsinki Ethics Committee at Meuhedet
healthcare. Those bodies waived the need for informed consent
because the study data were deidentified. This study followed the
Standards for Reporting of Diagnostic Accuracy (STARD) and the
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis reporting guidelines [17,18].

Data source

EMR data were obtained from a population-based case–control cohort
study ascertained through a large health maintenance organization in
Israel (Meuhedet) [19]. All Israeli citizens are required to purchase a
medical insurance plan from one of several health maintenance orga-
nizations, which offer equivalent medical provision and fees, limiting
potential selection bias in our study. Details of the ascertainment and
source population, as well as the representativeness of the cohort have
been previously reported [19]. TheMeuhedet cohort used in this study
includes EMR data on children born in Israel from January 1, 1997
throughDecember 31, 2007, and their parents. Children were followed
up for ASD diagnosis from birth to January 26, 2015. The analytic
sample consisted of 1,397 ASD cases across 1,207 father–mother pairs
and 94,741 controls across 34,912 mother–father pairs.

Validity of ASD diagnosis

ASDdiagnosis followed the International Classification ofDiseases,
Ninth Revision (ICD-9) and International Statistical Classification
of Diseases and Related Health Problems, Tenth Revision
(ICD-10). All children with suspected ASD underwent evaluation
by a panel of social workers, a psychologist, and one of a trained
psychiatrist, a developmental behavioral pediatrician, or a child
neurologist. The final diagnosis was made by a board-certified
developmental behavioral pediatrician.

Data preparation

Parental EMR data were selected where all nondrug treatments,
such as medical devices, were removed along with rows containing
non-UTF8 formatted data. Next, a set of Anatomic Therapeutic
Classification (ATC) codes were obtained from the world health
organization (WHO; www.whocc.no; 2016 version). Drugs that
correspond to multiple ATC classifications were combined into a
single ATC code. ATC codes were mapped to drug names present
in the data; multiple drug names corresponding to the sameATC or
known combinations of drugs were manually annotated with
unique ATC codes. Multiple prescriptions corresponding to the
same ATC code within a single individual were then filtered out.
Although our dataset includes the date the prescription was filled, it
does not directly indicate the duration of drug usage.

Features set used for training

For each parent, 89 features were selected as predictors to train the
different ML models. These features included prescribed medica-
tions (86 features) and medical histories (e.g., parental age differ-
ence; Figure 1A), as well as sociodemographic characteristics
(e.g., age, socioeconomic status) [19]. All noncategorical features
were normalized using the Softmax normalization technique
(Figure 1A). Missing values were imputed using the rfImpute
method of the randomForest package in the R programming lan-
guage depending on ASD status [20].

Statistical Analysis

ML models

Several statistical and ML methods were used to predict child ASD
status. We applied logistic regression, artificial neural networks
(also known as multilayer perceptron or MLP), and random forest
to predict the likelihood of offspring ASD diagnosis based on the
parental features described. Notably, one advantage of a decision
tree-based learning is that the importance explanatory features can
be extracted after training. Random forest, an ensemble decision
tree learner, was utilized for its comparable predictive performance
to regression-based techniques for EMR-based datasets [14,15].

Model training and evaluation

To evaluate each model, 10-fold cross-validation was employed
(Figure 1B). Eighty percent of all ASD and non-ASD mother–child
pairs were sampled from the original dataset, whereas the remaining
20% were kept as the validation set. Due to the significant class
imbalance present in the data, the SyntheticMinorityOver-sampling
Technique (SMOTE) was used to increase the proportion of ASD
cases fivefold with the “DMwR” package in the training set, while the
validation set sampling was unchanged [21]. Oversampling under-
represented data (and under-sampling overrepresented data) in
training is an established approach for developing predictive models
for ML problems with large class imbalances. This approach has
been used to improve the prediction of breast cancer survivability
[22] and Alzheimer’s disease susceptibility [23].

After oversampling, the resultant dataset was used to train either
the logistic regression model using the “glm” method in the R
programming language, the MLP using the R-language interface
for the Stuttgart Neural Network Simulator (RSNNS) package, or a
random forest model implemented in the R programming language
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using the “randomForest” package [20]. We performed hyperpara-
meter optimization of the ML algorithms using the caret package
[24]. The final MLP model used in 4 hidden layers of 5, 10, 10, and
2 nodes each, under default settings. The final random forest model
used 1,000 subtrees and randomly sampled 20 features per tree. The
remaining 20% of the ASD and non-ASD data were used as the
validation set for the models.

