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Background: Phytoestrogens are a class of natural compounds that have structural
similarities to estrogens. They have been identified to confer potent cardioprotective
effects in experimental myocardial ischemia-reperfusion injury (MIRI) animal models. We
aimed to investigate the effect of PE on MIRI and its intrinsic mechanisms.

Methods: A systematic search was conducted to identify PEs that have been validated in
animal studies or clinical studies as effective against MIRI. Then, we collected studies that
met inclusion and exclusion criteria from January 2016 to September 2021. The SYRCLE’s
RoB tool was used to evaluate the quality. Data were analyzed by STATA 16.0 software.

Results: The search yielded 18 phytoestrogens effective against heart disease. They are
genistein, quercetin, biochanin A, formononetin, daidzein, kaempferol, icariin, puerarin,
rutin, notoginsenoside R1, tanshinone IIA, ginsenoside Rb1, ginsenoside Rb3,
ginsenoside Rg1, ginsenoside Re, resveratrol, polydatin, and bakuchiol. Then, a total
of 20 studies from 17 articles with a total of 355 animals were included in this meta-
analysis. The results show that PE significantly reduced the myocardial infarct size in MIRI
animals compared with the control group (p < 0.001). PE treatment significantly reduced
the creatine kinase level (p < 0.001) and cTnI level (p < 0.001), increased left ventricular
ejection fraction (p < 0.001) and left ventricular fractional shortening (p < 0.001) in MIRI
animals. In addition, PE also exerts a significant heart rate lowering effect (p < 0.001).

Conclusion: Preclinical evidence suggests that PE can be multi-targeted for
cardioprotective effects in MIRI. More large animal studies and clinical research are still
needed in the future to further confirm its role in MIRI.
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1 INTRODUCTION

Ischemic heart diseases, such as coronary artery disease (CHD),
represent the most the leading cause of death worldwide (Ibáñez
et al., 2015; Hausenloy et al., 2017), which has crucial socio-
economical implications. Percutaneous coronary intervention
(PCI) is the primary means of revascularization in patients
with coronary artery disease (O’Gara et al., 20132013). Timely
and effective PCI treatment can recanalize the occluded coronary
artery, reestablish blood perfusion in the infarcted area, and
salvage ischemic myocardial tissue, which improves the
survival rate of patients with coronary heart disease
(Hausenloy and Yellon, 2013). However, it can also
paradoxically cause further myocardial ischemia-reperfusion
injury (MIRI), which can manifest clinically as an increase in
infarct size, cardiac insufficiency, myocardial stunning,
arrhythmias, and even sudden death (Piper et al., 1998).

Although, several therapies have been approved to give
cardioprotection in experimental models of MIRI (Mokhtari-
Zaer et al., 2018; Sawashita et al., 2020; Sun et al., 2021; Wu et al.,
2021). MIRI is currently not treated in a clinically effective
manner. Estrogen is known to perform well in
cardioprotection (Knowlton and Lee, 2012; Crescioli, 2021).
But this cardiovascular protection declines after menopause,
with myocardial infarction being the primary cause of
mortality in older women (Wenger, 2016). Estrogen deficiency
has been shown to play an important role in the development of
cardiovascular diseases such as MIRI (Deschamps et al., 2010;
Sivasinprasasn et al., 2016), atherosclerosis (Kassi et al., 2015;
Hajializadeh and Khaksari, 2021), heart failure ((Hajializadeh

and Khaksari, 2021), (Adekunle et al., 2021)), atrial fibrillation
(Bretler et al., 2012; Odening et al., 2019), hypertension (Colafella
and Denton, 2018; Srivaratharajah and Abramson, 2019),
myocardial fibrosis (Medzikovic et al., 2019), cardiac
hypertrophy (Hajializadeh and Khaksari, 2021), and
Takotsubo syndrome (Pelliccia et al., 2017). However, the use
of estrogen or estrogen replacement therapy for an extended
period can raise the risk of gynecological cancers (Stevenson et al.,
2009; Narod, 2011).

Phytoestrogens (PEs) are a class of natural non-steroidal
compounds widely found in many plants and herbs (Sirotkin
and Harrath, 2014; Rietjens et al., 2017). It can bind to estrogen
receptors (ER) to exert estrogen-like effects with few side effects
(Kurzer and Xu, 1997; Sirotkin and Harrath, 2014; Li et al., 2016a;
Basu and Maier, 2018). PE and PE-containing drugs have been
shown to help prevent and treat menopausal symptoms (Franco
et al., 2016), osteoporosis (Thangavel et al., 2019), metabolic
diseases (Mukund et al., 2017), and especially cardiovascular
diseases (Frankenfeld, 2017; Kirichenko et al., 2017;
Sathyapalan et al., 2018). Notably, PEs have been identified
that confer robust cardioprotection in experimental MIRI
animal and cellular models through multiple molecular
pathway modalities, such as inflammatory pathways,
mitochondrial energy metabolic pathways, oxidative stress
pathways, autophagic pathways, etc (Ji et al., 2004; Guo et al.,
2018; Huang et al., 2018; Bai et al., 2019; Colareda et al., 2020).

PEs have become a promising cardioprotective candidate for
MIRI due to their advantages of multiple therapeutic targets,
lower side effects, and higher safety compared to estrogen
replacement therapy (Sirtori, 2001; Bloedon et al., 2002;

FIGURE 1 | Flow chart of records retrieved, screened and included in this meta-analysis.
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TABLE 1 | Phytoestrogens that have been experimentally proven to be effective against MIRI.

