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Abstract: Arsenic (As) causes health concerns due to its significant toxicity and 

worldwide presence in drinking water and groundwater. The major sources of As pollution 

may be natural process such as dissolution of As-containing minerals and anthropogenic 

activities such as percolation of water from mines, etc. The maximum contaminant level 

for total As in potable water has been established as 10 µg/L. Among the countries facing 

As contamination problems, Bangladesh is the most affected. Up to 77 million people in 

Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it 

has become an urgent need to provide As-free drinking water in rural households 

throughout Bangladesh. This paper provides a comprehensive overview on the recent data 

on arsenic contamination status, its sources and reasons of mobilization and the exposure 

pathways in Bangladesh. Very little literature has focused on the removal of As from 

groundwaters in developing countries and thus this paper aims to review the As removal 

technologies and be a useful resource for researchers or policy makers to help identify and 

investigate useful treatment options. While a number of technological developments in 

arsenic removal have taken place, we must consider variations in sources and quality 

characteristics of As polluted water and differences in the socio-economic and literacy 

conditions of people, and then aim at improving effectiveness in arsenic removal, reducing 

the cost of the system, making the technology user friendly, overcoming maintenance 

problems and resolving sludge management issues. 
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1. Introduction 

Due to its significant toxicity arsenic (As) is a global concern as a pollutant of drinking water and 

groundwater, which has been reported in the USA, China, Chile, Bangladesh, Nepal, Vietnam, 

Taiwan, Mexico, Argentina, Poland, Italy, Finland, Spain, Canada, Hungary, New Zealand, Japan and 

India [1,2]. The major sources of As pollution may be natural process such as dissolution of As 

containing bedrock/minerals and anthropogenic activities e.g., percolation of water from mines, wood 

preservatives, agricultural chemicals and discharge from uncontrolled mining and metallurgical 

industry [3,4]. Due to its carcinogenic effects (e.g., cancers of skin, liver, lung, bladder), 

cardiovascular and neurological effects, and the immune problems of As after long-term or high-dose 

drinking water exposure, the European Union (EU), the United States (US) and the World Health 

Organization (WHO) have established a value of 10 µg As/L as the maximum contaminant level for 

total As in potable water [5–7]. 

Bangladesh is one of countries most affected by As contamination. More than 60% of the 

groundwater in Bangladesh contains naturally occurring As, with concentration levels often 

significantly exceeding 10 µg/L [6,8]. In recent decades, some 35–77 million people in Bangladesh 

have been exposed to toxic levels of arsenic from drinking water [9], while the total estimated 

population is about 164 million [10]. The sole dependency on groundwater for drinking purposes in 

rural Bangladesh, which represents nearly 75% of total population, has made the situation much worse. 

From the 1970s, in order to avoid using pathogen-contaminated surface water and to reduce 

waterborne diseases, the Bangladesh government, with the assistance from international aid agencies, 

began installing shallow (<150 m deep) groundwater tubewells throughout the country [11,12]. Since 

then, the number of hand pump tubewells has increased exponentially, reaching about 10 million in 

total [13]. Consequently, 97% of the population in Bangladesh depends on groundwater to access safe 

water via shallow tubewell extraction systems, which are favoured for the easy availability of aquifers, 

low-technology installation procedure and affordable cost [14]. Moreover, 85% of the total extracted 

groundwater is used for irrigation purposes to grow rice and vegetables in the dry season. 

Unfortunately, much of the groundwater extracted from these shallow alluvial aquifers is often 

enriched in arsenic. After an extensive As contamination episode in West Bengal, India during 1983, 

the Department of Public Health Engineering (DPHE) first detected As in well water in the western 

part of Bangladesh in 1993 [15,16], but the real scale of As contamination in Bangladesh was 

essentially unknown until 1998 when it was revealed during an International Conference on Arsenic 

held in Dhaka that 66% and 51% of the 8,065 tubewell water samples collected from 60 out of 64 

districts contained As levels above the Bangladesh (50 µg As/L) and WHO (10 µg/L As) standards for 

drinking water, respectively [17]. In 1999, the British Geological Survey (BGS) along with DPHE 

reported that 46% and 27% of the 3,534 analyzed tubewells (which amounts to about 0.03–0.05% of 

all tubewells) across the country, excluding the Chittagong Hill Tracts, exceeded the As guideline 
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value, and an estimated 57 and 37 million people are at risk of exposure to unacceptable drinking 

water As levels of above 10 µg/L and 50 µg/L, respectively [18]. Recently, Chakraborti et al. [19] 

have presented a complete picture of groundwater As poisoning of all 64 districts in Bangladesh. 

Based on the water analysis of 52,202 hand tubewells (about 95% samples were collected and 

processed from 1996–2002), the authors noted that 42.1% and 27.2% of the samples had As 

concentrations above 10 µg/L and 50 µg/L, respectively, and 7.5% of well waters surprisingly 

contained As above 300 µg/L, the threshold concentration associated with arsenical skin lesions [20]. 

Moreover their study mentioned that, approximately 80 million people were vulnerable to groundwater 

As contamination above the WHO permissible limit of 10 µg/L. 

Therefore, it is an urgent need to provide Bangladesh rural households with As-free drinking water. 

In this regard, different approaches could be applied such as treatment of surface water (typically low 

in As), rainwater harvesting, treatment of pond waters, use of deeper (>150 m deep) wells to extract 

low-As groundwater, and above all, exploring low-technology, low-cost, locally fitted systems for 

arsenic removal from groundwater, but all of these approaches are associated with some practical 

problems in terms of applicability, economy, infrastructure requirements, generic dissemination and 

future sustainability, although the last one has received considerable attention over the last two 

decades due to the possibility of wide-scale application in the field. For example, treatment of surface 

water involves setting-up industrial-scale water purification and distribution plants which are 

expensive, time-consuming and investment-intensive, particularly for rural Bangladesh [13,21]. Since 

water extracted from deeper aquifers typically contains much lower As concentrations [22], 

exploitation of such aquifers in the Bengal Basin could serve as a source of As-safe water for domestic 

use in the short-term or on a limited basis [23,24]. This is because most of the Bengal Basin is highly 

vulnerable to downward migration of high-As shallow groundwater caused by increased withdrawals 

of deeper groundwater for irrigation [25]. Rainwater harvesting can be used as a source of clean water 

for use by individual households, but the initial cost to install such a system may not be feasible for 

many rural families [13,26]. Moreover, it may not be a feasible option to abandon millions of  

As-contaminated shallow tubewells, rather than finding a suitable As-remediation technology to utilize 

these existing wells as clean water sources. 

Several arsenic removal technologies have been tested so far for As remediation, including ion 

exchange, activated alumina, reverse osmosis, membrane filtration, modified coagulation/filtration, 

and enhanced lime softening [27,28]. However, for any effective technology to be appropriate for use 

in affected areas of developing countries like Bangladesh, it should ideally be simple, low cost, 

versatile, transferrable, and should be adaptable to both point of use (PoU) household units and 

community-based application [26]. In this regard, Berg et al. [28] mentioned that none of the US 

Environmental Protection Agency (USEPA) recommended technologies are practical in low income 

regions as they require sophisticated technical systems and hence, these are not currently applied on a 

broad scale in developing countries. The most common and useful technologies that have been utilized 

for As removal in Bangladesh as well as in other developing countries are based on oxidation,  

co-precipitation and adsorption onto coagulated flocs, and adsorption onto sorptive media [29]. 