The literature on prediction of health outcomes often focuses on
the area under the receiver operating characteristic (ROC) curve
(i.e., AUC or C-statistic) rather than the full spectrum of prediction
performance [25]. However, a diagnosis of ASD is a rare outcome,
and therefore relying on the C-statistic alone may be biased due to
either over- or underestimation [25]. For the evaluation of a clinical
prediction tool, it has been recommended to report sensitivity,
specificity, accuracy, false positive rate, and precision (positive pre-
dictive value [PPV]; Figure 2) to provide a more complete picture of
the performance characteristics of a specific model. The validation
process was repeated 10 times and the average sensitivity, specificity,
accuracy, precision, false positive rate, and area under the receiver
operator curve (AUC; C-statistic) across all models were computed.

Notably, because oversampling was only utilized during model
training while validation was done on unmodified set, the evalua-
tion metrics generated are indicative of classifier accuracy for
nonsynthetic cases. As a control, we compared the performance
of the model trained on SMOTE generated records to models
trained from either down-sampling non-ASD cases or inverse
probability class weighting [26,27]. Random forest models trained
on SMOTE models (AUC of 0.693; Table 1) outperformed models
trained using alternative balanced training approaches (AUC of
0.680 and 0.634, respectively), increasing our confidence in the
quality of the SMOTE protocol.

Determining importance of features

Gini impurity criterion was applied to determine the relative
importance of individual features. The Gini impurity is the prob-
ability of an unseen case being incorrectly classified for a given
decision or rule. Features with high Gini impurity (or low Gini
importance) split the data into impure categories, while features
that decrease Gini impurity are able to partition the data into purer
classes with larger members. Thus, features with large mean
decreases in Gini rank higher in importance for the model. The
importance of a feature is defined as the mean decrease in the Gini
impurity based on the Random Forest model.

Results

Prediction accuracy

After 10-fold cross-validation of the testing dataset, we observed
that all models tested had overall similar performance (Table 1,
Figure 2). The random forest algorithm classified predicted fewer
true positive ASD cases, on average, than logistic regression or the
MLP; however, it also predicted far fewer false positives (FPs)
compared with logistic regression or MLP, leading to a higher
overall PPV (precision) compared with either of the two models.

Figure 1. Workflow used to build the machine learning model of autism spectrum disorder (ASD) incidence. To evaluate the utility of electronic medical record (EMR) andmachine
learning for predicting the risk of having a child with ASD, we developed a comprehensive dataset. (A) For each mother–father pair, the parental age difference, number of unique
medications either parent has taken, the socioeconomic status, as well as the proportion of drugs, by level 2 Anatomic Therapeutic Classification (ATC) code, taken by the parent
were used for further analysis. (B) Workflow of performing 10-fold cross-validation to evaluate model performance. First, the data were partitioned into ASD and non-ASD cases,
where 80% of the data were randomly sampled as training set, and 20% were withheld as testing set. The training set was then combined and the synthetic minority oversampling
technique (SMOTE) was used to generate synthetic records of ASD cases. Amultilayer perceptron (MLP), also known as feedforward neural network, logistic regression, and random
forestmodelswere trained using the oversampled training data. Theywere then evaluated on the testing data based on sensitivity, precision, sensitivity, false positive rate, and area
under the ROC curve (AUC; C-statistic). Since the testing data did not have synthetic cases, the model performance is indicative of performance of real data. This process was
repeated 10 times and average model performance was reported.
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Although logistic regression outperformed both random forest and
MLP in terms of AUC, it was the lowest performer in terms of PPV.
Finally, MLP generated middling results, performing in-between
logistic regression and random forest across all metrics. Overall, the
average performance across all models had an accuracy of 95.62%,
sensitivity of 29.93%, specificity of 98.18%, PPV of 43.35%, area
under the ROC curve (AUC or C-statistic) of 0.709, and false
positive rate of 1.81% for predicting ASD in this dataset (Table 1.
Figure 2A,B).

Importance of features

The random forest model allows the identification of top features
that enable case classification (i.e., ASD vs. non-ASD) within the
multivariate model. Figure 2B shows the top 20 features ranked by
median variable importance after 10-fold cross-validation. Top
features included parental age differences, and parental number
of medications per year, as well as specific maternal and paternal
exposure to medications. These include paternal psychoanaleptics,
drugs for the treatment of blood conditions, antiparasitic medica-
tions, medications for genitourinary system and reproductive hor-
mones, as well as nutritive supplements, maternal endocrine
therapies, antheleminitics, gastrointestinal drugs, and antiobesity

preparations. Supplemental Tables S1 and S2 present rates of
exposure to the ATC-derived features in parents of ASD and
non-ASD children.