Type PE CAS SD Structure1 Representative herbs2

Isoflavones genistein 446-72-0 Radix Puerariae, Spatholobus Suberectus Dunn

quercetin 117-39-5 Hedysarum Multijugum Maxim., Carthami Flos, Panax Notoginseng (Burk.) F. H. Chen Ex
C. Chow

biochanin A 491-80-5 Sojae Semen Praeparatum, Spatholobus Suberectus Dunn

formononetin 485-72-3 Hedysarum Multijugum Maxim., licorice, Radix Puerariae

daidzein 486-66-8 Hedysarum Multijugum Maxim., Radix Puerariae, Sojae Semen Praeparatum

kaempferol 520-18-3 Carthami Flos, Caryophylliflos, Astragalus membranaceus

icariin 489-32-7 Epimrdii Herba

puerarin 3681-99-0 Radix Bupleuri, Radix Puerariae

rutin 153-18-4 Carthami Flos, licorice, Ephedra Herba, Hedysarum Multijugum Maxim

(Continued on following page)
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TABLE 1 | (Continued) Phytoestrogens that have been experimentally proven to be effective against MIRI.

Type PE CAS SD Structure1 Representative herbs2

Stilbenoids resveratrol 501-36-0 Polygoni Cuspidati, Rhizoma Et Radix, Mori Cortex

polydatin 27208-
80-6

Polygoni Cuspidati Rhizoma Et Radix

Terpenoids notoginsenoside
R1

80418-
24-2

Panacis Japonici Rhizoma

tanshinone IIA 568-72-9 Radix Salviae, Peucedani Radix

ginsenoside Rb1 41753-
43-9

Ginsen Radix Et Rhizoma Rubra, Panacis Japonici Rhizoma, Panax Ginseng C. A. Mey

ginsenoside Rb3 68406-
26-8

Panax Notoginseng (Burk.) F. H. Chen Ex C. Chow

ginsenoside Rg1 22427-
39-0

Panacis Quinquefolii Radix

ginsenoside Re 52286-
59-6

Ginsen Radix Et Rhizoma Rubra, Panax Notoginseng (Burk.) F. H. Chen Ex C. Chow,
Panax Ginseng C. A. Mey

(Continued on following page)
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Michael McClain et al., 2006; Douglas et al., 2013; Czuczwar et al.,
2017; Bolton et al., 2019).

Systematic preclinical study review aids in the elucidation of
pharmacological mechanisms, the integration of therapeutic
evidence, the improvement of experimental methods, and,
eventually, the translation and transformation from animal
studies to clinical trials (Roberts et al., 2002; Sandercock and
Roberts, 2002). This study aims to elucidate the treatment
mechanism of PE on MIRI and provide credible preclinical
evidence by conducting a systematic review.

2 METHODS

2.1 Identification of PEs
A systematic search of four databases (Pubmed, Web of Science,
Embase, and Cochrane Library) was conducted to identify PEs
that have been validated in animal studies or clinical studies for
interventions in MIRI.

2.2 Search Strategy
Four databases (Pubmed, Web of Science, Embase, and Cochrane
Library) were searched using “myocardial ischemia-reperfusion
injury”, “myocardial reperfusion injury”, and the PE retrieved in
2.1 as keywords. Then manually search and add any literature
that may have been missed. Timespan: January 2016 - September
2021. Only published articles written in the English language were
considered in the current meta-analysis. The specific search
process was shown in Figure 1.

2.3 Inclusion and Exclusion Criteria
The following criteria were set in advance. Inclusion criteria: 1)
Rats or mice were used as research subjects; 2) methods for
establishing animal models of MIRI: ligation and loosening
surgery of the left anterior descending branch of coronary
artery (in vivo), or Langendroff perfusion (ex vivo); 3) the
treatment group received any dose of PE, while the control
group received vehicle or no treatment; 4) The myocardial
infarction size was taken as the main outcome index, with or
without other indexes such as myocardial enzymes, heart rate
(HR), left ventricular ejection fraction (LVEF), and left
ventricular fractional shortening (LVFS); 5) the size of the
myocardial infarction is reported as a percentage (i.e. TTC
staining or Evan’s blue/TTC staining). Exclusion criteria: 1)
animals with other cardiovascular comorbidities (e.g. diabetes,

hyperlipidemia); 2) animals are treated with PE analogs or given
additional drugs. 3) Studies with incomplete and inaccessible
data; 4) duplicate publications.

2.4 Study Characteristics Extraction
Two authors (YMWand XT S) extracted the study characteristics
independently, and discrepancies were resolved by the
corresponding author. Information extracted included: first
author, year of publication, anesthetics, animal information
(animal species, number, sex, and weight), I/R duration,
interventions (PE type, dose, method of administration) for
the treatment and control groups, outcome indicators, and
staining method of infarct size. The data were pooled using
the formula as follows when different doses of
pharmacological interventions were employed in the treatment
group (Zhang and Chen, 2016). When data are represented
graphically, every effort will be made to contact the author for
more information or to measure from the graph.����������������������������∑m

i�1(ni − 1)SD2
i + ∑m

i�1ni(�xi − �xT)2∑m
i�1(ni − 1)

√

2.5 Quality Appraisal
The SYRCLE’s RoB tool (Hooijmans et al., 2014) was used to
evaluate the quality of the studies by two authors independently.
The SYRCLE’s RoB tool contains 10 entries: sequence generation,
baseline characteristics, allocation concealment, random housing,
blinding, random outcome assessment, blinding, incomplete
outcome data, selective outcome reporting, and other sources
of bias. A third person ruled in case of disagreement.

