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Abstract

Recent studies, conducted almost exclusively in primates, have shown that several cortical areas 

usually associated with modality-specific sensory processing are subject to influences from other 

senses. Here we demonstrate using single-unit recordings and estimates of mutual information that 

visual stimuli can influence the activity of units in the auditory cortex of anesthetized ferrets. In 

many cases, these units were also acoustically responsive and frequently transmitted more 

information in their spike discharge patterns in response to paired visual-auditory stimulation than 

when either modality was presented by itself. For each stimulus, this information was conveyed by 

a combination of spike count and spike timing. Even in primary auditory areas (primary auditory 

cortex [A1] and anterior auditory field [AAF]), ~15% of recorded units were found to have 

nonauditory input. This proportion increased in the higher level fields that lie ventral to A1/AAF 

and was highest in the anterior ventral field, where nearly 50% of the units were found to be 

responsive to visual stimuli only and a further quarter to both visual and auditory stimuli. Within 

each field, the pure-tone response properties of neurons sensitive to visual stimuli did not differ in 

any systematic way from those of visually unresponsive neurons. Neural tracer injections revealed 

direct inputs from visual cortex into auditory cortex, indicating a potential source of origin for the 

visual responses. Primary visual cortex projects sparsely to A1, whereas higher visual areas 

innervate auditory areas in a field-specific manner. These data indicate that multisensory 

convergence and integration are features common to all auditory cortical areas but are especially 

prevalent in higher areas.
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Introduction

Perception of real-world events frequently depends on the synthesis of information from 

different sensory systems. Revealing where in the brain sensory signals are combined and 

integrated is key to understanding the basis by which cross-modal processing influences 

behavior. Recently, studies in both human (Calvert et al. 1999; Giard and Peronnet 1999; 

Foxe et al. 2000, 2002; Molholm et al. 2002, 2004; Murray et al. 2005) and nonhuman 

(Schroeder et al. 2001; Schroeder and Foxe 2002; Brosch et al. 2005; Ghazanfar et al. 2005) 

primates have provided evidence for multisensory convergence within cortical areas that 

have hitherto been regarded as modality specific. It is unclear, however, whether this 

unexpected involvement of low-level cortical areas in multisensory processing is a feature 

common to mammalian brains or whether primates are exceptional in this respect. Although 

it has been reported that the cat visual cortex also receives auditory inputs (Morrell 1972; 

Fishman and Michael 1973), the most detailed investigation in a nonprimate species found 

that neurons sensitive to other modalities are rare within visual, auditory, and somatosensory 

areas of the rat cortex but are relatively plentiful at the borders of these zones (Wallace et al. 

2004).

Evidence for multisensory integration in humans is based on imaging or 

electroencephalographic/magnetoencephalo-graphic studies (Calvert et al. 1999; Giard and 

Peronnet 1999; Foxe et al. 2000, 2002; Molholm et al. 2002, 2004; Murray et al. 2005), 

which suffer from low spatial resolution and therefore cannot precisely localize regions of 

convergence. Moreover, intracranial recordings in monkeys are often based on local field 

potentials and/or multiunit activity (Schroeder et al. 2001; Schroeder and Foxe 2002; Fu et 

al. 2003; Ghazanfar et al. 2005). Although these methods allow activity to be localized to 

particular cortical fields and layers, it can be difficult to determine whether multisensory 

responses are elicited by individual neurons or by a combination of modality-specific 

neurons found in close proximity. Furthermore, when using measures of summed activity, it 

is not possible to correlate the presence of multisensory input with the response 

characteristics of individual neurons.

Visual influences on neurons in auditory cortex have been reported in awake primates at the 

single-neuron level, but it was proposed that these emerged as a result of the behavioral 

training received by the animals (Brosch et al. 2005). Thus, the extent to which individual 

neurons in low-level cortical areas traditionally viewed as modality specific are normally 

involved in multisensory processing remains uncertain. Moreover, all previous 

electrophysiological studies in this field have investigated multisensory convergence and 

integration by comparing the number of spikes evoked by different stimuli. Studies of visual 

(Van Rullen et al. 1998), auditory (Furukawa et al. 2000; Brugge et al. 2001; Nelken et al. 

2005), and somatosensory (Panzeri et al. 2001; Johansson and Birznieks 2004) processing 

have now shown that stimulus information can also be encoded by temporal features of the 

spike discharge pattern. Thus, a full characterization of the sensitivity of neurons to 

multisensory stimuli requires analytical approaches to be used that take into account 

different neural coding schemes.
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In this study, we show using single-unit recordings and estimates of mutual information (MI) 

between stimuli and spike trains that units sensitive to visual stimulation are widespread in 

both primary and nonprimary areas of ferret auditory cortex and that these neurons 

frequently transmit more information in response to bisensory stimulation than to either 

auditory or visual stimuli presented by themselves. We also show that ferret auditory cortex 

receives inputs from several visual cortical areas and from parietal cortex, which could 

provide the basis for these nonauditory response properties.

Materials and Methods

Animal Preparation

All animal procedures were approved by the local ethical review committee and performed 

under license from the UK Home Office in accordance with the Animal (Scientific 

Procedures) Act 1986. Nineteen adult pigmented ferrets (Mustela putorius) were used in this 

study. Eight of these were used exclusively for electrophysiological recordings, and 11 were 

used for neuroanatomical tract-tracing experiments. All animals received regular otoscopic 

examinations prior to the experiment to ensure that both ears were clean and disease free.

Anesthesia was induced by 2 mL/kg intramuscular injection of alphaxalone/alphadolone 

acetate (Saffan; Schering-Plough Animal Health, Welwyn Garden City, UK). The left radial 

vein was cannulated, and a continuous infusion (5 mL/h) of a mixture of medetomidine 

(Domitor; 0.022 mg/kg/h; Pfizer, Sandwich, UK) and ketamine (Ketaset; 5 mg/kg/h; Fort 

Dodge Animal Health, Southampton, UK) in physiological saline containing 5% glucose 

was provided throughout the experiment. The infusate was supplemented with 0.5 mg/kg/h 

dexa-methasone (Dexadreson; Intervet UK Ltd, Milton Keynes, UK) and 0.06 mg/kg/h 

atropine sulfate (C-Vet Veterinary Products, Leyland, UK) in order to reduce the risk of 

cerebral edema and bronchial secretions, respectively. A tracheal cannula was implanted so 

that the animal could be placed on a ventilator and body temperature, end-tidal CO2, and the 

electrocardiogram were monitored throughout. The right pupil was dilated by topical 

application of atropine sulfate and protected with a zero-refractive power contact lens.

The animal was placed in a stereotaxic frame, and the temporal muscles on both sides were 

retracted to expose the dorsal and lateral parts of the skull. For terminal recording 

experiments, a metal bar was cemented and screwed into the right side of the skull, holding 

the head without further need of a stereotaxic frame. On the left side, the temporal muscle 

was largely removed to gain access to the auditory cortex, which is bounded by the 

suprasylvian sulcus (Fig. 1) (Kelly et al. 1986). For tract-tracing experiments, custom-made 

hollow ear bars were used to maintain stable head position without the need for a headbar. 

The suprasylvian and pseudosylvian sulci were exposed by a craniotomy. The overlying dura 

was removed and the cortex covered with silicon oil. The animal was then transferred to a 

small table in an anechoic chamber (IAC Ltd, Winchester, UK).

Stimuli

Acoustic stimuli were generated using TDT system 3 hardware (Tucker-Davis Technologies, 

Alachua, FL). In 3 recording experiments and all tract-tracing experiments, acoustic stimuli 
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were presented via a closed-field electrostatic speaker (EC1, Tucker-Davis Technologies). In 

the remaining recording experiments, a Panasonic headphone driver (RPHV297, Panasonic, 

Bracknell, UK) was used. The electrostatic drivers had a flat frequency output to >30 kHz, 

whereas the output of the Panasonic drivers extended to 25 kHz. Closed-field calibrations 

were performed using an one-eighth inch condenser microphone (Brüel and Kjær, Naerum, 

Denmark), placed at the end of a model ferret ear canal, to create an inverse filter that 

ensured the driver produced a flat (less than ±5 dB) output. All acoustic stimuli were 

presented contralaterally.