According to Jiang [30], these technologies could be the cost-effective for removing As for the 

developing world.  
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Considering the serious arsenic contamination in Bangladesh groundwater and the fact there is 

scarce literature providing an overview on the recent arsenic contamination status and feasible 

treatment technologies, this paper then aims to review comprehensively the recent arsenic As 

contamination status, its sources and reasons for mobilization, exposure pathways in Bangladesh as 

well as As removal technologies that are to be applied in Bangladesh, making this a potentially useful 

resource for researchers or policy makers to identify and investigate the most promising treatment 

options. 

2. Arsenic in Water: Occurrence and Speciation 

As is found in aqueous environments predominantly in the 3+ (As(III), arsenite) and 5+ (As(V), 

arsenate) oxidation states, however, other oxidation states i.e., 0 (arsenic), 3− (arsine) can also be exist. 

It mainly occurs due to natural and anthropogenic reasons. Among the natural sources, arsenic 

disulphide or realgar (As2S2), arsenic trisulphide or orpiment (As2S3) and arsenopyrite or ferrous 

arsenic sulphide (FeAsS) are considered as the main mineral sources of As, although there are over 

245 species of As-containing minerals [12]. As can be determined in water both in the inorganic and 

organic forms, while the latter are quantitatively insignificant and are found mostly in either waters or 

in areas severely affected by industrial pollution [31]. Inorganic arsenic species (arsenite and arsenate) 

are the dominant forms that are usually detected in groundwater and these are more toxic than organic 

ones (e.g., methylated arsenic) [15]. 

The speciation of inorganic As species is important when considering toxicological studies and 

remediation techniques, particularly since the latter is highly species dependent. Two factors (pH and 

redox potential) are very important in controlling As speciation [2]. As5+ species (H3AsO4, H2AsO4
−, 

HAsO4
2−, and AsO4

3−) are dominant under oxidising conditions, with H2AsO4
− dominates at low pH 

(pH < 6.9) and HAsO4
2− at higher pH, while H3AsO4 and AsO4

3− may occur in extremely acidic and 

alkaline conditions, respectively. On the contrary, As3+ species (H3AsO3, H2AsO3
−, and HAsO3

2−) are 

stable under reducing (or anoxic) conditions, with the most common being the uncharged species 

H3AsO3 at pH < 9.2 [2,31]. 

The ratio of As3+ to As5+ in groundwaters is highly unstable due to the variations in the availability 

of redox active solids, especially organic carbon, the activity of microorganisms, and the extent of 

convection and diffusion of oxygen from the atmosphere. For example, the proportion of As3+ in  

As-rich reducing groundwater of Bangladesh is about 10–90% of the total As concentration, with 

typical ranges around 50–60% [31]. Due to the presence of uncharged As3+ species in reducing 

environments under a wide range of pH values (0–9), most of the sorption techniques can hardly 

remove As3+. In this regard, the contaminated water where As3+ is the dominant species needs to be 

pre-treated by oxidation. In the presence of sulphide, dissolved As-sulphide species can be significant 

due to precipitation of orpiment (As2S3), realgar (AsS) or other sulphide minerals containing 

coprecipitated As under favourable reducing and acidic conditions, and thereby, considerable control 

over trace As-concentration can be achieved [30,31]. Moreover, As reacts with iron and manganese 

hydroxides, when these oxides are present in both groundwater and surface water, and subsequently is 

immobilized through adsorption-coprecipitation. However, As is susceptible to mobilize when As 

coprecipitated iron or manganese solids are dissolved under reducing conditions, or released from the 
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precipitate surfaces in the presence of orthophosphate and natural organic matter (NOM) due to 

competition for sorptive surface sites [30]. 

3. Contamination Level of As and Vulnerable Areas 

The distribution of As with mean concentration (as shown by contour lines) in groundwater of 

Bangladesh is presented in Figure 1, where the bar diagrams beside each of the 64 districts represent 

the contamination levels by showing percentage distribution of analyzed tubewells samples in four As 

concentration ranges (<10 to ≥100 µg/L). It is seen from Figure 1 that almost all of the surveyed 

districts are contaminated with As (>10 µg/L), except for four districts (Rangamati, Khagrachari, 

Bandarban and Cox’s Bazar) out of 64 from the Hill tract regions of Chittagong division. However, ten 

contaminated districts out of 60 under the Rangpur (Panchagarh, Kurigram, Lalmanirhat, Nilphamari, 

Dinajpur), Rajshahi (Joypurhat, Naogaon) and Barisal (Barguna, Bhola, Patuakhali) divisions, 

respectively, showed that a limited percentage (1–20%) of analyzed samples were contaminated in the 

range of 10–50 µg/L. The most affected regions with As contaminated aquifers are the southeast 

(Meghna floodplains) and southern (coastal area of Khulna division) parts of Bangladesh (Figure 1). 

The major affected districts are distinguished based on the frequency (>50%) of the samples identified 

with As concentrations of more than 50 µg/L and among these, Satkhira, Munshiganj, Chandpur, 

Laksmipur, Noakhali can be regarded as the most vulnerable to As contamination due to their 

abundant availability of groundwater samples with As concentrations ≥100 µg/L (observed from 70–

90% of the total analyzed samples) (Table 1). These findings based on the data from [19] are in good 

correspondence with others [12,15,18], thus confirming the updated As contamination status in 

Bangladesh. In this respect, one important matter to consider is the method of As detection in water 

samples, because both field-kit and laboratory tests were employed by many government and  

non-government organizations to identify the As contaminated water wells. Although both of the tests 

provide the same indication of the general geographical distributions of As contamination, field test 

kits have the limitation of detecting As contaminated groundwater with concentrations between 50 and 

200 µg /L [32], so the current study is perhaps giving a reliable picture of the As contamination 

scenario (Figure 1), since it involves test results based on laboratory analysis of 52,202 representative 

water samples from all 64 districts of Bangladesh. According to Chakraborti et al. [19], the estimated 

population exposed to As contaminated water above 10 and 50 µg/L, could be above 36.6 million from 

59 districts and 22.7 million from 50 districts, respectively. Ironically, a real fact is that one in five 

deaths in Bangladesh could be attributed to As exposure (>10 µg/L) in drinking water, as published 

recently in The Lancet from a 10 year study conducted by international team of researchers, and the 

WHO has described the phenomenon of As crisis in Bangladesh as “the largest mass poisoning of a 

population in history” [9]. 
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Figure 1. Arsenic (As) concentrations in groundwater of Bangladesh, showing all 64 

districts under seven administrative divisions. N = 52,202 tubewells samples; where  

n = 6,787, 11,814, 12,169, 1,101, 5,999, 13,597 and 735 were representative samples of 

Rangpur, Rajshahi, Khulna, Barisal, Chittagong, Dhaka and Sylhet divisions, respectively 

(data source: [19]). 
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Table 1. Major As contaminated districts with >50% analyzed samples exceeding 

Bangladesh guideline value (50 µg/L) [19]. 

Division 
District (number of sampled wells in 

parenthesis) 

Severely affected with As 
concentration ≥100 µg/L  

(% samples) 

Khulna Bagherhat (371), Narail (371), Satkhira (532) Satkhira (~70%) 

Barishal Barisal (803) Barisal (~59%) 

Sylhet Sunamganj (89) * 

Dhaka 
Gopalganj (384), Madaripur (2,309), Munshiganj 

(151), Narayanganj (412) 
Munshiganj (~80%) 
Narayanganj (~68%) 

Chittagong 
Brahmanbaria (47), Chandpur (1,165), Comilla 

(545), Lakshmipur (2,662), Noakhali (843) 

Chandpur (~90%) 
Lakshmipur (~70%)  

Noakhali (~85%) 
Comilla (~69%) 

* The percentage of analyzed samples in the given region was less than 50% for exceeding Bangladesh 

guideline value (50 µg/L). 