2.6 Outcome Measures and Statistical
Analyses
Data were analyzed by STATA 16.0 software. Outcomes were
expressed as standardized mean difference (SMD) with a 95%
confidence interval (95%CI). In the forest plot, the dark squares
represent the standardized mean difference (SMD) for each
study, the diamonds represent the pooled SMD, and 95% of
the CIs are indicated by lines. p values ≤0.05 were considered
statistically significant. Statistics were analyzed using a fixed-
effects model (I2 ≤ 50%, p ≥ 0.10) or a random-effects model (I2 >
50%, p < 0.10). Sensitivity analysis, stratification analysis, or
univariable meta-regression should be performed to deal with

TABLE 1 | (Continued) Phytoestrogens that have been experimentally proven to be effective against MIRI.

Type PE CAS SD Structure1 Representative herbs2

Miscellaneous
classes

bakuchiol 10309-
37-2

Psoralea corylifolia Linn

1https://pubchem.ncbi.nlm.nih.gov/. [Accessed 10 September 2021].
2https://old.tcmsp-e.com/tcmsp.php. [Accessed 10 September 2021].
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TABLE 2 | Characteristics of the included studies.

Study
(years)

State Species
(Sex,
Wight,

n = Treatment/Control
Group)

Methods
of i/R

I/R
Duration

Anesthetics Treatment Group Control
group

Outcome
Index

Staining
MethodPE Type Dosage Approach

(Time)

Bai YJ 2019 China Sprague-Dawley rats
(male, 220–250 g, n =
18/6)

in vivo 30 min/
2 h

pentobarbital
sodium

biochanin A 12.5, 25,
50 mg/kg/d

intragastric administration
(before I/R)

I/R IFS TTC staining

Cui YC 2017 China Sprague-Dawley rats
(male, 230–270 g, n =
18/6)

in vivo 30 min/
1.5 h

urethane kaempferol 2.5, 5 or
7.5 mg/kg/h

intravenous infusion (start from
30 min before ischemia until
the end of reperfusion)

I/R + NS IFS, cTnI, HR Evan’s blue/
TTC staining

Gu M 2016 China Sprague-Dawley rats
(male, 250–300 g, n =
18/6)

in vivo 30 min/
1 h

pentobarbital
sodium

genistin 20, 40,
60 mg/kg

intragastric administration
(before I/R)

I/R IFS, CK TTC staining

Jiang LJ
2021 (1)

China C57BL/6J mice (male, n
= 4/4)

in vivo 30 min/
24 h

pentobarbital
sodium

ginsenoside
Rb1

50 mg/kg i.p. (before I/R) I/R IFS TTC staining

Jiang LJ
2021 (2)

China C57BL/6J mice (male, n
= 4/4)

in vivo 30 min/
24 h

pentobarbital
sodium

ginsenoside
Rb1

50 mg/kg i.v. (at the onset of reperfusion) I/R IFS TTC staining

Jiang LJ
2021 (3)

China C57BL/6J mice (male, n
= 4/4)

in vivo 30 min/
24 h

pentobarbital
sodium

ginsenoside
Rb1

50 mg/kg i.p. (after reperfusion) I/R IFS TTC staining

Li CY 2020 China Sprague-Dawley rats
(male, 230–250 g, n =
18/6)

in vivo 45min/2 h chloral hydrate ginsenoside
Rb1

20、40、
80 mg/kg

i.p. (before IR) I/R IFS TTC staining

Li GH 2016 China Sprague-Dawley rats
(male, 220–250 g, n =
6/6)

in vivo 30 min/
2 h

pentobarbital
sodium

ginsenoside
Rb1

40 mg/kg intravenous injection (before
reperfusion)

I/R + DMSO IFS, HR TTC staining

Li L 2018 China Sprague-Dawley rats
(male, 240–260 g, n =
6/6)

in vivo 30 min/
1.5 h

pentobarbital
sodium

ginsenoside
Rg1

5 mg/kg/h intravenous infusion (start from
30 min before ischemia until
the end of reperfusion)

I/R + NS IFS, cTnI Evan’s blue/
TTC staining

Li Q 2016 China Sprague-Dawley rats
(male, 210–250 g, n =
26/13)

in vivo 30 min/
2 h

pentobarbital
sodium

tanshinone IIA 10 mg/kg,
20 mg/kg

intravenous injection (before
I/R)

I/R IFS Evan’s blue/
TTC staining

Ling YN
2016

China C57BL/6J mice (male,
20–25 g, n = 4/4)

in vivo 30 min/
2 h

xylazine and
ketamine

polydatin 7.5 mg/kg i.p. (after reperfusion) I/R + NS IFS, LVEF,
LVFS

Evan’s blue/
TTC staining

Wang D
2017

China Sprague-Dawley rats
(male, 250–300g, n =
18/6)

in vivo 30 min/
2 h

pentobarbital
sodium

kaempferide 0.1 mg/kg,
0.3 mg/kg,
1 mg/kg

unclear (before I/R) I/R IFS, CK,
LVEF, LVFS

TTC staining

Wang DS
2020

China Sprague-Dawley rats
(male, 250–280 g, n =
20/10)

in vivo 60 min/
24 h

isoflurane formononetin 10 mg/kg,
30 mg/kg

intraperitoneal injection (when
reperfusion started)