Pure-tone stimuli were used to obtain frequency-response areas (FRAs), both to characterize 

individual units and to determine tonotopic gradients in order to identify in which cortical 

field any given recording was made. The tone frequencies used ranged, in one-third octave 

steps, from 500 Hz to 24 kHz (Panasonic driver) or 500 Hz to 30 kHz (TDT EC1 driver) and 

were 100 ms in duration (5 ms cosine ramped). Intensity levels were varied between 10 and 

80 dB SPL in 10 dB increments. This totaled 150-200 frequency-level combinations, each of 

which was presented pseudorandomly ⩾3 times at a rate of once per second. Broadband 

noise bursts (40 Hz-30 kHz bandwidth and cosine ramped with a 10 ms rise/fall time), 

generated afresh on every trial, were used as a search stimulus in order to establish whether 

each unit was acoustically responsive.

The visual stimulus was a diffuse light flash, which was varied in intensity from 0.3 to 70 

cd/m2, calibrated with a Tektronix J16 photometer (Bracknell, UK), presented from a light-

emitting diode that was usually fixed at a distance of 10 cm from the contralateral eye so that 

it illuminated virtually the whole contralateral visual field. In order to determine whether 

units were acoustically and/or visually responsive, 100-ms noise bursts and light flashes 

were presented separately or simultaneously at a rate of once per second. These stimuli were 

interspersed with a no-stimulus condition, with presentation pseudor-andomized, and each 

stimulus configuration presented 20-40 times. To eliminate any possibility that responses 

recorded following presentation of visual stimuli were artifacts of our experimental design, 

we confirmed that no sound was emitted when the visual stimuli were switched on and off 

using a Brüel and Kjær one-eighth inch microphone and type 2610 measuring amplifier and 

that these responses disappeared when the LED was active but covered up. In 2 animals, 

visual receptive fields were mapped using a flashing LED mounted on a robotic arm (TDT), 

which allowed the stimuli to be presented at different angles at a distance of 1 m from the 

animal’s eye.

Data Acquisition

Recordings were made with silicon probe electrodes (Neuronexus Technologies, Ann Arbor, 

MI). In 5 animals, we used electrodes with a 4 × 4 configuration (4 active sites on 4 parallel 

probes, with a horizontal and a vertical spacing of 200 μm). In a small number of recordings 

in one of these animals, and for all recordings in a further 3 animals, a single shank electrode 

was used with 16 active site spaced at 150-μm intervals. The electrodes were positioned so 

that they entered the cortex approximately orthogonal to the surface of the ectosylvian gyrus 

(EG). Recordings were made in all auditory cortical fields that were identified in the ferret 

by Bizley et al. (2005), although, because the anterior ectosylvian sulcus (AES) is known to 

Bizley et al. Page 4

Cereb Cortex. Author manuscript; available in PMC 2020 December 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



be a multisensory area (Ramsay and Meredith 2004), there was a sampling bias toward the 

rostral fields on both the middle ectosylvian gyrus (MEG) and anterior ectosylvian gyrus 

(AEG).

The neuronal recordings were band-pass filtered (500 Hz-5 kHz), amplified (up to 20 000×), 

and digitized at 25 kHz. Data acquisition and stimulus generation were performed using 

BrainWare (Tucker-Davis Technologies).

Data Analysis

Spike sorting was performed off-line. The noise level in the signal was averaged over the 

preceding second and the trigger level for detecting a spike automatically adjusted to be 3 

times this level. Single units were isolated from the digitized signal by manually clustering 

data according to spike features such as amplitude, width, and area. We also inspected 

autocorrelation histograms, and only cases in which the interspike interval histograms 

revealed a clear refractory period were classed as single units.

Data analysis was performed in MATLAB (MathWorks Inc., Natick, MA). Visual latencies 

were typically, although not always, longer than auditory latencies, and responses to both 

stimulus modalities lasted for up to 200 ms after stimulus onset. In order to classify whether 

a unit was responsive to auditory and/or visual stimuli, 2 methods of analysis were used. 

First, a 2-way analysis of variance (ANOVA) of spike counts over a 200-ms window was 

performed, in which the 2 binary factors were the presence/absence of an auditory stimulus 

and the presence/absence of a visual stimulus. This allowed us to quantify whether 

individual units responded to each form of stimulation and whether there was any interaction 

resulting from the combined presentation of light and sound. Second, measures of MI were 

calculated using methods described by Nelken et al. 2005. Briefly, the stimulus S and neural 

response R were treated as random variables, and the MI between them, I(S;R), measured in 

bits, was calculated as a function of their joint probability p(s, r) and defined as

I S; R = ∑
s, r

p s, r log2
p s, r

p s p r , (1)

where p(s), p(r) are the marginal distributions (Cover and Thomas 1991). The MI is zero if 

the 2 values are independent (i.e., p(s, r) = p(s)p(r) for every r and s) and is positive 

otherwise. Because naive MI estimators may suffer from both under- and overestimation, the 

“adaptive direct” algorithm, described fully and validated in Nelken et al. (2005), was 

applied. The MI estimated from full responses is hard to compute due to the high 

dimensionality of all possible spiking responses, leading to large under-sampled matrices 

and to large bias. The simplest approach is to use coarser binning, but this will result in 

lower MI estimates relative to that of the raw data. To overcome this problem, the spike train 

was resampled at a number of resolutions to produce a new train containing a 0 in each time 

bin lacking any spikes and 1 in each bin containing ⩾1 spike. The naive MI (including the 

bias) was computed initially using a matrix based on a large number of bins, each with a low 

probability. The matrix was then reduced, step by step, by joining the rows and columns to 

create coarser binning and the MI and bias recomputed. The reduction continued until only a 

single row or column remained, resulting in a set of decreasing MI values and a 
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corresponding set of decreasing bias values. The MI was estimated by the largest difference 

between the 2.

To estimate the MI for the present data set, responses were classified according to the 

presence or absence of an auditory or visual stimulus (i.e., for a total of 4 stimulus 

conditions). The spike train was then binned at several time resolutions, ranging from 8 to 

256 ms. Because binning is a data reduction step, the maximal MI over all temporal 

resolutions was considered as the best estimate of the true MI. To assess whether the 

obtained value was significant, stimuli and responses were randomized and the MI 

recalculated. The data were bootstrapped in this manner 100 times, and the 99th percentile 

was extracted from the resulting distribution. If the MI calculated from the data exceeded 

this value, it was considered to be significant.

To test for an interaction when the 2 stimuli were presented together, the nonstimulus trials 

were removed from consideration. Then the MI between the responses and the binary 

classification of unisensory/ bisensory stimulation was calculated. This MI is significant 

when the distribution of responses to bisensory stimulation is different from the distribution 

of responses to visual and auditory stimuli presented separately. Because this would also be 

the case for modality-specific neurons, the MI was reestimated after removing possible 

unisensory auditory effects by randomly intermixing the responses to the light alone with 

those to the light and sound presented together. The MI was then reestimated after removing 

the possible contribution of unisensory visual effects by randomizing the sound with the 

light-sound trials. In both cases, bootstrap was used to build a distribution of MI values. If 

the MI for the real data exceeded both estimated confidence limits, it was concluded that a 

significant multisensory interaction was present in the neuronal response. Therefore, units 

classified as “bisensory” either had a spiking response to both modalities of stimulation 

when presented independently or had a significant response to one modality of stimulation, 

which was modulated by the presence of the second stimulus modality that did not, alone, 

produce a significant response.

In general, we found that the two 2-way ANOVA based on the spike counts and the MI 

analysis produced results in good accordance with each other (>70% of units were classified 

in the same manner by each type of test). However, examination of raster plots and derived 

significance values suggested that the MI analysis was slightly more sensitive, presumably 

because it takes into account spike timing patterns as well as spike counts (see below). 

Furthermore, the ANOVA assumes linearity in the contributions of each factor and classified 

a small population of units that clearly showed nonlinear interactions between the visual and 

auditory stimuli as unisensory. By contrast, the MI analysis captured such interactions. 

Consequently, the MI values were used to classify the responses of the cortical units.

In order to quantify the contribution of spike timing information to the MI estimates, a 

simplified timing statistic, the mean response latency, was computed (see Nelken et al. 

2005). The mean response latency is simply the mean latency of all spikes within the 

response window and would be equal to the first spike latency if there was only one spike. 

MI was calculated for each stimulus condition using either the spike count (the total number 

of spikes over a 200-ms response window) or the mean response latency. It has been shown 
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that, although neither of these statistics alone can capture the full information in spike trains 

recorded from auditory cortex, jointly they can convey all the available information about 

the stimuli that is present in the neural response (Nelken et al. 2005).