Sensitivity analysis

ML models are often prone to fitting to, or “memorizing,” specific
features or training examples, which can cause models to have poor
performance for novel samples; this is called model overfitting.
Additionally, imputation of missing data can lead to a potential
source of bias in our data. Since any missing features were imputed
in our training data, we investigated whether our models were
overfitting due to missing information. We included an additional
feature labeling cases with missing parental information in order to
observe the effect missing data had on predictive performance. The
models were then regenerated and evaluated. The models perform
similarly, in terms of AUC with or without the feature (Figure 3A
and Table 2). This indicates that our models are unlikely to be
overfitting to the lack of parental information. Notably, we observe
a decrease in the average number of false positives in the logistic
regression model, increasing its overall PPV from 33.5 to 43.6%
(Table 2). The random forest model, however, has decreased PPV
performance, from 57.2 to 52.9%. Finally, we also regenerated

Figure 2. Performance of machine learning-based autism spectrum disorder (ASD)-risk predictor. A balanced dataset was generated to train various algorithms to predict the
probability of anASDchild from theelectronicmedical recordof theparents. (A)Receiver operator characteristic (ROC) curves for allmethods tested: logistic regression, random forest,
and MLP. (B) Boxplot of importance values of each feature in the random forestmodel after 10-fold cross-validation (10� CV). Importance of a feature is defined as themean decrease
in Gini coefficient when training a model. Level 2 Anatomic Therapeutic Classification (ATC) codes are represented by an alphanumeric three-letter code.

Table 1. Performance of classifiers after 10-fold cross-validation

Model

True
positives
(TP)

False
negatives

(FN)

False
positives

(FP)

True
negatives

(TN) Sensitivity Specificity
Precision
(PPV)

False
positive

rate (FPR) Accuracy AUC

Logistic
regression

88.1 160.7 175.4 6,202 0.354 0.972 0.336 0.0275 0.949 0.727

MLP 74.8 172.7 126.7 6,252 0.301 0.98 0.393 0.0198 0.955 0.709

Random forest 60.5 188.3 45.6 6,332 0.243 0.993 0.572 0.00715 0.965 0.693

Average 74.5 173.9 115.9 6,262 0.299 0.982 0.434 0.018 0.956 0.709

Note: Average performance metric of each classifier including logistic regression, multilayer perceptron (MLP), and random forest tested after 10-fold cross-validation. Additionally, average
marks the average performance across all methods.
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models removing features derived from either all paternal or
maternal medication history (Figures 3B,C). These models have
lower C-statistic compared with those of models integrating both
data sources, indicating that EMR records from either parent may
explain only part of the risk of ASD in the offspring.

Discussion

This study of population-based representative data shows that ML
applied to EMRs could potentially identify a large proportion of
future ASD cases. In the sample studied here, almost one-third of
ASD cases could be predicted based on demographic and medical
characteristics of theirmothers and fathers. TheMLmodels achieved
high predictive performance using only routinely collected data in
EMRs and without molecular genetic screening. To the best of our
knowledge, this is the first study that applied ML on EMR data to
specifically predict ASD in a large population of children.

Unlike sensitivity and specificity, which are test properties,
precision estimates are affected by the rate of the outcome in the
population. Low rates of ASD could lead to low precision and high
false-positive rates, even in tests with high sensitivity and speci-
ficity, and this, therefore, limits the clinical utility of a prediction
algorithm. For example, screening for trisomy 21 in 20- to
30-year-old women (prevalence of approximately 1:1,200) [28],
has a precision of only 1.7% with a test with sensitivity higher
than 99% and specificity higher than 95% [28]. Despite the modest
sensitivity in this study (30%), the specificity was very high (98%),
and the precision in the study was acceptable (43%). Thus, our
approach may allow high accuracy in identifying patients. To

further limit the false positives in this group, additional screening
and assessment may be needed.

There are several potential explanations for the gains in the
prediction ability by ML. First, ML approaches can identify non-
traditional predictors of ASD from complex EMR data. Second,ML
methods combine nonlinear interactions between features, which
may not be captured by traditional modeling approaches
(e.g., logistic regression model) [29]. Third, we applied rigorous
approaches to minimize the potential of overfitting of the models.