I/R + vehicle IFS, cTnI,
LVEF, LVFS

Evan’s blue/
TTC staining

Wang ZK
2020

China C57BL/6J mice (male,
20–25 g, n = 6/6)

in vivo 30 min/
24 h

pentobarbital
sodium

puerarin 100 mg/kg intraperitoneal injection (before
reperfusion)

I/R IFS, LVEF,
LVFS

Evan’s blue/
TTC staining

Wu B
2018 (1)

China Sprague-Dawley rats
(male, 220–250 g, n =
8/8)

in vivo 30 min/
24 h

isoflurane Icariin 60 mg/kg intragastric administration
(after I/R)

I/R +
DMSO/PBS

IFS, LVEF,
LVFS

Evan’s blue/
TTC staining

Wu B
2018 (2)

China C57BL/6J mice (male,
20–25 g, n = 8/8)

ex vivo 40 min/
1 h

pentobarbital
sodium

Icariin 10 μmol/L Langendorff perfusion (during
reperfusion)

I/R IFS, HR TTC staining

Lin Q 2018 China Sprague-Dawley rats
(male, 200–250 g, n =
9/3)

in vivo 30 min/
24 h

pentobarbital
sodium

rutin 80 mg/kg,
40 mg/kg,
20 mg/kg

i.p. (before I/R) I/R + NS
containing 0.5%
CMC-Na

IFS, cTnI,
LVEF, LVFS

TTC staining

(Continued on following page)
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high heterogeneity if necessary.We performed sensitivity analysis
by removing each study in turn to assess the impact of this study.
We conducted a stratified analysis and meta-regression of
myocardial infarction size by study type, route of
administration, staining method, PE type, animal species, and
anesthetics type. The Egger’s test and Begg’s test for publication
bias were performed using STATA 16.0.

3 RESULTS

3.1 Identification of PEs
The following PEs were retrieved that have been experimentally
proven to be effective against MIRI. They are divided into four
main categories: 1) Isoflavones: genistein, quercetin, biochanin A,
formononetin, daidzein, kaempferol, icariin, puerarin, rutin, et
al.; 2) Terpenoids: notoginsenoside R1, tanshinone IIA,
ginsenoside Rb1, ginsenoside Rb3, ginsenoside Rg1,
ginsenoside Re, et al.; 3) stilbenoids: resveratrol, polydatin, et
al.; 4) miscellaneous classes: bakuchiol. We collected the chemical
structure of these PEs and the representative herbs. The specific
information is shown in Table 1.

3.2 Literature Retrieval Results
A total of 337 articles were obtained from various databases. After
removing duplicate articles, we reviewed the abstracts and full
text sequentially according to strict inclusion and exclusion
criteria. Finally, a total of 20 studies from 17 articles (Li et al.,
2016b; Li et al., 2016c; Gu et al., 2016; Ling et al., 2016; Liu et al.,
2016; Yang et al., 2016; Cui et al., 2017; Wang et al., 2017; Li et al.,
2018; Lin et al., 2018; Wu et al., 2018; Bai et al., 2019; Li et al.,
2020a; Wang et al., 2020a; Wang et al., 2020b; Kazemirad and
Kazerani, 2020; Jiang et al., 2021) were included in our analysis
(Figure 1).

3.3 Study Characteristics
The characteristics of included 20 studies are provided in Table 2.
The main PEs involved are genistein (n = 1), quercetin (n = 1),
biochanin A (n = 1), formononetin (n = 1), kaempferol (n = 1),
icariin (n = 2), puerarin (n = 1), rutin (n = 1), tanshinone IIA (n =
1), ginsenoside Rb1 (n = 6), ginsenoside Rg1 (n = 1), resveratrol
(n = 2), and polydatin (n = 1). A total of 17 studies were
conducted in vivo using ligation followed by the release of
LAD to simulate MIRI, and the remaining three studies were
conducted ex vivo using Langendroff perfusion. The authorWu B
conducted both in vivo and ex vivo studies, which we labeled and
distinguished with “Wu B 2018 (1)” and “Wu B 2018 (2).” All
studies used infarct size as the primary efficacy index, with 12
studies using TTC single staining and 8 using Evan’s blue/TTC
double staining. A total of six kinds of anesthetics were used in the
studies included in this analysis: pentobarbital sodium (n = 12),
thiopental sodium (n = 1), urethane (n = 1), chloral hydrate (n =
2), isoflurane (n = 3), and a mixture of xylazine and ketamine (n =
1). A total of 355 animals were enrolled for our study, including
SD rats, Wistar rats, and C57BL/6J mice. Several studies have
included markers of myocardial injury such as levels of cardiac
troponin I (cTnI) (n = 5) and creatine kinase (CK) (n = 2) asT
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TABLE 3 | Quality assessment of included studies.