4. Sources, Distribution and Mobility of As 

It is now accepted that the major sources of arsenic contamination in the groundwater of 

Bangladesh are geological deposits, and its release occurs through natural processes [12,32,33], 

although a number of anthropogenic sources (e.g., use of fertilizers, pesticides, insecticides, and 

herbicides containing arsenic; use of arsenic compounds as preservatives in wooden electric poles of 

the Rural Electrification Board; tubewell filters coated with arsenic compound; industrial waste 

disposal; and enhanced leaching beneath irrigated lands) were initially considered for such occurrence [15]. 

The As-enriched aquifers are generally shallow (<100 m deep), of Holocene age and consist of 

unconsolidated grey micaceous sands, silts and clays deposited as alluvial and deltaic sediments by the 

Ganges, Brahmaputra and Meghna (G-B-M) rivers [23,31]. The G-B-M river system originated from 

the Himalayas and acts as an important drainage system in the Bengal Delta Plain (BDP) by 

channelling suspended solids (1,060 million tons), water (1,330 km3) and dissolved particulates  

(173 million tons) to the Bay of Bengal [34]. Thus, the Bay of Bengal receives a maximum amount of 

sediments from this river system containing several trace elements, including arsenic. 

Although it is largely agreed by the researchers that dissolved arsenic in the groundwater of 

Bangladesh originates from the sediments, there is no evidence of widespread, unusually high levels of 

solid phase arsenic in the aquifer material [35], except the range reported as <2–20 mg/Kg; only 

slightly higher than typical sediments (2–6 mg/kg) [32]. So, this leads to the fact that high dissolved 

arsenic in groundwater is associated with particular hydrologic and biogeochemical conditions that 

partition arsenic from the solid to aqueous phase, with the existence of arsenic in a potentially soluble 

form. The distribution of arsenic in Bangladesh groundwater is closely related to the major  

geo-morphological units, namely: Tertiary hills, Pleistocene uplands and Holocene plains, and the  

As-enrichment is mainly restricted to the Holocene alluvial aquifers at shallow and intermediate  

depths [36]. This corresponds well with the most As-affected regions (Figure 1) in Bangladesh, i.e., 
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central, south and south-eastern parts that are essentially Holocene deltaic and flood plains under the  

Padma-Meghna sub-basin. The lithology of these areas is composed of grey clay, silt, fine sand with 

occasional peats and gravels. The aquifers are generally characterized as highly transmissive and 

multi-layered, varying from unconfined to leaky-confined in the shallow alluvial deposits, and 

confined in the deeper alluvial deposits [37]. The strata of the aquifer system can be differentiated as 

(from top to bottom): upper aquifer (shallow) or composite aquifer composed of very fine to fine sand 

(extends down to 40–60 m below ground surface); main aquifer, known as main water-bearing zone, 

and consisting of medium to coarse sand with occasional gravel (occurs down to a depth of about 140 m), 

and a deeper aquifer or deeper water-bearing unit that occurs at depths >150 m, and consists of 

medium to coarse sand interbedded with fine sand, silt and clay. This zone is separated from the 

overlaying main aquifer by one or more clay layers of variable thickness [38]. However, much of the 

aquifer system in Bangladesh is simply known as shallow aquifer (typically extending from 10 to 70 m 

below ground level) and deeper aquifer below about 200 m [32]. Groundwater samples from depths 

between 20 and 50 m were observed to have the maximum As concentrations, whereas those from 

depths shallower than 10 m and deeper than 150 m tend to be mainly As-free [18]. Such variation and 

availability of As concentrations with depth can be explained by resorption of As onto residual  

iron-oxyhydroxides (FeOOH) [39], and by the nature of the aquifer sediments [40]. Moreover, it is 

reported that mineralogical characteristics of the sediments and their interactions with the aqueous 

phase under varying redox states reflect the differential concentrations of As [34]. 

In Bangladesh, the mode of occurrence and distribution of As in groundwater aquifers has been 

studied widely in the recent decades. In this regard, various geo-chemical parameters of the subsurface 

aquifers and their relationships with As have been determined in a number of studies to understand the 

mobility mechanism of As in groundwater [23,40–44]. Although several hypotheses, including:  

(1) reductive dissolution of iron-oxyhydroxides which releases sorbed As; (2) oxidative dissolution of 

As-rich pyrite, and (3), anion exchange of sorbed As by increasing concentration of phosphate (PO4
3−) 

from fertilizers, have been proposed to explain the problem of As-enrichment, the right one is still not 

clear [45]. However, it has been widely reported that microbially mediated reductive dissolution of 

Fe(III) oxyhydroxides (i.e., hypothesis 1), facilitated by electron donors, e.g., organic matter and/or 

dissolved organic carbon (DOC), under moderate to strong reducing conditions is the primary 

mechanism to release As in groundwater of the Holocene deltaic aquifers [36,37,41,42]. At the 

beginning of the As problem in Bangladesh, it was an accepted hypothesis that oxidation of arsenic-rich 

pyrite by atmospheric oxygen act was the dominant process to mobilize As due to lowering of water 

table following excessive pumping of groundwater [36], but the reducing environment of subsurface 

aquifers with low concentrations of SO4
2− in groundwater samples, and the inverse relationship 

between dissolved As and SO4
2− concentrations, suggest that pyrite/sulfide oxidation is not the major 

process for As release [43,44]. Moreover, if pyrite oxidation were true, it’s As would be occluded in 

the resulting Fe-oxyhydroxide, rather than released to groundwater [46]. Nevertheless, some other 

factors, such as stimulated microbial activity by inflow of organic carbon from excessive withdrawal 

of groundwater due to irrigation pumping, competition for sorption sites with As by relatively high 

concentrations of phosphate from application of phosphate fertilizer, and dissolution of other solid 

phases (e.g., phyllosillicate minerals) can also be associated with As mobilization in Bangladesh 

groundwater [36,42]. 
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Table 2. Average groundwater composition of the most As contaminated areas* in the 

Bengal Delta Plain (BDP) in Bangladesh. 