The type and magnitude of the multisensory interaction was quantified as in previous studies 

in this field (Newman and Hartline 1981; King and Palmer 1985; Populin and Yin 2002) 

using the following formula:

response modulation = rA+V − rA − rV
rA + rV

× 100, (2)

where r A + V is the number of spikes evoked by combined visual-auditory stimulation, r A 

the number evoked by auditory stimulation alone, and r V the number evoked by visual 

stimulation alone. As in previous studies in which cross-modal interactions have been 

analyzed using this formula, spike counts were corrected for spontaneous activity by 

subtracting the spike counts in an equivalent window prior to stimulus presentation from that 

used to calculate the response. Response modulation values of 0 indicate a simple 

summation of unisensory influences, whereas values >0 indicate superadditive interactions 

and values below this indicate cross-modal occlusion or subadditive interactions.

Response latencies were calculated from the pooled poststimulus time histogram (PSTH) 

containing the responses to the appropriate stimulus. Minimum response latencies were 

computed as the time at which the pooled response first crossed a critical value defined as 

20% of the difference between the spontaneous and peak firing rates (as in Bizley et al. 

2005).

Verification of Recording Sites

Following the completion of recordings, animals were perfused (see below). The cortex was 

removed, gently flattened between glass coverslips, and cryoprotected in 30% sucrose, after 

which 50-μm tangential sections were cut and stained for Nissl substance. This enabled the 

location of the recording sites to be examined, thereby ensuring that none of the electrode 

penetrations had passed through the suprasylvian sulcus and into the adjacent suprasylvian 

gyrus. Because it was not possible to make lesions at the recording sites, we could not 

identify which cortical layers the recorded units were located in. However, the tracks made 

by the silicon probe electrodes were clearly visible in the Nissl-stained sections, and depth 

measurements were derived from the microdrive readings from the point at which the 

electrodes entered the cortex.

Tracers

Aseptic surgical techniques were used in all tracer injection experiments. Tracers used were 

10% dextran tetramethylrhodamine (10 000 MW, Fluororuby [FR]; Molecular Probes Inc., 

Eugene, OR), 10% dextran biotin fixable (biotinylated dextran amine [BDA], 10 000 and 

3000 MW; Molecular Probes), and 1% cholera toxin subunit β (CTβ, List Biological 

Laboratories, Campbell, CA).
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Tracer injections were, in most cases, made in physiologically identified cortical regions (see 

Table 1). When physiological verification was not possible, the locations of the tracer 

injections were assigned to a particular cortical field based on our previous descriptions of 

ferret auditory cortex (Bizley et al. 2005). A glass micropipette was lowered, and BDA, FR, 

or CTβ were injected, in most cases, by iontophoresis using a positive current of 5 μA and a 

duty cycle of 7 s for a duration of 15 min. In a small number of cases, FR and CTβ were 

injected by pressure with a nanoejector (Nanoject II; Drummond Scientific Company, 

Broomall, PA). Once the injections were complete, the micropipette was withdrawn, the 

dura lifted back in place, and the piece of cranium that had previously been removed 

replaced. Sutures were placed in the remaining temporal muscle and skin, so that they could 

be returned to their preoperative positions. The animals received intraoperative and 

subsequent postoperative analgesia with Vetergesic (0.15 mL of buprenorphine 

hydrochloride, intramuscularly; Alstoe Animal Health, Melton Mowbray, UK).

Tissue Processing

Survival times were between 2 and 4 weeks, after which transcardial perfusion followed 

terminal overdose with Euthatal (400 mg/kg of pentobarbital sodium; Merial Animal Health 

Ltd, Harlow, UK). The blood vessels were washed with 300 mL of 0.9% saline followed by 

1 L of fresh 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4 (PB). The brain was 

dissected from the skull, maintained in the same fixative for several hours, and then 

immersed in 30% sucrose solution in 0.1M PB for 3 days. In 5 cases, the 2 hemispheres 

were dissected and gently flattened between 2 glass slides. In those cases, the cortex was 

later sectioned in the tangential plane; 6 other brains were sectioned in the standard coronal 

plane. Sections (50-μm thick) were cut on a freezing microtome, and 6 or 7 sets of serial 

sections were collected in 0.1 M PB. Every third series of sections was used to analyze the 

tracer labeling.

FR and CTβ were visualized with immunohistochemistry reactions, whereas BDA was 

reacted only with avidin biotin peroxidase (Vectastain Elite ABC Kit; Vector Laboratories, 

Burlingame, CA). Sections were washed several times in 10 mM phosphate-buffered saline 

(PBS) with 0.1% Triton X100 (PBS-Tx) and incubated overnight at 4 °C in the primary 

antibody (FR: anti-tetramethylrhodamine, rabbit immunoglob-ulin G [IgG]; Molecular 

Probes; dilution 1:6000; CTβ: goat-anti-CTβ, dilution 1:15 000). After washing 3 times in 

PBS-Tx, sections were incubated for 2 h in the biotinylated secondary antibody (biotinylated 

goat anti-rabbit IgG H + L [FR] or rabbit-anti-goat [CTβ], dilution 1:200; Vector 

Laboratories) at room temperature. Sections were once again washed and incubated for 90 

min in avidin biotin peroxidase, washed in PBS, and then incubated with the chromogen 

solution; 3,3′-diamino-benzidine (DAB; Sigma-Aldrich Company Ltd, Dorset, UK). 

Sections were incubated in 0.4 mM DAB and 9.14 mM H2O2 in 0.1 M PB until the reaction 

product was visualized. When BDA and FR or CTβ were injected in the same animal, the 

BDA was first visualized with ABC followed by DAB enhanced with 2.53 mM nickel 

ammonium sulfate. The second tracer (FR or CTβ) was subsequently visualized using the 

appropriate protocol with DAB only as the chromogen. Reactions were stopped by rinsing 

the sections several times in 0.1 M PB. Sections were mounted on gelatinized glass slides, 

air dried, dehydrated, and coverslipped.
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For every animal, one set of serial sections was counterstained with 0.2% cresyl violet, 

another set was selected to visualize cytochrome oxidase (CO) activity, and a third set was 

used to perform SMI32 immunohistochemistry to aid identification of different cortical areas 

and laminae. CO staining was obtained after 12 h incubation with 4% sucrose, 0.025% 

cytochrome C (Sigma-Aldrich), and 0.05% DAB in 0.1 M PB at 37 °C To stain 

neurofilament H in neurons, we used a monoclonal mouseanti-SMI32 (dilution 1:4000; 

Sternberg Monoclonals, Inc., Latherville, MA). After immersion for 60 min in a blocking 

serum solution with 5% normal horse serum, the sections were incubated overnight at 5 °C 

with the mouse antibody and 2% normal horse serum in 10 mM PBS. Mouse biotinylated 

secondary antibody was used after brief washings in 10 mM PBS (mouse ABC kit, dilution 

1:200 in PBS with 2% normal horse serum; Vector Laboratories). Immunoreaction was 

followed by several washings in PBS, incubation in ABC, and visualization using DAB with 

nickel-cobalt intensification (Adams 1981).

Histological Analysis

Sections were analyzed with a Leica DMR microscope fitted with a digital Leica camera 

using TWAIN software (Leica Microsystems, Heerbrugg, Switzerland). The locations of the 

labeled cells were plotted using a camera lucida onto drawings of the cortex produced from 

adjacent Nissl-stained sections.

Results

Ferret auditory cortex lies on the EG, where 6 different fields have been defined 

physiologically (Bizley et al. 2005) (Fig. 1). As in other species, these fields can be divided 

into primary like, or core, areas and nonprimary, or belt, areas. The primary auditory cortex 

(A1) and the anterior auditory field (AAF) are tonotopically organized core areas. Of the 

remaining 4 belt areas, 2 fields, the posterior pseudosylvian and suprasylvian fields (PPF 

and PSF), are tonotopically organized and lie on the posterior bank of the EG. Finally, 2 

nontonotopically organized areas are located on the AEG. The anterior dorsal field (ADF) 

responds well to tones and is likely to be a belt area, whereas the response properties and 

anatomical connectivity (Bizley et al. 2005 and unpublished observations) of the anterior 

ventral field (AVF) suggest that this is a higher sensory area.