Study
(years)

A B C D E F G H I J Total

Bai YJ 2019 ? Y ? Y N Y N Y ? Y 5
Cui YC 2017 ? Y ? ? N Y N Y ? N 3
Gu M 2016 ? Y ? Y N Y N N ? Y 4
Jiang LJ 2021 (1) ? ? ? ? N Y N ? ? Y 2
Jiang LJ 2021 (2) ? ? ? ? N Y N ? ? Y 2
Jiang LJ 2021 (3) ? ? ? ? N Y N ? ? Y 2
Li CY 2020 ? Y ? ? N Y N ? ? Y 3
Li GH 2016 ? Y ? Y N Y N N ? Y 4
Li L 2018 ? Y ? Y N Y N Y ? Y 5
Li Q 2016 ? Y ? Y N Y N Y ? Y 5
Ling YN 2016 ? Y ? ? N Y N ? ? Y 3
Wang D 2017 ? Y ? Y N Y N Y ? Y 5
Wang DS 2020 ? Y ? ? N Y N ? ? Y 3
Wang ZK 2020 ? Y ? Y N Y N N ? Y 4
Wu B 2018 (1) ? Y ? ? N Y N ? ? Y 3
Wu B 2018 (2) ? Y ? Y N Y N ? ? Y 4
Lin Q 2018 ? Y ? Y N Y N Y ? Y 5
Liu XY 2016 ? Y ? Y N Y N Y ? Y 5
Yang L 2016 ? ? ? ? N Y N ? ? Y 2
Kazemirad H 2020 ? Y ? ? N Y N Y ? Y 4

Y: yes (low risk of bias); N: No (high risk of bias); ? unclear bias.(A) sequence generation; (B) baseline characteristics; (C) allocation concealment; (D) random housing; (E) blinding
investigators; (F) random outcome assessment; (G) blinding outcome assessor; (H) incomplete outcome data; (I) selective outcome reporting; (J) other sources of bias.

FIGURE 2 | Forest plot to study the effect of PE on infarct size. PE reduced the myocardial infarct size in MIRI animals compared with the control group (SMD =
−3.92, 95%CI: −5.19 to −2.66, p < 0.001). The dark squares represent the standardized mean difference (SMD) for each study. The diamonds represent the pooled
SMD. 95% of the CIs are indicated by lines. The analysis was conducted using a fixed-effects model.
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outcome indicators in their analyses. Seven studies performed
echocardiography on animals and reported LVEF and LVFS. All
articles were written in English. Only one study is from Iran, the
rest were conducted in China.

3.4 Quality Appraisal
We used the SYRCLE’s RoB tool to score the quality of each study.
Table 3 shows the information on methodological quality. As
shown in Table 3, six studies scored five points, and four studies
scored only two points, which indicate reliable data but lower
quality of studies. Ten studies mentioned randomized groupings,
but all were silent on the specific randomization method. All
studies did not describe how allocation concealment is performed.

3.5 Outcome Measures
3.5.1 Infarct Size
Studies that reported infarct size were analyzed using a random-
effects model. Figure 2 showed that PE significantly reduced the
myocardial infarct size in MIRI animals compared with the
control group (SMD = −3.92, 95%CI: −5.19 to −2.66, p <
0.001). I2>50%, which suggests high heterogeneity. We first
performed sensitivity analysis by removing each study in turn
to assess the impact of this study. Then we performed the
stratified analysis (Table 4) and meta-regression (Table 5)

with study type, reperfusion time, route of administration,
animal species, staining method, or PE type as covariates.
Sensitivity analysis and stratified analysis failed to find
significant sources of heterogeneity, while meta-regression
confirms study type as a heterogeneity source (p = 0.046 <
0.05). Egger’s (p = 0.00) (Supplementary Figure S1) and
Begg’s (p = 1.999) (Supplementary Figure S2) tests confirmed
the possible existence of publication bias. After additional
adjustment for potential missing studies by nonparametric
trim-and-fill analysis (Supplementary Figures S3, S4), the
statistical results support the robust effect of PE treatment
(SMD = -2.634, 95%CI: -4.204 to -1.065, p < 0.001). This
result implies that PE can effectively reduce the size of
myocardial infarct area in MIRI animals, which may be
related to the type of animal experiment involved.

3.5.2 Markers of Myocardial Injury
Five studies that reported serum CK levels were analyzed using a
fixed-effects model. Figure 3 shows that PE treatment was
associated with significantly lower CK levels in MIRI animals
(SMD = −2.61, 95% CI: −3.19 to −2.03, p < 0.001).

The five studies that reported cTnI levels showed high
heterogeneity (I2 = 82.24%, p = 0.00). We performed a
sensitivity analysis by systematically excluding each study. One

TABLE 4 | Stratified analysis of pooled estimates of infarct size.

Pooled Estimates No. of
Studies

SMD 95% CI p value Heterogeneity

Study type
In vivo 17 −3.26 −4.31, −2.21 p = 0.00 I2 = 86.12%
Ex vivo 3 −7.6 −12.15, −3.04 p = 0.01 I2 = 87.32%

Reperfusion duration
1 3 −4.62 −6.54, −2.69 p = 0.05 I2 = 66.07%
1.5 2 −3.29 −7.82, −1.24 p = 0.00 I2 = 87.44%
2 7 −5.27 −8.02, −2.52 p = 0.00 I2 = 93.95%
24 h 8 −2.63 −4.14, −1.11 p = 0.01 I2 = 83.94%

Route of administration
intragastric administration 4 −2.55 −3.30, −1.81 p = 0.29 I2 = 17.59%
intraperitoneal injection 7 −3.04 −4.86, −1.22 p = 0.00 I2 = 86.9%
intravenous injection 3 −6.44 −7.88, −5.01 p = 0.12 I2 = 0%
intravenous infusion 2 −3.29 −7.82, −1.24 p = 0.00 I2 = 87.44%
unclear 1 −1.83 −2.92, −0.75 — —

Langendorff perfusion 3 −7.6 −12.15, −3.04 p = 0.01 I2 = 87.32%
Staining method
Single staining 12 −4.02 −5.87, −2.16 p = 0.00 I2 = 90.11%
Double staining 8 −4 −5.93, −2.08 p = 0.00 I2 = 91.84%