Aqueous parameters  
Measured range+ (Mean value ± SD)++ 

Shallow aquifer (10–69 m), N = 89 Deep aquifer (70–260 m), N = 34 

pH 6.4–7.9 (7.1 ± 0.2), n = 88 6.5–7.3 (7.0 ± 0.2), n = 34 
EC (µS/cm) 410–3,650 (1,003.7 ± 637.7), n = 60 317–3,410 (960.8 ± 638.7), n = 28 
ORP (mV) +95 to −2 (30.1 ± 28.4), n = 27 24–90 (46.2 ± 22.0), n = 9 
DO (mg/L) <0.1–2.1 (0.6 ± 0.8), n = 39 <0.1, n = 9 
Na+ (mg/L) 8–480 (48.4 ± 71.5), n = 72 7.9–280 (62.3 ± 61.2), n = 28 
K+ (mg/L) 2.4–20 (7.2 ± 3.4), n = 72 3.2–26.1 (7.7 ± 5.2), n = 28 

NH4
+ (mg/L) 0.7–19.9 (7.9 ± 5), n = 56 0.1–10.3 (2.8 ± 2.9), n = 15 

Ca2+ (mg/L) 12–174.1 (82.4 ± 41.5), n = 83 7–211 (59.2 ± 41.3), n = 32 
Mg2+ (mg/L) 11–105.7 (29.1 ± 17.0), n = 72 14–110 (30.6 ± 19.7), n = 28 

HCO3
− (mg/L) 220–931.4 (494.5 ± 134.2), n = 72 184–697 (359.7 ± 137.4), n = 28 

Cl− (mg/L) 1.9–695 (46.3 ± 91.3), n = 72 1.5–797 (97.1 ± 161.8), n = 28 
NO3

− (mg/L) <0.03–5.9 (1.2 ± 1.7), n = 72 <0.03–7.1 (2.0 ± 2.3), n = 29 
SO4

2− (mg/L) <0.01–34 (3.4 ± 6.4), n = 72 <0.01–46 (8.1 ± 10.8), n = 29 
PO4

3− (mg/L) 0.46–15 (4.9 ± 3.2), n = 60 0.05–5.5 (1.5 ± 1.6), n = 29 
As (µg/L) 22–1,000 (373.7 ± 244.1), n = 89 0.2–170 (48.0 ± 52.6), n = 34 
Fe (mg/L) 0.06–22.2 (7.2 ± 4.8), n = 89 0.01–17.5 (3.0 ± 4.2), n = 34 
Mn (mg/L) 0.02–2 (0.7 ± 0.5), n = 43 0.06–2.9 (0.6 ± 0.8), n = 22 

DOC (mg/L) 0.64–15 (4.3 ± 3.0), n = 72 0.2–12 (2.5 ± 2.6), n = 28 

EC = electrical conductivity, ORP = oxidation reduction potential, DO = dissolved O2, DOC = dissolved 

organic carbon, SD = standard deviation; * The sample locations include the As-affected areas under the 

districts of Noakhali (n = 2), Magura (n = 2), Brahmanbaria (n = 7), Laksmipur (n = 10), Munshiganj  

(n = 31), Faridpur (n = 11), Chandpur (n = 23), Narayanganj (n = 35) and Jhenaida (n = 2) along the eastern 

margin of the Bengal Basin (Padma-Meghna sub-basin, N = 123); + Data source: [16,37,41,43,44]; ++ Values 

calculated based on the mentioned data source. 

An average groundwater composition for the locations recognized as mostly As contaminated along 

the eastern margin of the Bengal Basin under the Padma-Meghna sub-basin is given in Table 2. Under 

the shallow aquifer (N = 89), 93% of the groundwater sampling points had As concentrations of more 

than 50 µg/L (the allowable limit of As in Bangladesh), while the same figure was 44% in the case of 

deep aquifers (N = 34). In the deep aquifers, most of the As contamination occurred between the 

depths of 70 to 100 m, while depths >150 m were mainly As-free, so it is believed that Table 2 

provides a reliable picture of the groundwater composition of the As-enriched aquifer, having a good 

number of representative data from [37,41,43]. From Table 2, it is revealed that the groundwater is 

characterized by circum-neutral pH with a moderate to strong reducing nature, as demonstrated by low 

concentrations of nitrate (NO3
−) and sulfate (SO4

2−), and high concentrations of DOC, dissolved iron 

(Fe2+) and ammonium (NH4
+) ions (Table 2). Moreover, the ORP value ranged between +95 to −2 mV, 

clearly indicating the reduced conditions, as the value between 0�200 mV is categorized as reduced 

condition [47,48]. The waters are generally of Ca-Mg-HCO3 or Ca-Na-HCO3 type, with HCO3
− as the 

dominant anion (220–931 mg/L). The distribution of the major cations such as Ca (12–174 mg/L), Mg 

(11–106 mg/L), Na (8–480 mg/L) and K (2.4–20 mg/L) shows significant variations with depth as well 
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as by region. Considerable differences are also observed in the concentration range of As (22–1,000 µg/L), 

Fe (0.06–22 mg/L) and Mn (0.02–2 mg/L) as a function of both depth and region in the groundwater 

samples (Table 2), which can be attributed to varying redox states at shallow depth within the aquifer. 

The concentration of PO4
3− is observed to be in the range between 0.46 to 15 mg/L (Table 2), and this 

may result either from microbially mediated reductive dissolution of Fe(III)-oxyhydroxide [39] or 

from widespread application of P enriched fertilizers [34,43]. The correlation between As and other 

potential aqueous parameters has been well documented, and it was found that there exists a moderate 

to strong positive correlation between the pairs of As and Fe (r2 = 0.6), As and HCO3
− (r2 = 0.71), As 

and PO4
3− (r2 = 0.75), As and DOC (r2 = 0.83), Fe and PO4

3− (r2 = 0.67), Fe and DOC (r2 = 0.72), DOC 

and PO4
3− (r2 = 0.83), and DOC and HCO3

− (r2 = 0.57), respectively [43]. Moreover, low 

concentrations of both NO3
− and SO4

2− with negative correlation with As (r2 = −0.36 and r2 = −0.096, 

respectively) were observed [44]. These relationships demonstrate that reductive dissolution of  

Fe(III)-oxyhydroxides with microbially mediated degradation of organic matter acts as the dominant 

mechanism of As release to groundwater. 

5. Exposure Pathways and Health Effects of Arsenic 

Arsenic (As) is a Class “A” human carcinogen as classified by the USEPA and its presence in the 

environment at specific concentrations, either as a dissolved contaminant in water, food web 

bioaccumulation, or as an inhaled particulates in the atmosphere, is of great concern to the wellbeing 

and health security of humans, with the situation being at its worst in Asia [49,50]. The ingestion of As 

into the human body takes place either by direct intake of arsenic rich water (via drinking or cooking 

foods) or by indirect intake through crops grown using arsenic-contaminated water. A flow chart of 

such arsenic exposure pathways is shown in Figure 2. 

Figure 2. Flow chart of arsenic (As) intake by human (after [51]). 
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For example, through direct drinking of arsenic contaminated water with a concentration at  

50 µg/L, an adult would become intoxicated with 200–300 μg of As per day, because the average 

range of water consumption by the adult of Bangladesh is 4–6 litres in a day [52]. On the other hand, 

indirect exposure of As through the human food chain is another important issue of concern [53].  

In this process As levels in soils can reach up to 83 μg/g in comparison to background levels of As in 

soils (4–8 µg/g), when the crop lands are irrigated with arsenic-contaminated groundwater [52]. Thus, 

primarily in the dry season, over 1,000 tonnes of As are transferred to rice fields through irrigation 

each year in Bangladesh [54]. This factor equally poses a potential public health problem as paddy rice 

is inherently a more efficient accumulator of As, probably through the highly efficient pathway for 

silicon, than other cereal crops [49,55]. Rice is the most important cereal and staple food for the people 

of Bangladesh who eat an average of 450 g rice a day [52], thus ingestion of rice is by far the dominant 

source (i.e., 50–70% of the total meal) of As poisoning pathway for populations exposed to low or no 

As in drinking water [50,56]. It is estimated that the daily consumption of rice with a total arsenic level 

of 0.08 μg/g (dry weight) contributes an equivalent drinking water arsenic level of 10 μg/L [51]. 

Evidence of As uptake by other foodstuffs has been reported in several studies which also represent 

potential sources of dietary arsenic exposure [52,53,57]. Of relevance, some vegetables of Bangladesh 

contained total As levels between 5 and 540 μg/kg, with a mean of 54.5 μg/kg, which was 

approximately 2- to 3-fold higher than those observed for the vegetables of United Kingdom (U.K.). 