Data are presented here from recordings made from 756 single units in the left EG whose 

responses were significantly modulated by acoustic, visual, and/or multisensory stimulation 

(Bajo et al. 2006). Many other acoustically responsive units were recorded in these animals, 

but these were not tested with visual stimuli and are not considered further here. Data from 

each animal were initially examined separately, and, after ensuring that a consistent trend in 

the distribution of these responses was present in all animals, the data were pooled across 

subjects. Recording sites were assigned to different cortical fields based on their locations on 

the surface of the EG plus subsequent histology, as well as the frequency tuning and other 

response properties of the units (Bizley et al. 2005).

The raster plots in Figure 2 illustrate the range of responses evoked by these units to our 

standard stimuli used to investigate visual-auditory interactions. These stimuli comprised 

100 ms noise bursts presented to the contralateral ear, 100 ms light flashes presented within 
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the contralateral visual field, or both presented simultaneously. The symbols at the top right 

of each panel indicate whether significant responses or visual-auditory interactions were 

observed (according to the MI values, see Materials and Methods). In Figure 2A, the unit 

responded robustly to acoustic stimulation, whereas the visual stimulus was ineffective in 

changing the spike discharge pattern of the unit, either by itself or in combination with the 

sound. By contrast, Figure 2B,C shows units whose responses were clearly modulated by 

both auditory and visual stimulation. In each case, bisensory stimulation evoked spike 

discharges in which components of the responses to each stimulus modality could be 

discerned by virtue of their different temporal firing patterns. Figure 2D shows a unit that 

responded to visual but not to auditory stimulation. In Figure 2E, the unit did not respond to 

visual stimulation alone, although its auditory response was enhanced when light flashes 

were presented simultaneously. Finally, Figure 2F shows an example of a unit in which the 

only significant response was obtained with combined visual-auditory stimulation.

Cortical Location of Modality-Specific and Multisensory Units

All units were classified as auditory, visual, or bisensory. Visual-auditory units included 

those exhibiting a clear spiking response to both stimulus modalities (e.g., Fig. 2B,C) and 

those for which the MI analysis revealed a significant interaction, that is, where responses to 

bisensory stimulation were significantly different from those evoked in either unisensory 

condition (e.g., Fig. 2E,F). Recording sites were plotted onto an image of the exposed cortex 

to form maps showing the location of each response type. Maps for 2 animals are shown in 

Figure 3A,B. In these plots, the blue dots indicate the location of units that were classified as 

unisensory auditory, green triangles the location of the unisensory visual units, and red 

diamonds the location of units displaying bisensory responses. Different cortical fields on 

the EG have been delimited (dashed lines) on the basis of the frequency-tuning properties of 

all the acoustically responsive units recorded in these animals (see Fig. 1 and Bizley et al. 

2005). Often different symbols overlap due to the multiple recording sites on a single probe 

(this is especially true for Fig. 3B because in this animal recordings were made with a 16-

channel single-shaft probe).

The most striking feature in Figure 3 is the incidence of bisensory units in each of the 

identified auditory cortical fields. Unisensory visual units were also widespread and were 

even found near the edges of the primary auditory fields, A1 and AAF, at the tip of the EG. 

Some of these units extended into the ventral bank of the suprasylvian sulcus, where AAF is 

located (see unfolded regions near the tip of the gyrus in Fig. 3A), but were not located on 

the suprasylvian gyrus. Figure 3C shows the proportions of each response type found in each 

cortical field. It should be noted that there was a sampling bias (for reasons discussed in the 

Materials and Methods) toward the anterior fields (AAF, ADF, AVF), and therefore, the total 

number of units recorded in these regions is higher than in the fields located on the posterior 

side of the EG. Even in primary auditory areas (A1 and AAF), ~15% of recorded units were 

found to have nonauditory input. This proportion increased in the higher level fields that lie 

ventral to A1/AAF and was highest in area AVF, where nearly 50% of the units were found 

to be responsive to visual stimuli only and a further quarter to both visual and auditory 

stimuli.
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Response Latencies

First spike response latencies were calculated for the visual response in all units whose 

responses were significantly modulated by light alone (n = 148), and auditory first spike 

latencies were calculated for all bisensory units exhibiting a significant unisensory response 

following contralateral stimulation with broadband noise bursts (n = 113). These are plotted, 

for each cortical area, in Figure 4A,B. Units ranged in their visual first spike latency from 

~40 to >200 ms, whereas most auditory latencies were <50 ms. Visual latencies in AAF 

were significantly shorter than those in most other cortical fields, whereas the longest 

latencies were found in field AVF. Although there were no significant interareal differences 

in auditory response latencies for this population of cells, the distribution of first spike 

latencies across different cortical areas followed a similar pattern to that previously 

described with pure-tone stimuli (Bizley et al. 2005), with the posterior fields (PPF and PSF) 

having the longest latencies.

Spatial Receptive Fields

In 2 of the animals, an LED mounted on a robotic arm at a distance of 1 m from the animal’s 

head was used to map the visual spatial receptive fields. This visual stimulus was, in some 

cases, accompanied by simultaneous presentation of a contra-lateral noise burst. Figure 5A 

shows how the visual response of a unit recorded in AAF varied with the azimuthal angle of 

the LED; its response was clearly restricted to a region of contra-lateral space. The visual 

azimuth response profile of another unit, this time from ADF, is depicted in Figure 5B. The 

magnitude of the visual response is shown in the presence and absence of auditory 

stimulation. Again, the visual response was clearly tuned to the anterior contralateral 

quadrant and a significant interaction was found between the location of the light and the 

presence of the sound (P < 0.001), indicating that the addition of the auditory stimulus 

sharpened the spatial selectivity of the visual response. A total of 39 bisensory cells had their 

visual spatial receptive fields mapped in this fashion. In 31 of these units, there was a 

significant effect on the response of varying the location of the LED (2-way ANOVA with 

light position and presence of sound as factors). Azimuth profiles showing how the 

responses of all these units varied as the location of the robotic-arm-mounted LED was 

changed while presenting noise to the contralateral ear are plotted in Figure 5C. Although 

some units showed regions of increased and decreased activity at different LED locations, 

the majority were contralaterally tuned, as can be seen in the average spatial response 

profile.

Varying Stimulus Intensity

Because we wished to sample as many units as possible with our multielectrode arrays, we 

typically used a fairly intense visual stimulus in order to determine the incidence of visually 

sensitive units in different auditory cortical fields. In a number of cases, however, we also 

used much lower stimulus levels and found that these were also effective in generating 

responses. Auditory and visual thresholds are plotted for 31 bisensory units in Figure 6A. 

Many of these had very low thresholds. The thresholds for a further 21 visual units recorded 

from a range of auditory cortical fields are also plotted. An example of a bisen-sory unit 
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with a low threshold for each stimulus modality is shown in Figure 6B. This unit, which had 

clear responses to both auditory and visual stimulation presented separately, had a visual 

response threshold of 0.5 cd/m2 and an auditory threshold of 34 dB SPL.

Multisensory Interactions in Auditory Cortex

The magnitude of the visual-auditory interactions exhibited by units that were classified as 

bisensory was quantified using equation (2). This measures how different the multisensory 

response is from the linear sum of the responses to unisensory stimulation. Therefore, a 

bisensory unit that sums its inputs linearly (i.e., an additive interaction) or a unisensory unit 

whose response is unmodulated by the other stimulus modality will be deemed to show no 

cross-modal facilitation or occlusion according to this equation.

The responses of the 6 units that are shown in Figure 2 are replotted (as mean ± standard 

error of mean spike rates for each stimulus condition) in Figure 7, together with their 

response modulation values from equation (2). Units B, C, E, and F were classified as 

bisensory, either because they gave significant responses to both visual and auditory stimuli 

or because the responses to bisensory stimulation conveyed significantly more information 

than either of the unisensory responses. Units B and C exhibited sublinear interactions or 

cross-modal occlusion. By contrast, a significant facilitation or superadditive interaction was 

observed in the responses of units E and F; in the most extreme case (unit F), neither visual 

nor auditory stimuli were effective at driving the neuron, whereas bisensory stimulation 

produced a clear response. Such extreme cases of facilitation were relatively uncommon and 

were usually observed when the responses to unisensory stimulation were particularly weak.