PE type
isoflavone 9 −2.76 −3.83, −1.68 p = 0.04 I2 = 80.24%
triterpene 8 −3.73 −5.44, −2.02 p = 0.00 I2 = 85.14%
Stilbenes 3 −8.47 −12.08, −4.87 p = 0.07 I2 = 65.96%

Animal species
Rats 13 −3.94 −5.08, −2.80 p = 0.00 I2 = 81.82%
Mice 7 −3.444 −5.384, −1.504 p = 0.00 I2 = 93.72%

Anesthetics type
pentobarbital sodium 12 −3.75 −4.98, −2.51 p = 0.00 I2 = 80.95
Urethane 1 −1.2 −2.20, −0.21 — —

chloral hydrate 2 −4.62 −8.23, −1.01 p = 0.01 I2 = 85.35
xylazine and ketamine 1 −7.18 −11.40, −2.95 — —

isoflurane 3 −2.15 −2.84, −1.46 p = 0.42 I2 = 0
thiopental sodium 1 −12.46 −16.86, −8.06 — —
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study (Kazemirad and Kazerani, 2020) was identified as a source
of heterogeneity and was therefore removed. The other four
studies were analyzed using fixed-effects models. The results
showed that PE treatment significantly reduced the cTnI level
in MIRI animals compared to the control group (SMD = −3.66,
95% CI: −4.54 to −2.79, p < 0.001) (Figure 4).

The statistical results suggest that the serum CK and cTnI
levels in the PE group were significantly lower than those in the
control group, indicating that PE treatment can effectively
alleviate the myocardial damage caused by MIRI.

3.5.3 Indicators of Cardiac Function
Seven studies appropriately reported the effect of PE on LVEF in
MIRI animals. Analysis using a fixed-effects model showed that
PE significantly increased LVEF (SMD = 2.54, 95% CI: 2.04 to
3.03, p < 0.001) (Figure 5).

Similarly, moderate heterogeneity (I2 = 48.38%, p < 0.001) was
found in the eight studies reporting LVFS in our study. We
removed one study identified (Wang et al., 2017) by sensitivity
analysis as the heterogeneous source. The remaining seven studies
were included in the analysis using a fixed-effects model. Figure 6

TABLE 5 | Meta-regression analysis.

Heterogeneity Factor Coefficient Std. Err Z Value p Value 95% CI

study type −6.28513 2.811002 −2.24 0.025 −11.79459, −0.7756678
reperfusion duration 0.1080382 0.0830519 1.3 0.193 −0.0547405, 0.270817
route of administration −0.8261537 0.5889316 −1.4 0.161 −1.980438, 0.328131
animal species −1.428073 1.7573 −0.81 0.416 −4.872319, 2.016172
staining method −0.3233558 1.15108 −0.28 0.779 −2.579432, 1.93272
PE type 9.462195 5.151416 1.84 0.066 −0.6343956, 19.55879

FIGURE 3 | Forest plot to study the effect of PE on creatine kinase (CK). PE reduced serum CK levels in MIRI animals compared to control group (SMD = −2.61,
95%CI: −3.19 to −2.03, p < 0.001). The dark squares represent the standardized mean difference (SMD) for each study. The diamonds represent the pooled SMD. 95%
of the CIs are indicated by lines. The analysis was conducted using a fixed-effects model.

FIGURE 4 | Forest plot to study the effect of PE on cardiac troponin I (cTnI). PE reduced serum cTnI levels in MIRI animals compared to control group (SMD= −3.66,
95%CI: −4.54 to −2.79, p < 0.001). The dark squares represent the standardized mean difference (SMD) for each study. The diamonds represent the pooled SMD. 95%
of the CIs are indicated by lines. The analysis was conducted using a fixed-effects model.
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showed that PE treatment led to higher LVFS compared to the
control group (SMD = 2.66, 95% CI: 2.20 to 3.11, p < 0.001).

The statistical results showed that the difference between PE
group and control group was statistically significant. PE
treatment can improve cardiac function in MIRI animals.

3.5.4 Heart Rate
Four other studies reported the effect of PE on heart rate
variability in MIRI animals. Sensitivity analysis identified and
removed one study (Kazemirad and Kazerani, 2020) that was
considered a source of heterogeneity. The remaining studies were
included in the analysis using a fixed-effects model. The new
combined effect size determined the HR lowering effect of PE

treatment onMIRI animals (SMD = 4.08 95% CI: 2.98 to 5.18, p <
0.001) (Figure 7), as did the total combined effect size. This
indicates that the PE treatment group can reduce the heart rate of
MIRI animals compared to the control group, and the difference
is statistically significant.

4 DISCUSSION

The incidence of CHD increases rapidly in postmenopausal
women, with declining estrogen levels being the main cause
(Barrett-Connor, 2013). Myocardial infarction (MI) is milder
and occurs later in women than in men of the same age (Regitz-

FIGURE 5 | Forest plot to study the effect of PE on left ventricular ejection fraction (LVEF). PE improved LVEF in MIRI animals compared to control group (SMD =
2.54, 95% CI: 2.04 to 3.03, p < 0.001). The dark squares represent the standardized mean difference (SMD) for each study. The diamonds represent the pooled SMD.
95% of the CIs are indicated by lines. The analysis was conducted using a fixed-effects model.