High amounts of As have also been detected in fishes of freshwater origin (i.e., up to 1,318 μg As/kg, 

with a mean of 580 μg As/kg), although marine fish and shrimp were shown to have lower levels, i.e.,  

214–266 μg As/kg [53]. A comparison of As concentrations among different food composites of 

Bangladesh and other countries are shown in Table 3. In addition, food preparation with As-contaminated 

water is associated with an increased total As content, thus 10–35% higher arsenic was noted with 

cooked rice than that of raw rice, in arsenic-contaminated areas of Bangladesh [58]. However, the 

retention of total As in cooked rice can be kept lower by the use of water containing low level of 

arsenic, and following the cooking method with “excess water and discarding the concentrated cooking 

water” [52]. 

While large-scale arsenic contamination in Bangladesh was first confirmed in 1993, reliable 

estimates of the magnitude of arsenic exposure and its related health problems are still insufficient [66]. 

However, epidemiological studies on the public health effects of arsenic exposure from drinking water 

suggested a carcinogenic effect, evidenced by an increased risk of cancers of the skin, lung, bladder, 

liver and kidney, and a contaminant level of 50 µg As/L could lead to cancer in 1 in 100 individuals.  

In the case of chronic poisoning, this deadly element accumulates in hair, skin and nails, resulting in 

strong pigmentation of hands and feet (i.e., keratosis), high blood pressure, and cardiovascular, 

respiratory, endocrine, neurological and metabolic dysfunctions/disorders [50,66–69]. Even exposure 

to As levels of 8.1–40.0 µg/L has been linked to skin lesions, which often develop within 5–15 years 

of exposure, although this risk appears to be influenced by host factors such as gender, age and body 

mass index [70]. Moreover, lower levels of As intake from drinking water, which is a widespread 

source of exposure worldwide, may play a role in the prevalence of diabetes [71], and significantly 

impair the immune response to diseases (i.e., respiratory influenza A virus infections in mouse) 

suggesting an increased risk of lung disease in exposed human populations [72]. An abnormal growth 

of cells, i.e., neoplastic transformation, may arise due to the chronic ingestion of small amounts of 
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inorganic arsenic (iAs), while a single 100 mg dose of iAs is enough to shut down energy metabolism [73]. 

If daily consumption of 1.6 liters of water contains iAs concentrations of 50 μg/L then the risk of 

cancer-death may be 21/1,000 [74]. Due to As exposure during pregnancy (exposure prevalence:  

25–50% at drinking water level higher than 50 µg/L), the deaths of infants may reach up to 250,000 

per year in Bangladesh [75]. Additional As-induced effects such as fatal loss and adult disease 

mortality have also been observed [66], with studies pointing out that As can account for 21.4% of all 

deaths among exposed populations [9]. Nevertheless, the full burden of As exposure in Bangladesh 

remains to be fully understood. 

Table 3. Arsenic contents (μg/kg) in food composites from different countries. 

Foodstuffs Total As (μg/kg) Reference 

 Mean (Range)  

Vegetables 
Bangladesh a (70–3,990) [59] 
Bangladesh 54.5 (<5–540) [53] 

Europe (<5–87) [53] 

UK (Food Standards Agency) 
2 for green vegetables 

4.9 for other vegetables 
[60] 

Rice 
Australia 30 (20–40) [61] 

Bangladesh 500 (30–1,840) [62] 
China 140 (20–460) [57] 

West Bengal (India) 140 (20–400) [63] 
USA 250 (30–660) [57] 

Bangladesh a 496 (58–1,830) [62] 
Chinaa 930 [64] 

West Bengal (India) a 250 (140–480) [63] 
 330 (180–430) [65] 

Fish and shrimp 
Bangladesh b (214–266) [53] 
Bangladesh (97–1318) [53] 

Other foods 
Bangladesh (Betel leaf) 45.9 (44.9–46.9) [53] 

a Samples were collected from arsenic-affected area; b Marine species. 

The assessment of exposure to As typically include measurements of several biomarkers such as 

blood, hair, nail, or urinary concentrations of arsenic (or metabolites). Blood As is only a useful 

biomarker in the case of acute arsenic poisoning or steady chronic high-level exposures [69]. Since As 

is cleared from the bloodstream relatively quickly and excreted via the kidneys, therefore, blood and 

urine are a good indication of recent exposure to As [76]. Hair and nails levels are suggestive of long-term 

exposure, but these signs do not provide the information about the dose ingested [50]. The dietary 

exposure to As from food supply can be known if urine As levels reach 50 mg/L [77]. As a biomarker 

of early effect, the complementary use of micronuclei assays (or chromosomal aberrations) may 

provide a better understanding of the toxicity of arsenic-induced health hazards [50]. 
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6. Treatment Processes for Remediation of As Contaminated Water 

A variety of treatment technologies for the removal of arsenic from ground water have been 

studied; which were based either on the laboratory or on the site scale work. These technologies are 

mainly based on oxidation, co-precipitation, sorption, filtration, and ion exchange. The aims of this 

section are to review and update the recent advances made in the technological development in arsenic 

removal technologies to explore the potential of those advances to address the problem of arsenic 

contamination. Especially, attention is paid to address the efficiency and applicability/appropriateness and 

the economic, robustness and social acceptability of the various technologies. 

6.1. Co-Precipitation, Coagulation, and Filtration 

In the water treatment plants of Hanoi City  (Vietnam), activated hypochlorite was introduced after 

the aeration tank in the conventional water treatment process which was able to oxidise As(III) to 

As(V) and then to lower arsenic concentrations below the standard level (<0.05 mg/L) with relatively 

low Fe concentration (5 mg/L) [78]. Pilot scale investigations indicated that the removal efficiency of 

As in the pilot test system was much higher than that in the laboratory experiments. To reduce As 

concentrations to the levels lower than the standard level of 0.05 mg/L, initial Fe/As concentration 

ratios used in the pilot system and laboratory experiment were 16 and 50, respectively. 

Community-scale arsenic removal units were developed and installed in West Bengal (India) to 

treat arsenic-containing groundwater [21]. Figure 3 shows the unit structure and the associated 

reactions. It consists of a stainless steel column filled with two types of adsorbents. The raw water inlet 

is located at the top and the treated water is collected from the bottom of the column. The raw water 

inlet is designed with a spray head and splash plates so that small water droplets are formed at the 

entry point. Also, the top part of the column is designed with a large void space with vent connections 

that allow the air to get dissolved in the water droplets. The dissolved air helps oxidize the ferrous iron 

in the raw water to form fine precipitates of hydrated ferric oxide (HFO). 

Figure 3. The community-scale arsenic removal unit (after [21]). 
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Freshly precipitated HFO can selectively bind both arsenites and arsenates through formation of 

bidentate and/or monodentate inner-sphere complexes where Fe(III) serves as electron-pair acceptor.  

A significant portion of influent arsenic is adsorbed by the freshly formed HFO precipitates inside the 

column. The remaining arsenic in the water is removed by a bed of adsorbent provided at the bottom 

part of the unit. Activated alumina or hybrid anion exchanger (HAIX) [79] were used for most of the 

units. 

The desired treated water flow rate from the arsenic removal unit is 10–12 L/min. The flow rate, 

however, diminishes over time due to the precipitation of the HFO particles within the bed. 