The features, which had the strongest association with case
classification in the ML models, included several previously pro-
posed sociodemographic risk factors for ASD such as differences in
parental age [9] and parental number of medications [19]. Interest-
ingly, there were also various medication groups that were associ-
ated with ASD classification. We observed a relation with
psychoanaleptics, which has a mixed pattern of associations with
ASD-risk in previous studies [19,30,31]. We also observed a rela-
tion with nutritive supplements and reproductive hormones.
Increased and decreased risk of ASD has been previously reported
for medications from these groups [32,33]. Maternal metabolic
conditions and disruptions in the endocrine system have been
associated with ASD-risk [32,33], and contributed to case classifi-
cation. Taken together, the agreement between our most useful
features with previous studies analyzing ASD patients increases the
confidence in our combined approach.

Notably, the associations between drugs for the treatment of
blood conditions, antiparitic medications, medications for genito-
urinary system, anthelmintics, as well as gastrointestinal drugs that
showed importance for determining ASD-risk warrants further

Table 2. Performance of classifiers in sensitivity analysis

Model

True
positives
(TP)

False
negatives

(FN)

False
positives

(FP)

True
negatives

(TN) Sensitivity Specificity
Precision
(PPV)

False
positive rate

(FPR) Accuracy AUC

Logistic
regression

75.7 166 97.9 6,286 0.313 0.985 0.436 0.0153 0.96 0.716

MLP 77.1 167.9 116 6,265.5 0.314 0.982 0.404 0.0181 0.957 0.694

Random
forest

57.1 184.6 52 6,332.3 0.236 0.992 0.529 0.0081 0.96 0.687

Average 69.9 172.8 88.6 6,294.7 0.287 0.986 0.456 0.0138 0.959 0.699

Note: Average performance metric of each classifier including logistic regression, multilayer perceptron (MLP), and random forest tested after 10-fold cross-validation with “missing parental
information” label included. Additionally, average marks the average performance across all methods.

Figure 3. Sensitivity analysis of the generated machine learning models. (A) Receiver operator characteristic (ROC) curves for all methods tested with “missing parental
information” label included. (B) ROC curves ofmodels generatedwhen all parentalmedication data are removed. (C) ROC curves ofmodels generatedwhen allmaternalmedication
data are removed.
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research. Nevertheless, it is important to note that each feature,
individually, may not be a good predictor of ASD, as individual
features do not, by themselves, separate cases from controls with
high precision. As noted above, it is only in the context of the ML
algorithm(s) that the combinations of features appear predictive.

Finally, we observed that apparent ASD-risk can only be par-
tially explained using either only maternal or paternal EMR data.
Rather, the best predictive performance was obtained by training a
model combining both sources of information. This result provides
evidence that characterizing ASD incidence requires a multifaceted
approach integrating maternal and paternal risk factors.

Our study has several limitations. First, the ML approaches are
data driven and, therefore, depend on the accuracy of our data.
Although coding errors do occur, the rate of such errors in EMRs
has been shown to be very low (rate less than 1%) and accuracy of the
data in the Meuhedet health provider is continuously monitored for
completeness and accuracy of reporting. Second, the imputation of
missing data is a potential source of bias. However, the imputation by
random forest is known to be a rigorous technique [34]. Third, the
study lacked genetic information, which could provide amechanistic
interpretation of the results as well as improve prediction accuracy.
Nonetheless, the objective of the present study was to develop
ML-based prediction models that can harness available EMR data.
Future studies with genetic linked data are warranted. Finally, while
we showassociations between severalmedication groups andASD, it
is important to note that this does not provide evidence that these
therapeutics are causally related to ASD. Rather, parental usage
of these medications may be indicative of an underlying parental
genetic predisposition to ASD, or the modifying role of environ-
mental exposure on genetic predisposition.

The current study demonstrates the feasibility and potential of
routinely collected EMR data for the identification of future chil-
dren at high-risk of ASD. The results also show the potential utility
of data driven approaches for uncovering previously unidentified
risk factors for ASD. Although certainly not causal or perfect, our
results present reason for cautious optimism that recent develop-
ments in ML methodologies will be able to enhance the ability for
accurate and efficient early detection of ASD in large populations of
children, and allow interventions to be targeted to the small number
of individuals who are at greatest risk.
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