FIGURE 6 | Forest plot to study the effect of PE on left ventricular fractional shortening (LVFS). PE improved LVFS in MIRI animals compared to control group (SMD
= 2.66, 95%CI: 2.20 to 3.11, p < 0.001). The dark squares represent the standardized mean difference (SMD) for each study. The diamonds represent the pooled SMD.
95% of the CIs are indicated by lines. The analysis was conducted using a fixed-effects model.
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Zagrosek and Kararigas, 2017). These sex differences disappear
after natural or surgical menopause (ovariectomy) (McSweeney
et al., 2016), or under conditions impairing ovarian function and
thus estrogen production (Barton, 2013). The effects of estrogen
on MIRI are partly attributed to the potent anti-inflammatory
(Wang et al., 2006), antioxidant (Kim et al., 1996), and
mitochondrial protective properties (Zhai et al., 2000; Wang
et al., 2019) of estrogen. There have been some studies
demonstrating that elevated estrogen levels are likely to be the
cause of PE’s efficacy for MIRI in ovariectomized rats (Zhai et al.,
2001; Hao et al., 2011; Tang et al., 2016). PEs are found in many
Chinese herbs such as ginseng (Renshen in Chinese), salvia
(Danshen in Chinese), geranium (Gegen in Chinese), and
safflower (Honghua in Chinese), which are often included in
prescriptions for the Chinese medicine treatment of CHD (Li and
Zhao, 2009; Chiu et al., 2011; Huang et al., 2016; Li et al., 2020b;
Zhang et al., 2021a; Zhang et al., 2021b). In recent years,
researchers have made significant progress in the treatment of
MIRI with PEs and have published a large number of research
results. However, these results have not been systematically
analyzed.

4.1 Summary of Evidence
A total of 355 animals were included in our study, 222 of which
were treated with PE. As a class of cardioprotective agent, PEs
exerted significant anti-MIRI effects in animal models, mainly in
reducing infarct size (p < 0.001), mitigating myocardial injury
(p < 0.001), improving cardiac function (p < 0.001) and lowering
heart rate (p < 0.001). Moreover, this cardioprotective effect was
not limited by factors such as phytoestrogen species, rodent
species, methods of I/R, I/R duration, or anesthetics, which
were found by stratified analysis, sensitivity analysis, and
regression analysis of different outcome indicators.

4.2 Molecular Mechanisms
Prior to conducting a clinical trial, animal models can be used to
determine the effectiveness of a drug or procedure and to explore
its mechanisms. Through a comprehensive search of various
databases, the specific mechanisms of PE against MIRI can be
summarized as follows.

1. Mitochondrial pathway. The primary mechanism we found is a
disturbance in mitochondrial structure, function, and quantity.
Mitochondrial structure and function are impaired by ischemia
and aggravated by reperfusion (Giedt et al., 2012; Consolini et al.,
2017; Ham and Raju, 2017; Anzell et al., 2018). MIRI causes
impairment of the mitochondrial respiratory chain leading to
abnormal energy metabolism (Leist et al., 1997; Tahrir et al.,
2019), and also causes excessive accumulation of reactive oxygen
species (ROS) producing oxidative stress (Li and Jackson, 2002;
Lesnefsky et al., 2017). PE can suppress mitochondrial swelling
and reduce the number of fragmented mitochondria in terms of
retaining mitochondrial structure (Zhai et al., 2001). As for the
involvement in energy metabolism, PEs has been shown to
inhibit the activation RhoA/ROCK signaling (He et al., 2014;
Cui et al., 2017; Yan et al., 2021) as well as activate the mKATP

channels ((Colareda et al., 2020), (Colareda et al., 2021)), thus
promote ATP production. PE also directly or indirectly regulates
the activity of mitochondrial complex. For example, PE has been
found not only to reduce NADH dehydrogenase activity and
inhibit mitochondrial complex I activity, but also to maintain
mitochondrial complex V activity. (Jiang et al., 2021; Yan et al.,
2021). Meanwhile, PE can further ameliorate oxidative stress
injury in cardiomyocytes by regulating silent information
regulator 1 (SIRT1) and thus downstream targets such as
peroxlsome proliferator-activated receptor-γ coactlvator-1α
(PGC-1α) (Feng et al., 2016; Zhong et al., 2019) and forkhead
box O 1 (FOXO1) (Wu et al., 2018). Furthermore, it has been
suggested that PE’s effect on mitochondrial function is dosage-
dependent (Barton, 2013). It works as an antioxidant and
enhances mitochondrial biogenesis at low dosages, but it also
functions as a pro-oxidant and impairs mitochondrial function
at high dosages (Roca et al., 2014). For example, Genistein has
been reported to promote cell proliferation at low concentrations
(0.1–10M) and inhibit cell proliferation at high concentrations
(above 10M) (Matsumura et al., 2005; Seo et al., 2006).