Figure 8A shows the distribution of cross-modal response modulation values for units 

classified as bisensory. Most units exhibited linear or sublinear interactions in their spike 

discharge rates and in only a few cases, were superadditive effects of the sort shown in 

Figure 5E,F observed. When looking for bisensory interactions, the intensity of both stimuli 

was kept constant at a relatively high value. The incidence of cross-modal facilitation in the 

superior colliculus is known to decrease as stimulus intensity is increased (Meredith and 

Stein 1986; Stanford et al. 2005), so it is possible that a greater incidence of superadditivity 

would have been observed had weaker stimuli been used. There were no apparent 

differences in the distribution of such responses across cortical area (data not shown).

In order to compare the cross-modal response modulation values obtained with spike counts 

to the MI estimates, we used the same formula (eq. 2) but substituted the spike counts by the 

corresponding MI values (in bits). The distribution of response modulation values (Fig. 8B) 

was very similar, and both measures tended to reveal the same type of cross-modal 

interaction for individual units.

By calculating the MI associated with each stimulus condition (compared with spontaneous 

activity), we were able to show that in the majority of units classified as “bisensory” there 

was an increase in the transmitted information when combined visual-auditory stimuli were 

presented compared with the most effective unisensory stimulus. Figure 9 plots the MI value 

obtained in the bisensory condition against that for the most effective unisensory condition. 
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The majority of points fell above the line of unity, indicating that there was more 

information in the response when visual and auditory stimulation was combined.

Information in Spike Timing

As previously mentioned, we found that the MI analysis provided a more sensitive index for 

the presence of multisensory responses than ANOVA tests based on spike count. We 

explicitly tested the hypothesis that this is the case because the MI analysis takes into 

account stimulus-related variations in spike timing as well as the overall spike count. It has 

previously been shown for auditory cortex that spike count and mean response latency can 

together capture the total information in the full spike discharge pattern (Nelken et al. 2005). 

The mean response latency is a reduced timing measure and is the average latency of all 

spikes in the response window and would be equal to the first spike latency when there is 

only one spike. We therefore calculated the MI based on each of these 2 measures for all our 

recorded responses and compared the relative contributions of spike timing and spike count.

This analysis is presented in Figure 10A, which plots, for all units in which there was a 

significant response for that stimulus, the relative information in spike count and spike 

timing. Points lying above the line of unity indicate that the unit transmits more information 

in its mean response latency than in its spike count. The MI calculated from mean response 

latencies exceeded the MI from spike counts in 56% of auditory responses (crosses), 70% of 

visual responses (diamonds), and 52% of bisensory (triangles) responses. The most dramatic 

differences were obtained when the spike count information was relatively low due to there 

being little difference between the stimulus-evoked response and the spontaneous activity. 

Although the recorded spike counts suggested that the stimulus was relatively ineffective in 

these cases, there was often clear time-locked activity in response to the stimulus, which the 

mean response latency measure was able to extract. The response of one such unit is shown 

in Figure 10B.

Altering Stimulus Onset Times

A closer examination of the nature of the multisensory interactions was performed by 

altering the relative timing of the auditory and visual stimuli. In 241 units in which there was 

no visual response and no multisensory interaction was detectable following simultaneous 

presentation of the 2 stimuli, ~6% (14 units) showed suppression of the auditory response 

when the visual stimulus was presented either 100 or 200 ms prior to the acoustic stimulus. 

An example of such a neuron is shown in Figure 11. This unit responded robustly to a noise 

burst but was unaffected by a light stimulus, presented either alone or simultaneously with 

the sound. However, presentation of the visual stimulus 100 or 200 ms prior to the auditory 

stimulus caused a significant suppression of the response to noise. Such data show that 

multisensory interactions can be observed only in response to very specific stimulus 

configurations.
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Distribution in Cortical Depth

Information about the origin of visual inputs to auditory cortex can be obtained by 

examining the laminae in which multisen-sory interactions occur. Because the silicon probe 

electrodes used in these experiments do not allow an accurate histological reconstruction of 

the depths of the recording sites, we are unable to match recordings to specific cortical 

lamina. However, as the probes had multiple recording sites and recordings were made 

orthogonal to the surface of the cortex, it was possible to examine the relative depth of the 

multisensory responses.

We examined the distribution of unisensory and bisensory responses across the recording 

sites on our silicon probes (both the 4 × 4 and 16 × 1 configuration of recording sites). 

Visually sensitive units could be found at all the cortical depths sampled. Without 

histological verification of individual recording sites or a current source density analysis of 

local field potentials, it was not possible to confirm the laminar origin of these recordings. 

Nevertheless, these data suggest that visual inputs to auditory cortex are not restricted to 

particular layers.

Auditory Response Characteristics of Bisensory Neurons

The frequency-tuning properties of all acoustically responsive units were assessed in order 

to examine the characteristics of those units that also received visual inputs. This was done 

by measuring the Q10 (bandwidth at 10 dB above threshold divided by best frequency; high 

values indicate narrow frequency tuning). A 2-way ANOVA (with cortical area and response 

modality as factors) revealed a significant difference in tuning between different areas (F 

5,614 = 3.93, P < 0.01), but not between the auditory and visual-auditory units (F 1,614 = 0.23, 

P = 0.23).

Figure 12A,B plots the responses of 2 units selected to demonstrate that bisensory neurons 

exhibited a range of frequency-tuning characteristics, which were usually typical of the field 

in which they were recorded. The first column shows the raster plot of each unit in response 

to auditory, visual, and combined visual-auditory stimulation. The central column shows the 

pooled PSTH in response to 3 repetitions of each of the pure-tone stimuli used to construct 

the FRA, which is shown in the third column. Unit A is from AAF, and unit B is from ADF. 

These units have FRAs that are highly typical for their respective fields, with the AAF unit 

having a short latency onset response and sharp frequency tuning, whereas the ADF 

response was more sustained and broadly tuned. Both of these units were also visually 

responsive but did not exhibit significant cross-modal interactions. A comparison of the Q10 

values for unisensory auditory and bisensory units recorded in each of 6 cortical fields is 

shown in Figure 6C. No significant differences in auditory frequency tuning were found 

according to whether the units were sensitive to visual stimulation or not.

Anatomical Connectivity: Potential Cortical Sources of Visual Input

A total of 20 separate tracer injections were made into the auditory cortices of 11 ferrets as 

indicated in Table 1. In all these cases, the injection sites spanned all cortical layers but did 

not spread to the white matter. To serve the aim of this investigation, only connections 
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between auditory cortex and other nonauditory sensory cortical areas will be described. 

Visual, somatosensory, and parietal areas of the ferret cortex were identified on the basis of 

previous anatomical and physiological studies (Innocenti et al. 2002; Manger et al. 2002, 

2004).

The number of labeled neurons and the quality of filling varied with the tracer injected, 

presumably reflecting differences in the size of the injection sites and in the sensitivity and 

diffusion characteristics of different tracers. Although this prevented us from making 

quantitative comparisons of the projections arising from different injection sites, the use of 

different tracers avoided the limitations associated with any particular tracer and allowed us 

to inject two or more different tracers in the same cortex. In each case, these injections 

resulted in labeling in nonauditory sensory areas that was predominantly ipsilateral to the 

injection site and, for injections placed in the same areas, comparable in its distribution 

among different tracers. Retrograde labeling was also examined outside of the cerebral 

cortex, which, as expected, revealed labeling in different parts of the medial geniculate body, 

but not in the lateral geniculate or in the midbrain. Labeling was observed in the 

suprageniculate nucleus after tracer injections into areas on the anterior bank (ADF and 

AVF, data not shown).

In the cortex, retrogradely labeled cells were found in several nonauditory areas after tracer 

injections in the EG (Figs 13-15). Labeled cells were consistently observed in visual areas 

17, 18, 19, and 20, as well as the suprasylvian cortex (SSY), and posterior parietal cortex, 

although their distribution varied according to the location of the injection sites. These cells 

were located mainly in cortical layers III and V.

Figure 13 shows the location of retrogradely labeled cells in the cortex following injections 

of 2 different tracers in the MEG, where the primary auditory fields, A1 and AAF, are 

located. Sparse labeling was found in areas 17, 18, and 20 (Fig. 13C-G), caudal posterior 

parietal cortex (PPc, Fig. 13D), and in SSY (Fig. 13D). The greatest number of labeled cells 

was found in area 20, which has been subdivided into areas 20a and 20b (Manger et al. 