Backwashing of the column every other day to drive out the HFO particles is necessary to maintain a 

good flow rate through the column. The arsenic-laden HFO particles in the waste backwash are 

trapped on top of a coarse sand filter provided in the same location. 

Depending on the arsenic and iron concentration in the raw water, the arsenic removal units 

produce an average about 10,000 bed volumes of treated water before the concentration of arsenic in 

the treated water exceeds the maximum contaminant level (MCL) which is currently set at 50 µg/L in 

India or Bangladesh. Once the arsenic concentration in the treated water exceeds the MCL, the 

exhausted adsorption media is removed from the unit and taken for regeneration at a nearby central 

regeneration facility. The operation of the arsenic removal unit is resumed with another adsorption 

media which is already regenerated. The adsorbents were regenerated in a central facility by a few 

trained villagers. The process of regeneration reduces the volume of disposable arsenic-laden solids by 

nearly two orders of magnitude and allows for the reuse of the adsorbent material. Finally, the  

arsenic-laden solids are contained on well-aerated coarse sand filters with minimum arsenic leaching. 

The continued safe operation of these units has amply demonstrated that use of re-generable  

arsenic-selective adsorbents is quite viable in remote locations. 

As one of recent development in the field of As removal by filtration, the applicability of 

manganese-coated sand (MCS) and iron-coated sand (ICS) for the treatment of As(III) via oxidation 

and adsorption processes was investigated [80]. From a bench-scale column test, a column reactor 

packed with both MCS and ICS was found to be the best system for the treatment of As(III) due to the 

promising oxidation efficiency of As(III) to As(V) by MCS and adsorption of As(V) by both MCS and 

ICS. From these bench-scale results, the treatment of synthetic wastewater contaminated with As(III) 

was investigated using a pilot-scale filtration system packed with equal amounts (each 21.5 kg) of 

MCS at the bottom and ICS on the top (Figure 4). The height and diameter of the column were  

200 and 15 cm, respectively. As(III) solution was introduced into the bottom of the filtration system, at 

a speed of 5 × 10−3 cm/s, over 148 days. The breakthrough of total arsenic in the mid-sampling (end of 

the MCS bed) and final-sampling (end of the ICS bed) positions began after 18 and 44 days, 

respectively, and showed complete breakthrough after 148 days. Although the breakthrough of total 

arsenic in the mid-sampling position began after 18 days, the concentration of As(III) in the effluent 

was below 50 μg/L for up to 61 days. This result indicates that MCS has sufficient oxidizing capacity 

for As(III), and 1 kg of MCS can oxidize 93 mg of As(III) for up to 61 days. When the complete 

breakthrough of total arsenic occurred, the total arsenic removed by 1 kg of MCS was 79.0 mg, 

suggesting MCS acts as an adsorbent for As(V), as well as an oxidant for As(III). From this work, a 

potential full scale filtration system can be used to simultaneously treat As(III) and As(V). 
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Figure 4. Schematic apparatus of reactive sand filtration tower (RSFT) (scale unit: mm) 

(initial As(III) = 1.0 mg/L, Q = 22.5 mL/min) (after [80]). 

 

6.2. Precipitation and Filtration Unit at Household Scale 

A field study was performed to test a simple household arsenic removal system by precipitation and 

filtration in seven households in Bangladesh [81]. The household filtration process included  

co-precipitation of arsenic by adding a packet (approximately 2 g) of ferric and hypochlorite salts to 20 L 

of well water and subsequent filtration of the water through a bucket sand filter. Ferric hydroxides 

were required with the Fe/As ratios of greater than 40 (mg/mg) to reduce arsenic to less than 50 μg/L, 

because the presence of elevated phosphate and silicate concentrations decreased the removal of As 

due to they compete with As(V) for ferric hydroxide sorption sites. Experimental results obtained from 

the participating families proved that the household treatment process removed arsenic from 

approximately 87–313 μg/L in the well water to 1.9–21.8 μg/L in the filtrate, which were much less 

than the maximum allowable limit of As concentration for Bangladesh drinking water guideline  

(50 μg/L) (Figure 5). 

Following up the demonstration studies described above, a larger scale field test was conducted [13]. 

A small community arsenic removal system for six households in Bangladesh was used to treat well 

water containing As (190–750 μg/L), Fe (0.4–20 mg/L) and P (0.2–1.9 mg/L). The system removes As 

by filtration through a sand bed following the addition of about 1.5 g of ferric sulphate and 0.5 g of 

calcium hypochlorite. The residual arsenic concentrations in all the treated samples (except one 

containing 69 μg As/L) were below the Bangladesh drinking water standard of 50 μg/L, and 

approximately half of the samples also met the World Health Organization (WHO) guideline of  

10 μg/L. Observations suggested that it was probably because the residents had not followed the 

operation instructions at the two wells that did not meet the WHO guideline. With the exception of 
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Mn, the average concentrations of other inorganic constituents of health concern (Cr, Ni, Cu, Se, Mo, 

Cd, Sb, Ba, Hg, Pb, and U) in treated water were below their respective WHO guidelines for drinking 

water. 

Figure 5. Comparison of arsenic concentrations in well water and the average arsenic 

concentration in the filtrate (after [81]). 

 

6.3. Arsenic Removal by Adsorption Based Technologies 

Adsorption is one of most common processes used for water treatment. A number of literatures 

have addressed the removal of arsenic by adsorption via a number of adsorbents [1,2,82], including 

commercial activated carbon, activated alumina, layered double hydroxide, natural/modified clays and 

zeolites. 

6.3.1. New Development on the As Removal by Iron-doped Activated Carbon (AC) 

An iron hydroxide-doped activated carbon was developed [83] in which the iron hydroxide will 

give the activated carbon an elevated active surface area for arsenic adsorption and also help avoid the 

blockage of the activated carbon pores. The iron content of the modified samples ranged from 0.73 to 

5.27%, with smaller iron hydroxide particles exhibited an enhanced arsenic adsorption capacity. The 

best arsenic adsorption capacity was reported as 4.56 mg As/g at equilibrium and pH 7. 

In another research project on iron-doped activated carbon [84], iron content increased linearly with 

iron hydrolysis time. Nanoparticles of iron hydroxide formed at the outer surface of the carbon grains 

after 6 h hydrolysis time was homogeneous in size and well-dispersed in the carbon matrix. As shown 

in Figure 6, the 6 h hydrolysis and iron-doped activated carbon (AC) had 2.2% of Fe content on the 

surface, possessed the highest arsenic adsorption capacity and removed 94% of the arsenic present in a 

groundwater from the State of Chihuahua (Mexico), whereas the commercial activated carbon (NC-100) 

allowed the removal of only 14%. Interesting to note that AC prepared using long forced hydrolysis 

time (24 h) had lower performance in arsenic removal observed (Figure 6); this is probably due to the 

existence of iron hydroxides agglomerates, which once hydrated could prevent diffusion of arsenate 

(HAsO4
−) towards the inner surface of the AC grain. 
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Figure 6. Arsenic uptake of all the investigated materials (raw and iron-doped ACS), as a 

function of their Fe content [after 84]. 

 

6.3.2. Advances in As Removal by Activated Alumina (AA) 

Activated alumina (AA) has been used widely used for removal of various ions, including arsenic. 

Recent studies have been made to improve the As removal performance. Various AA hybrid adsorbents 

bearing thiol groups (-SH) have been prepared by modifying AA with mercaptopropyl-functionalized 

silica under different experimental conditions [85]. Raman spectra demonstrated the successful 

functionalization of AA and verified the formation of As-S complexes after As(III) adsorption (Figure 7). 