2. Inflammation and immunity. According to our results and
analysis, inflammation and immunity have been perceived as
significant markers of MIRI injury. The occurrence of I/R
promotes the production of inflammatory mediators and
chemokines, thus promoting the adhesion and accumulation

FIGURE 7 | Forest plot to study the effect of PE on heart rate. PE reduced heart rate in MIRI animals compared to control group (SMD = 4.08 95%CI: 2.98 to 5.18,
p < 0.001). The dark squares represent the standardized mean difference (SMD) for each study. The diamonds represent the pooled SMD. 95% of the CIs are indicated
by lines. The analysis was conducted using a fixed-effects model.
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of leukocytes in the vascular endothelium (Phillipson and Kubes,
2011); at the same time, cardiomyocytes produce large amounts
of inflammatory factors (IL6, TNF-α, IL-1β) (Poynter et al.,
2011), which further amplify the inflammatory response and
eventually induce apoptosis in cardiomyocytes (Slegtenhorst
et al., 2014). PEs can inhibit the activation of nuclear factor-
κ-gene binding (NF-κB) by regulating its upstream pathway
proteins toll-like receptor 4 (TLR4), JunNterminal kinase (JNK),
or SIRT1((Bai et al., 2019), (Wang et al., 2020b), (Kim et al.,
2009; Ma et al., 2014)). It has additionally been shown that PEs
can restrain the activation of NLRP3 inflammasome through
multiple pathways while inhibiting the maturation and secretion
of inflammatory factors and decreasing their levels in tissues and
serum (Wang et al., 2020a; Wang et al., 2020b).

3. Estrogen receptors. There are three subtypes of estrogen
receptors: ERα, Erβ, and GPR30 (Deschamps and Murphy,
2009; Jia et al., 2015). Studies have shown that all ER subtypes
confer cardioprotection against I/R injury both via genomic
and non-genomic mechanisms ((Deschamps et al., 2010),
(Deschamps and Murphy, 2009), (Zhu et al., 2020)). By
interacting with ER, PEs are shown to sustain NO level by
increasing the activity and expression of NO synthase (Zhai
et al., 2001). Activation of ER can protect mitochondrial

structural integrity and function and reduce mitochondrial
autophagy ((Wang et al., 2019), (Feng et al., 2017)). Study has
shown that PE significantly improved mitochondrial swelling
and reduced the number of mitochondrial fragments by
binding to estrogen receptors, thus maintaining the
structural integrity of mitochondria. (Zhai et al., 2001).

4. Other mechanisms. In addition, our study found that the
cardioprotective effects conferred by PE are associated with
calcium homeostasis, ferroptosis, and endoplasmic reticulum
stress. There is a concrete example that PE reduces
intracellular Ca2+ level and maintains calcium homeostasis
by manipulating stromal interacting molecule 1 (STIM1)-
mediated store-operated calcium entry (SOCE) (Xu et al.,
2019). It has been shown that PE regulates USP19/Beclin1-
induced autophagy to suppress ferroptosis (Li et al., 2022). It has
also been shown that multiple PEs significantly regulate the
unfolded protein response (complex adaptive or pro-apoptotic
signaling triggered by endoplasmic reticulum stress) associated
proteins glucose-regulated protein (GRP)78, X-box binding
protein (XBP)-1, cleaved activating transcription factor (ATF)-
6, inositol-requiring protein-1α (IRE1α), and C/EBP-homologous
protein (CHOP), in the setting of myocardial I/R injury (Kim
et al., 2008; Kim et al., 2010).

FIGURE 8 | Schematic representation of the anti-MIRI effect of PE. PE suppress the inflammation by inhibiting the TLR4-NF/κB and JNK- NF/κB signaling
pathways, inhibit mitochondrial oxidative stress by activating the SIRT1 pathway, and promoted the activity of themitochondrial complex by inhibiting the RohA pathway.
In addition, PE attenuated calcium overload via STIM1-mediated SOCE. Notably, PE not only maintained mitochondrial homeostasis through interaction with estrogen
receptors, but also promoted NO production, which effectively exerted cardioprotective effects. TLR4: toll-like receptor four; JNK: JunNterminal kinase; NF/κB:
nuclear factor-κ-gene binding; SIRT1: silent information regulator 1; FOXO1: forkhead box O; PGC-1α: proliferator-activated receptor-γ coactlvator-1α; ROS: reactive
oxygen species; ROCK: RhoA/Rho-associated coiled-coil containing protein kinase; PKCε: protein kinase C; STIM1: stromal interacting molecule 1; SOCC: store-
operated calcium channels; ER: estrogen receptor; NOS: nitric oxide synthase; USP19: ubiquity specific peptidase 19.
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In summary, in addition to their estrogen-like
cardioprotective effects as hormone replacement therapy, PEs
also act through other pathways unrelated to estrogen. PE can
maintain mitochondrial function and structure, alleviate
oxidative stress, improve Inflammation and immune
responses, and mitigate calcium overload by regulating
multiple signaling pathways. The signaling pathways involved
are engaged in a variety of cross-talk. The mechanisms involved
are equally interactive and causal (Figure8).

5 STRENGTHS AND LIMITATIONS

To our knowledge, this is the first preclinical systematic review to
study the cardioprotective effects of PE inMIRI animals. Not only
the efficacy of PE on MIRI but also the specific mechanisms were
explored in depth. There are still limitations. Systematic
evaluation of animal studies is more likely to be affected by
significant heterogeneity than clinical research. Phytoestrogens
may lead to moderate heterogeneity depending on their form,
type, dose, and route of administration, which is difficult to avoid.
In addition, most of the phytoestrogens in our included studies
were pre-administered and only their preventive effects and
immediate efficacy were evaluated. Therefore, there is no
additional evidence to further explore the long-term effects of
PE and their therapeutic effects on MIRI. More large animal
studies and clinical research are still needed in the future to
further confirm its role in MIRI.

6 CONCLUSION

PE can play a beneficial role in MIRI by improving mitochondrial
function, reducing inflammation, regulating ER, improving

endoplasmic reticulum stress, and reducing ferroptosis. They are
expected to be a class of cardioprotective drugs with promising
development and application prospects due to their broad
pharmacological effects, low toxic side effects, and high safety.
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