2004). Labeling was densest in area 20b, the smaller and more anterior of the 2 fields, with 

fewer labeled cells present in area 20a. Labeling in areas 17 and 18 was found near their 

dorsal and ventral borders, corresponding to where the peripheral visual field is represented 

(Law et al. 1988). Occasional cells were observed in the AES cortex, which, in the ferret, 

lies within the anterior bank of the pseudosylvian sulcus and receives inputs from primary 

visual and somatosensory areas (Ramsay and Meredith 2004; Manger et al. 2005). Tracer 

injections placed into the MEG in other animals produced patterns of labeling consistent 

with those shown in Figure 13. Injections into both caudal MEG, corresponding to A1, and 

more rostral MEG, corresponding to AAF, produced very similar patterns of labeling in 

nonauditory areas.

Figure 14 shows the pattern of cortical labeling observed after injections of BDA and CTβ 
were placed in the AEG and posterior ectosylvian gyrus (PEG), respectively. The labeling 

produced by each tracer was almost entirely nonoverlapping, indicating that the higher level 

auditory cortical areas located on these 2 sides of the EG have different sources of input. The 

injection of CTβ in the PEG resulted in extensive labeling in the MEG, together with some 
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in AES cortex and in the most rostral and ventral parts of the AEG, which is probably 

corresponding to limbic areas (Fig. 14D,E). As in the MEG, the predominant nonauditory 

input to the PEG originated in areas 20a and 20b (Fig. 14E). Scattered cells were also 

observed in SSY and area 19 (Fig. 14F), although labeling in primary visual areas and PPc 

was virtually absent. The injection of CTβ in this animal was made in the center of the PEG 

(Fig. 14A,C), probably spanning the common low-frequency border of fields PPF and PSF 

(Bizley et al. 2005). More restricted injections into either one of these fields yielded similar 

patterns of labeling to those in Figure 14.

In contrast to the MEG and PEG, the primary nonauditory input to the AEG arose from SSY 

(Figs 14E and 15C,D). Sparser labeling was observed in area 20a and 20b (Figs 14E and 

15D), PPc (Figs 14F,H and 15C,D), and occasionally in areas 17 and 18 (Figs 14F and 15F-

H). The single CTβ injection illustrated in Figure 15 was placed in the center of the AEG, 

did not spread as far as the pseudosylvian sulcus, and therefore did not include AES cortex. 

In contrast, the BDA injection into the AEG shown in Figure 14 did extend into the sulcus, 

most likely including AES cortex. Nevertheless, the pattern of labeling that resulted from 

these 2 injections was very similar.

In summary, these tracer injections reveal the presence of projections to auditory cortex from 

several different visual cortical areas. The strongest inputs to auditory fields located on both 

the MEG and the PEG arise from area 20. Additionally, MEG receives weak, direct 

projections from primary visual areas, whereas PEG is innervated by higher visual areas. 

This differs from the AEG, where the largest input originates in SSY.

Discussion

The traditional view that integration of information across the senses occurs in the cortex 

only after substantial modality-specific processing has taken place has recently been cast 

into doubt by the discovery that multisensory interactions are prevalent in low-level cortical 

areas (reviewed by Schroeder and Foxe 2005). Our data build on this growing body of 

neuroimaging, electrophysiological, and anatomical evidence in primates and other species, 

by showing that unisensory visual and visual-auditory neurons are widely distributed in 

ferret auditory cortex. We also identified a possible substrate for these responses by showing 

that auditory cortex receives inputs from several visual cortical areas. We found some 

visually sensitive neurons in all 6 auditory areas that were studied, including the primary 

fields A1 and AAF. Although the incidence of these neurons increased in higher areas on the 

AEG, their presence in all these fields suggests that multisensory convergence is a general 

feature of auditory, and perhaps all sensory, cortical areas.

The animals used in this study were anesthetized and had not undergone any behavioral 

training. This enabled us to carry out the large numbers of recordings necessary to detect and 

document visually responsive neurons and to investigate multisensory integration without 

having to consider the additional modulating factors of behavioral state or prior training, 

which are known to influence multisensory interactions at a cellular level (e.g., Bell et al. 

2003; Brosch et al. 2005). Previous studies in both passive awake (Schroeder et al. 2001; 

Schroeder and Foxe 2002) and anesthetized (Fu et al. 2003) monkeys have revealed the 
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presence of visual and somatosensory influences on the belt areas of auditory cortex. 

However, the only reports of multisensory integration in core areas have come from studies 

of behaving animals (Brosch et al. 2005; Ghazanfar et al. 2005). For example, in a task 

where monkeys were trained to perform an auditory discrimination task triggered by a visual 

stimulus, responses were observed to the cue light (Brosch et al. 2005). Our data suggest 

that the substrate for these responses is present and active even in animals that have not 

undergone any form of multisensory training.

Previous multisensory investigations in the carnivore brain have focused on AES cortex 

(Wallace et al. 1992; Benedek et al. 1996; Manger et al. 2005) and the rostral aspect of the 

lateral suprasylvian sulcus (Toldi and Feher 1984; Wallace et al. 1993), which both contain a 

mixture of modality-specific and multi-sensory neurons. These are, however, regarded as 

“association areas,” and there have previously been no reports of multisen-sory convergence 

within putatively unisensory fields of the carnivore auditory cortex. Indeed, the absence of 

visual activity has been used as a defining characteristic of nonprimary auditory areas (e.g., 

in differentiating the secondary auditory cortex from AES in the cat [Clarey and Irvine 

1990]). Although the highest incidence of visually responsive neurons was found in AVF, 

which lies close to the presumed location of AES (Ramsay and Meredith 2004; Manger et 

al. 2005), we found that multisensory convergence is a property of at least 15-20% of units 

in each of the auditory areas that have so far been characterized in the ferret. As in the study 

of visual-auditory interactions in auditory cortex by Ghazanfar et al. (2005), we found a 

higher incidence of multisensory interactions in the higher order cortical fields than in the 

core areas.

There are at least 2 possible reasons why we were able to observe a greater prevalence of 

visual influences in auditory cortex than in previous studies in other species. First, the use of 

multielectrode recording arrays allowed us to sample large numbers of units in a relatively 

unbiased fashion within a single animal. Second, instead of simply comparing the number of 

spikes evoked by different stimuli, as all previous studies of multisensory processing have 

done, we estimated the information transmitted by the units about the type of stimulus 

presented. Although the multisensory responses of individual units were often classified in 

the same manner (i.e., as super-additive, additive, or subadditive), the MI estimates were 

more sensitive. This is most likely because the MI analysis takes into account spike timing 

as well as spike count. Indeed, by comparing the relative amounts of information in 2 

reduced measures of the spike train, the spike count, and the mean response latency, we were 

able to show that the majority of units transmit more information in the timing of their 

responses than in the overall spike counts. This was particularly the case for stimuli that, in 

terms of a change in firing rate, were weakly effective. Thus, the quantification of responses 

to multisensory stimuli needs to take into account not only the number of spikes evoked by 

different stimuli (Stanford et al. 2005) but also at least a coarse measure of the timing of 

those spikes.

Some of the clearest evidence for responses in auditory cortex to visual and somatosensory 

stimuli has come from studies in which local field potentials and/or multiunit activity have 

been measured (Schroeder et al. 2001; Schroeder and Foxe 2002; Fu et al. 2003; Ghazanfar 

et al. 2005). Although these recording methods are useful for detecting the presence of 
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sparsely distributed neurons or, in the case of local field potentials, for examining laminar 

variations in neuronal stimulus processing, single-unit recordings are required in order to 

probe the inputs to and integrative properties of individual neurons. By using this approach, 

we can conclude that we did indeed record from units with converging visual and auditory 

inputs, rather than from closely intermingled unisensory neurons. This also facilitated an 

examination of the other response characteristics of the units. Neurons whose activity was 

modulated by visual stimuli usually exhibited frequency-tuning properties that were 

characteristic of the cortical fields in which they were located, further supporting the claim 

that multisen-sory integration is a general feature of the auditory cortex.

Sensitivity to visual stimuli could already be a feature of the ascending input to auditory 

cortex or arise as a result of lateral or feedback connections from other cortical areas. There 

have been several reports of somatosensory or visual influences on neuronal activity in 

subcortical auditory structures (Aitkin et al. 1981; Young et al. 1992; Doubell et al. 2003; 

Komura et al. 2005; Shore and Simic 2005; Musacchia et al. 2006). Moreover, following 

tracer injections in auditory cortex, we observed retrograde labeling in the suprageniculate 

nucleus of the thalamus, which is known to receive auditory, somatosensory, and visual 

inputs (Hicks et al. 1986; Benedek et al. 1997; Eördegh et al. 2005). Local field potential 

recordings from monkey auditory belt areas have shown that somatosensory responses have 

a similar feedforward profile to the auditory responses, that is, beginning in layer IV and 

then spreading to extragranular layers (Schroeder et al. 2001). There is therefore clear 

evidence that nonauditory inputs can arise as a result of multisensory convergence either at a 

subcortical level or within the cortex itself.