Figure 7. Raman spectra of (a) AA, (b) hybrid AA before and (c) after As(III) adsorption (after [85]). 
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Compared with AA (spectrum a), the hybrid adsorbent (spectrum b) clearly showed the mercaptan 

S-H stretching appeared at 2,566 cm−1 as a strong band, and the C-H vibration bands of 

mercaptopropyl groups appeared in the range of 2,927–2,866 cm−1. The Raman peaks at 1,296 and 

1,252 cm−1 assigned to CH2-Si and CH2-S, respectively, were clearly observed. The C-S stretching 

mode was found at 647 cm−1 with a higher intensity. After As(III) adsorption, a strong new shoulder 

band (overlapped with the band at 362 cm−1) appeared at 375 cm−1 in the Raman spectrum (c), 

indicating the formation of the As-S bond. At the same time, the S-H stretching showed a dramatic 

decrease in intensity. The Raman spectra change provided evidence for the binding of As(III) directly 

to the thiol groups. Batch experiments were applied to evaluate the As(III) adsorption performance of 

the hybrid adsorbents. Compared with AA, the hybrid AA exhibited enhanced adsorption abilities for 

As(III) due to the introduction of thiol groups, and as the thiol loading increased, the uptake of As(III) 

increased (Figure 8). Based on the results, one hybrid adsorbent referred to as BL(AA)30(MPTS)3.3 has 

been selected by consideration of not only the adsorption capacity but also its environmentally friendly 

and cost-effective production. 

Figure 8. Removal of As(III) as function of -SH loading in the suspensions containing  

1.0 g /L adsorbent. Initial As(III) = 20 mg/L, equilibrium pH 7.0 ± 0.1,  

equilibrium time = 38 h (after [85]). 

 

Inorganic hybrid alumina with copper oxide, namely, copper oxide incorporated mesoporous 

alumina (COIMA) has been developed for the removal of arsenic from water [86]. The COIMA was 

prepared by treating mesoporous alumina with copper sulphate solution, followed by calcination at 450 °C 

in the presence of air. Various adsorption isotherm and kinetic parameters were computed using batch 

adsorption studies to determine the adsorption capacity for As(III) and As(V) and to understand the 

mechanism of adsorption. It was observed that incorporation of copper oxide improves the adsorption 

capacity of unmodified alumina from 0.92 to 2.16 mg/g for As(III) and from 0.84 to 2.02 mg/g for As(V). 

The results revealed that the adsorption follows Langmuir isotherm and pseudo-second-order kinetic 

models for both As(III) and As(V). The material is capable of simultaneously removing As(III) and 

As(V) with removal efficiencies of more than 95% for both As(III) and As(V). Assessment of the 

water quality before and after treatment with COIMA also confirmed that there is no leaching of 
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copper and other water quality parameters were within permissible limits of Indian drinking water 

standards. 

6.3.3. As Removal by Layered Double Hydroxide (LDH) 

Two types of layered double hydroxides (LDHs), hydrotalcite and hydrocalumite with different 

composition of layers and interlayers were investigated for the removal of arsenite [87] and the study 

found that arsenite removal was 87.5% and 83.6% respectively, with the nitrate forms of hydrotalcite 

and hydrocalumite. LDHs synthesized at room temperature showed higher As uptake than those 

synthesized by hydrothermal method due to small crystal size (and then high surface area) of the 

former. The uptake process was anion exchange in hydrotalcite-type LDH as confirmed by X-ray 

diffraction (XRD) and scanning electron microscopy (SEM) but possibly some dissolution-reprecipitation 

occurred with hydrocalumite-type LDH. 

Mg-Fe-based LDH (FeHT) was studied for the sorptive removal of arsenate (As(V)) from aqueous 

solutions [88]. The FeHT with the chemical formula [Mg(II)6Fe(III)2(OH)16]
2+[CO3yH2O]2− was 

prepared by a co-precipitation method. The results have shown that FeHT has a high arsenate removal 

efficiency, with the ability to reduce the concentration of arsenate in the aqueous solution from an 

initial value of 330 μg/L to <10 μg/L (i.e., below the limit value specified by WHO). 

6.3.4. As Removal by Natural and Modified Zeolites and Clays 

Due to their low cost and the capability of ion-exchange and adsorption, zeolites have seen wide 

application in environmental remediation. Zeolites are alumino-silicate minerals with a three 

dimensional porous structure based on silica (SiO4) and alumina (AlO4) tetrahedral configuration. The 

most abundant natural zeolite is clinoptilolite (empirical formula: (Ca,K2,Na2,Mg)4Al8Si40O9624H2O). 

Depending on the mineralogical content and source of origin, the major chemical composition of 

natural zeolites includes SiO2: 42–75.5%, Al2O3: 13.3–15%, Fe2O3: 0.9–11.4%, CaO: 2.5–8.5%, MgO: 

0.7–10.3%. One important property of zeolites is their cation exchange capacity (CEC), which mainly 

depends on the Al content because each Al3+ substitution for Si4+ in the zeolite framework generates 

one negative charge on the framework, meaning the greater the Al3+ substitutions, the higher the the 

negative charge of the zeolite. 

A natural zeolite (clinoptilolite) was modified by iron(III) solutions to enhance its As removal [68]. 

The As sorption on the Fe-exchanged zeolite (Fe-eZ) could reach up to 100 mg/kg. Columns packed 

with Fe-eZ were tested for As removal from acid mine drainage and groundwater containing high 

natural organic matter and high As. Figure 9 shows that for an initial concentration of 147 μg/L in the 

acid mine effluent, a complete As removal was achieved up to 40 pore volumes (PVs). However, the 

Fe-eZ was not effective to remove As from groundwater due to its high initial As concentration, with 

arsenites as dominant species and high amounts of natural organic matter (NOM). In the presence  

of NOM, arsenite was consistently desorbed or prevented from sorbing to a greater extent than  

arsenate [89]. 
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Figure 9. As concentrations from a column test effluent for the acid mine drainage (AMD) 

wastewater and groundwater (after [68]). 

 

In a study [90], the time required to attain equilibrium for arsenic sorption on all types of 

clinoptilolite was 60 min. However, Fe modified clinoptilolite showed greater As sorption capacity 

(9.2 μg/g) in comparison with un-modified clinoptilolite, 1.5 μg/g. 

The use of clays as effective arsenic sorbents has been strongly limited due to their low pHZPC and 

cation active behaviour in aqueous systems at pH > 3.5. Modifications by Fe/Mn addition can 

significantly improve their sorption affinity to oxyanions, including arsenites and arsenates. Low grade 

calcinated kaolin (MT) and bentonite (BT) were used as clay sorbents for the studies [91]. Results 

demonstrated that arsenic adsorption on raw clays without Fe/Mn modification is very slow and 

limited. During co-adsorption Fe particles demonstrated a good sorption affinity to the clay surface; up 

to 77% of As were removed in Fe/As system, in comparison with <30% by the Mn/As system (Figure 10). 

Arsenic was strongly stabilized in pre-modified sorbents. 