Visual activation of the caudomedial area of monkey auditory cortex has a different laminar 

profile, however, indicative of inputs terminating in the supragranular and infragranular 

layers, but not in layer IV (Schroeder and Foxe 2002). This pattern is more consistent with 

inputs from other cortical fields. In their single-unit recording study of rat cerebral cortex, 

Wallace et al., (2004) reported that neurons responsive to different combinations of visual, 

auditory, and somatosensory stimuli were restricted to layers V and VI, although modality-

specific units were distributed across all cortical layers. This is consistent with our 

observation that units sensitive to visual stimulation were encountered throughout the full 

depth of auditory cortex.

Examination of response latencies can also help to identify potential sources of input. As 

expected, response latencies to visual stimuli were generally much longer than those to 

sound. They were also longer than those reported to appropriately oriented sinusoidal 

gratings in ferret V1 (Alitto and Usrey 2004), but more in line with those recorded in area 

SSY (Philipp et al. 2005). Although response latency depends on many factors, such as 

stimulus contrast, the relatively long values observed in the present study are consistent with 

projections to auditory cortex arising predominantly from higher visual cortical areas.

Direct evidence for this is provided by our finding that both primary and nonprimary 

auditory fields are innervated by neurons in visual and posterior parietal areas of ferret 

cortex. Anatomical studies in primates have shown that different regions of auditory cortex, 

including A1, project to V1 and V2 (Falchier et al. 2002; Rockland and Ojima 2003). 
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However, evidence for reciprocal connections has so far been lacking. Our anatomical 

results provide the first evidence for projections from early visual areas to auditory cortex, 

which could therefore underlie the visual responses recorded in the present study. It is 

interesting to note that the only projections from areas 17 and 18 were to the MEG, where 

the primary auditory fields are found, and that different areas on the suprasylvian gyrus 

provide the main sources of visual input to the higher level auditory fields on the PEG and 

AEG.

An important, and as yet unanswered, question relates to the properties of the visual 

responses in auditory cortex. Receptive field sizes and visual field representation vary 

among the cortical areas that project to auditory cortex (Law et al. 1988; Manger et al. 2002, 

2004; Cantone et al. 2005). In a limited number of recordings, we mapped the spatial extent 

of the visual receptive fields and found, in most cases, that these were broadly tuned to 

regions of space within the anterior contralateral quadrant. This finding, together with the 

low stimulus thresholds observed where these were measured, makes it extremely unlikely 

that the responses to the LEDs arose from nonspecific arousal effects. Interestingly, the 

addition of a broadband stimulus delivered to the contralateral ear resulted in a sharpening of 

the visual spatial tuning, suggesting that the neurons were integrating information from the 2 

senses in ways that might enhance stimulus localization. To date, relatively little is known 

about the receptive field properties of neurons in higher visual areas of the ferret beyond 

receptive field size, location, and sensitivity for stimulus motion. Further studies are clearly 

required to examine these properties in both visual and auditory areas of the cortex.

It has been suggested that somatosensory and visual inputs into auditory cortex might 

facilitate auditory localization, due to their greater spatial precision, or be involved in 

“resetting” auditory cortical activity to enhance responses to subsequent auditory input 

(Schroeder and Foxe 2005). Auditory cortex is certainly required for normal sound 

localization accuracy (Heffner HE and Heffner RS 1990; Malhotra et al. 2004; Smith et al. 

2004), and spatial information is thought to be encoded in a distribution fashion across 

different cortical fields (Furukawa et al. 2000). This is therefore consistent with widespread 

visual inputs within auditory cortex. However, areas 20a and 20b, which provide the largest 

input to both MEG and PEG, are thought to belong to the ventral “what” visual processing 

stream in ferrets (Manger et al. 2004). By contrast, the largest visual input to auditory fields 

on the AEG comes from area SSY, which overlaps with the recently described posterior 

suprasylvian (PSS) area (Philipp et al. 2006). Area PSS contains a high incidence of 

direction-selective neurons and is therefore likely to be part of the dorsal “where” processing 

stream. Further characterization of these visual inputs could help to unravel the functional 

organization of auditory cortex.
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Figure 1. 
(A) Lateral view of the ferret brain showing the major sulci and gyri. (B) Sensory cortical 

areas in the ferret. The locations of known auditory, visual, somatosensory, and posterior 

parietal fields are indicated (Manger et al. 2002, 2004, 2005; Ramsay and Meredith 2004; 

Bizley et al. 2005). ASG, anterior sigmoid gyrus; as, ansinate sulcus; cns, coronal sulcus; 

crs, cruciate sulcus; LG, lateral gyrus; ls, lateral sulcus; OB, olfactory bulb; OBG, orbital 

gyrus; prs, presylvian sulcus; PSG, posterior sigmoid gyrus; pss, pseudosylvian sulcus; SSG, 

suprasylvian gyrus, sss, suprasylvian sulcus; A1, primary auditory cortex; AAF, anterior 
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auditory field; PPF, posterior pseudosylvian field; PSF, posterior suprasylvian field; ADF, 

anterior dorsal field; AVF, anterior ventral field. fAES, anterior ectosylvian sulcal field; PPr, 

rostral posterior parietal cortex; 3b, primary somatosensory cortex; S2, secondary 

somatosensory cortex; S3, tertiary somatosensory cortex; D, dorsal; R, rostral. Scale bar is 5 

mm in (A) 1 mm in (B).
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Figure 2. 
Raster plots showing the range of response types recorded in auditory cortex. Responses of 

single units to broadband noise (A), a diffuse light flash (V) and combined auditory-visual 

stimulation (AV) are shown. (A) Example of a robust auditory response. (B, C) Units that 

responded to both stimuli presented separately. (D) Unit that responded only to visual 

stimulation. (E, F) Units that showed a clear enhancement of their unisensory responses 

when combined visual-auditory stimulation was used. Symbols indicate significant 

Bizley et al. Page 25

Cereb Cortex. Author manuscript; available in PMC 2020 December 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



responses defined using MI measures. Units (A, B, and F) were located in field PSF, (C, E) 

in ADF, and (D) in PPF.
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Figure 3. 
Location of auditory (blue dots), visual (green triangles), and bisensory (red diamonds) units 

plotted across the surface of the auditory cortex in 2 different animals (A, B). Cortical field 

boundaries (derived from measurements of unit best frequency and other response 

properties) are indicated by dashed lines. Recordings made within the ventral bank of the 

suprasylvian sulcus are shown “unfolded,” as indicated by the dotted lines in (A). 

Superimposed symbols indicate that multiple units were recorded at one site or, more 

commonly, that recordings were made at several depths. The recordings shown in (A) were 
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made with a 4 × 4 silicon probe configuration, whereas those in (B) were obtained with a 

single linear probe with 16 recording sites. Recording sites in (B) have been jittered so that 

symbols are not completely overlapping. (C) Proportions of units responsive to each 

stimulus modality in each field (data pooled from all 6 animals). The total number of units 

recorded in each field is indicated at the top of each column. Bisensory units have been 

subdivided into 2 categories: those in which there was a response to both modalities of 

unisensory stimulation and those in which only one modality of stimulation produced a 

significant response when the stimuli were presented in isolation, but the addition of the 

other stimulus modality significantly modulated the response to the effective stimulus.
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Figure 4. 
First spike latencies of auditory (A) and visual responses (B) of the multisensory units (i.e., 

units with significant responses to each modality). These are plotted separately for the 6 

auditory fields that have been described in the ferret (see Fig. 1). Box plots depict the 

interquartile range and the central bar indicates the median response with the location of the 

notch showing the distribution of values around this. Kruskal-Wallis tests revealed 

significant (P < 0.05) interareal latency differences for the visual responses only. Significant 
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differences, analyzed using Tukey-Kramer post hoc tests, between the latencies in each area 

are indicated by the horizontal bars.
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Figure 5. 
Visual receptive fields in auditory cortex. (A) Raster plot showing the response of a unit 

recorded in AAF to stationary light flashes from an LED at different stimulus directions. 

This unit did not respond to sound, but a neighboring unit recorded with the same electrode 

had a best frequency of 20 kHz. The visual spatial receptive field was restricted in both 

azimuth and elevation (data not shown for elevation, but responses at the best azimuth were 

strongest for positions on or below the horizon). (B) Azimuth response profile for a different 

unit, recorded in ADF, which was also tuned for visual stimulus location. This visual 

response was significantly modulated by simultaneous stimulation of the contralateral ear. 

(C) Azimuth response profiles for all 31/39 of the spatially tuned cells recorded. Normalized 

spike rate in response to the arm-mounted LED and a contralateral noise burst are plotted 
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(gray). The auditory stimulus location was therefore constant, whereas the azimuthal angle 

of the visual stimulus alone was varied. The mean spatial receptive field is overlaid in black.
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Figure 6. 
(A) Auditory and visual response thresholds for 31 units (filled circles), and visual 

thresholds for a further 21 visual units (crosses on the x axis indicate that these latter units 

were not responsive to acoustic stimulation). (B) Raster plot showing the response of a 

single unit recorded in AVF to auditory and visual stimuli of increasing intensity. These 

stimuli were presented in a randomly interleaved fashion and are shown with the earliest 

presentations of each intensity combination positioned above the later ones. Note the clear 

latency separation of the response to each stimulus, with the visual response having a much 
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longer latency than the response to sound. Suprathreshold stimuli were presented at a fixed 

intensity in one modality, whereas the intensity of the other stimulus was varied, as indicated 

by the values to the left of the plot. This unit had a visual threshold of 0.5 cd/m2 and an 

auditory threshold of 34 dB SPL.
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Figure 7. 
Cross-modal interactions in auditory cortex. Data from the same units plotted in Figure 2 are 

replotted as spike rates ± standard error of mean (corrected for spontaneous firing) for each 

of the 3 stimulation conditions with the percentage of response modulation values calculated 

using equation (2). The response modulation value reflects the difference between the linear 

sum of the unisensory responses and the response to bisensory stimulation.
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Figure 8. 
Magnitude of cross-modal interactions in auditory cortex. (A) Bar graph showing the 

distribution of response modulation values (from eq. 2) derived from a comparison of 

evoked spike counts with each stimulus condition for all bisensory units. (B) Modulation 

values calculated in the same way but using the MI values rather than spike counts.
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Figure 9. 
Scatterplot comparing the MI values for the most effective unisensory condition and the 

bisensory condition for all units that responded to both stimulus modalities. Points above the 

line indicate that more information is transmitted in response to combined visual-auditory 

stimulation than in the unisensory condition.
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Figure 10. 
Decomposing the stimulus-related information in the spike discharge patterns. (A) The MI 

(in bits) calculated from spike counts plotted against the MI value obtained using mean 

response latency for all units in which the relevant response was previously classified as 

significant. × denotes auditory responses, ∇ denotes visual responses, ◇ denotes responses 

to bisensory stimulation. (B) Example raster plot in which the MI obtained using mean 

response latency (0.44 bits for the bisensory condition) exceeded that obtained using spike 

counts (0.13 bits) alone.
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Figure 11. 
Cross-modal interactions depend on the relative timing of the visual and auditory stimuli. 

(A) Raster plot showing how the response of a bisensory unit varied when the sound was 

delayed relative to the light or vice versa. Stimulus conditions: A, auditory stimulus alone; 

V, visual stimulus alone; AV, simultaneous light and sound; VdA, light delayed relative to 

sound; VAd, sound delayed relative to light. The vertical lines indicate stimulus onset timing 

(light gray for light, dark gray for sound). (B) Mean (±standard deviation) evoked spike 

count for the visual stimulus alone, auditory stimulus alone, and for bisensory stimulation 
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with the sound delayed relative to the light. The spike count changed significantly (Kruskal-

Wallis test, P = 0.003) across these conditions, and post hoc tests revealed that the values 

obtained with the light alone and with interstimulus intervals of 100 and 200 ms were 

significantly lower than the spike counts recorded in the other bisensory stimulus conditions.
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Figure 12. 
(A, B) Two examples of FRAs recorded from bisensory units. The left column shows the 

raster plots in response to auditory, visual, and bisensory stimuli (same conventions as Fig. 

2). The middle column shows the pooled PSTH for 3 repetitions of each of the pure-tone 

stimuli used to construct the FRAs, which are shown in the right column. (A) Unit recorded 

in AAF. (B) Unit recorded in ADF. (C) Histograms showing the distribution of Q10 values 

for unisensory auditory and bisensory units in each of the 6 cortical fields.
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Figure 13. 
Cortical inputs to the MEG. (A) Schematic of the ferret brain showing the sensory and 

posterior parietal areas. Previously described visual areas are labeled in blue, parietal in 

purple, and auditory in red. The CTβ and BDA injection sites in the MEG are represented by 

the red and black regions, respectively. (B) Photomicrograph of a flattened tangential section 

of the ferret EG showing the injection sites. Deposits of tracer were made by iontophoresis 

into frequency-matched locations (best frequency, 7 kHz) in the caudal and rostral MEG. (C-

G) Drawings of flattened tangential sections of the cortex, ordered from lateral (C) to medial 
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(G). CTβ-labeled cells are shown in red and BDA-labeled cells in black. Every fifth section 

(50-lm thick) was examined, but, for the purpose of illustration, labeling from pairs of 

sections was collapsed onto single sections. wm, white matter. Dotted lines mark the limit 

between layers IV and V; dashed lines delimit the white matter. Scale bars, 1 mm. (H-J) 

Examples of retrogradely labeled cells in area 20 (H), area 17 (I), and area SSY (J). The 

open arrow illustrates a CTβ-labeled cell, the closed arrows show BDA-labeled cells. 

Terminal fields were also visible in these sections. Scale bars, 50 μm.
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Figure 14. 
Cortical inputs to higher level auditory areas on the AEG and PEG. (A) Schematic of the 

ferret brain showing the sensory and posterior parietal areas (as in Fig. 13). The black circle 

represents an injection of BDA made by iontophoresis into the AEG, and the red circle 

represents the site of the CTβ injection in the PEG. (B, C) Photomicrographs of flattened 

tangential sections showing the injection sites in the AEG and PEG, respectively. (D-H) 

Drawings of flattened tangential sections of the cortex, ordered from lateral (D) to medial 

(H). CTβ-labeled cells are shown in red and BDA-labeled cells in black. Scale bars, 1 mm. 
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The centers of the injection sites are illustrated by gray circles. (I, J) Examples of 

retrogradely labeled cells in area 20 and area SSY. Scale bars, 50 μm. Other details as in 

Figure 13.
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Figure 15. 
Cortical inputs to higher level auditory areas on the AEG. (A) Schematic of the ferret brain 

showing the sensory and posterior parietal areas (as in Fig. 13). The location of the CTβ 
injection site in the AEG is shown in black. The vertical lines represent the rostrocaudal 

level of the coronal sections in (C-I). (B) Photomicrographs of a coronal section showing the 

injection site. Scale bar, 1 mm. (C-I) Drawings of coronal sections of the cortex, ordered 

from rostral (C) to caudal (I). CTβ-labeled cells are shown in black. (J, K) Examples of 

Bizley et al. Page 46

Cereb Cortex. Author manuscript; available in PMC 2020 December 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



retrogradely labeled cells in PPc and area 21, respectively. HP, hippocampus. Scale bars, 50 

μm.
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Table 1

Details of tracer injections made in auditory cortex

Animal Injections site BF Tracer Plane

F0252 MEG 15 FR Flattened

MEG   1 BDA

F0404 MEG   7 BDA Flattened

MEG   7 CTβ

F0268 MEG   7 BDA Flattened

MEG   7 FR

MEG   7 CTβ

F0504 PEG BDA Flattened

F0505 PEG CTβ Flattened

AEG BDA

F0522 MEG FR Coronal

F0510 PEG CTβ Coronal

F0533 PPF   7 CTβ Coronal

VP Broad, low BDA

F0532 MEG 20 BDA Coronal

MEG 20 FR

F0536 MEG   2 BDA Coronal

MEG 19 FR

F0535 ADF 10 BDA Coronal

AVF Noise only FR

Note: VP, ventroposterior area; BF, best frequency of units recorded at the injection site.
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