Figure 10. Adsorption efficiency of co-adsorption process; (a) Fe/As system, (b) Mn/As 

system; MT-kaolin, BT-bentonite (after [91]). 
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6.3.5. As Sorption by Laterite and Limonite with Oxidation 

Laboratory and field tests were conducted in rural and sub-urban areas of the Vietnamese capital of 

Hanoi to assess the suitability of using oxidation processes by activated hypochlorite in water 

treatment plants and naturally occurring minerals as sorbents in household-based systems to reduce 

arsenic concentrations [78]. Laterite and limonite, which are naturally and widely occurring minerals 

in Vietnam, were used as sorbents for arsenic removal in small scale water treatment. The sorption 

capacities of laterite and limonite for As(V) were estimated to be 1,100 and 900 mg/kg, respectively. 

Initial results of field tests indicated that arsenic concentrations decreased to levels <0.05 mg/L.  

The household system based on an adsorption column packed with these minerals seemed to be a 

suitable technique for small-scale groundwaters remediation in rural and sub-urban areas. 

7. Discussion 

Ground water in 60 out of 64 surveyed districts of Bangladesh is contaminated by As ([As] > 10 µg/L). 

The most vulnerable regions to As contamination are Satkhira, Munshiganj, Chandpur, Laksmipur, and 

Noakhali, where 70–90% of the total analyzed groundwater samples have As concentration ≥100 µg/L. 

Both field-kit and laboratory tests were employed by government and non-government organizations 

to identify As contaminated water wells. Although field test kits have the limitation of detecting As 

contaminated groundwater with concentrations between 50 and 200 µg/L [32], both tests provide the 

same indication of the general geographical distributions of As contamination. Based on the recent 

literature [19], approximately 22.3% of the 164 million population in Bangladesh was exposed to As 

contaminated water with [As] > 10 µg/L. One in five deaths in Bangladesh could be attributed to As 

exposure (>10 µg/L) in drinking water. Such a severe As crisis in Bangladesh has been described as 

“the largest mass poisoning of a population in history” [9], and thus has led to the development and 

implementation of feasible treatment technologies to remove As from water. 

Although various technologies are available for the removal of arsenic from contaminated water, 

not all of them fit the local situations in application. Ion exchange and membrane technology could 

achieve high As removal, but capital investment/operating costs are so high that local communities in 

the developing countries cannot afford them. 

As shown in Table 4, many other technologies have been tested which can be considered as 

alternatives to the advance technologies. Oxidation/filtration is designed to remove As from iron and 

manganese containing groundwater. The processes involves the oxidation of the soluble iron and 

manganese to their insoluble forms and oxidation of As(III) to As(V). Arsenic is removed via  

co-precipitation with Fe/Mn oxidising species and then filtration. The oxidants could be added 

hypochlorite or simply via aeration (biological oxidation). This technology has been widely accepted 

in many developing countries as it achieves high As removal efficiency, requires less investment and 

needs low operating cost. 

Precipitation/co-precipitation is widely used as a conventional technology to treat both drinking 

water and wastewater. The effectiveness of this technology to treat arsenic is high, together with high 

treatment efficiency for other pollutants such as heavy metals. However, the sludge production and its 
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handling cost limit its use in household level but it is more cost effective at a large scale where labour 

costs can be spread over a larger amount of treated water produced. 

Table 4. Technologies and treatment efficiencies. 

Treatment Process As(V) 
Removal 

Efficiency * 
As concentration  

in raw water 
Ref.  

Oxidation and Filtration 
Aeration and filtration >90% 300 µg As(III)/L  This review 

Fe2O3 filter >95% 100–400 µg As(III)/L  This review 
As(III) oxidation by (OCl−) and Fe precipitation >98% 300 µg As(III)/L  This review 

Co-precipitation 
Enhanced lime softening  90%   [27] 

Enhanced coagulation/filtration    
With alum  <90%   [27] 

With ferric chloride  95%   [27] 

Adsorption 
Iron doped activated carbon >95%  311 µg As/L  This review 

Hybrid activated alumina  >95%  2–20 mg As/L This review 
Iron based sorbents  Up to 98%   [27] 

Layered double hydroxide (LDH) Up to 96% 300 µg As(V)/L This review 
Modified zeolites up to 99% 100–400 µg As/L This review 

Modified clays  Up to 80% 0.15 µM As This review 
Laterite and limonite Up to 95% 500 µg As/L This review 

* depending on source water composition and operating conditions. 

Small capacity systems using adsorption tend to have lower operating and maintenance costs, and 

require less operator expertise. Adsorption is more effective when arsenic is the only contaminant to be 

treated. The modification of commercial adsorbents seems to be an approach to improve As removal 

efficiency. 

Iron-doped activated carbon removed 94% of arsenic from ground water in comparison to 14% by 

commercial activated carbon. Moreover, activated alumina (AA) has been used for more than two 

decades to decontaminate As(V)-containing waters but is ineffective in As(III) adsorption. Advances 

in using AA have been made via the preparation of hybrid AA which bears either thiol groups (-SH) or 

copper oxide and can enhance the As(III) removal efficiency significantly. Such kind of materials are 

specifically useful in treating As in household levels and in the rural regions of developing countries. 

After modification, natural mineral materials (zeolites, clays and laterite and limonite) are also good 

adsorbents for the removal of As (Table 4). In recent years, layered double hydroxides (LDHs) or 

hydrotalcite-like compounds have been widely studied [92,93]. LDHs can be represented by a general 

formula M(II)1−x M(III)x (OH)2(An−)x/n·mH2O, in which both divalent [M(II)] (e.g., Mg2+, Ca2+) and 

trivalent [M(III)] cations (e.g., Al3+, Fe3+) give positively charged sheets. The positive charge is 

balanced by intercalation of anions (An−) (e.g., NO3
−, CO3

2−) in the hydrated interlayer regions. Based 

on the structure of LDHs, positive charges are balanced by interlayer anions which can be exchanged 

for other anions, thus, LDHs possess a good anion exchange property and can be used as good  

anion-exchangers to remove As (shown in Table 4). Due to their low cost and the high capability of As 
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adsorption, it can be expected that modified natural minerals and LDHs are representative of emerging 

materials/technologies to be further tested for the full scale application for the arsenic removal in the 

developing countries. 

8. Concluding Remarks 

Ground water in 60 out of 64 surveyed districts of Bangladesh is contaminated by As ([As] > 10 µg/L). 

The regions most vulnerable to As contamination are Satkhira, Munshiganj, Chandpur, Laksmipur, and 

Noakhali, where 70–90% of the total analyzed groundwater samples have As concentrations ≥100 µg/L. 

Bangladesh is the most affected among the As problem facing countries; up to 77 million people in 

Bangladesh have been exposed to toxic levels of arsenic from drinking water. Such a severe As crisis 

has led to the development and implementation of feasible treatment technologies to remove As from 

groundwater. 

Aeration/Fe precipitation/filtration is designed to remove As and the technology has been accepted 

in Bangladesh as it achieves high As removal efficiency, requires less investment and has low 

operating costs. Small capacity adsorption systems tend to have lower operating and maintenance 

costs, and require less operator expertise. The modification of commercial adsorbents (e.g., activated 

carbon and activated alumina) and modification of natural mineral materials (e.g., zeolites) seem to be 

an approach to lower the operating cost and improve As removal efficiency. While a number of 

technological developments in the arsenic removal field have taken place, one should bear in mind that 

the technologies described in this review each have their own advantages and disadvantages. In the 

implementation of these technologies, we must consider variations in sources and quality 

characteristics of As polluted water and differences in socio-economic and literacy conditions of 

people, and then aim at improving the effectiveness in arsenic removal, reducing the capital and 

operation costs of the systems, making the technology user friendly, overcoming maintenance 

problems and resolving sludge management issues. 
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