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Abstract

As the limits of existing treatments for cancer are recognized, clearly novel therapies must be considered for successful
treatment; cancer therapy using adenovirus vectors is a promising strategy. However tracking the biodistribution of
adenovirus vectors in vivo is limited to invasive procedures such as biopsies, which are error prone, non-quantitative, and do
not give a full representation of the pharmacokinetics involved. Current non-invasive imaging strategies using reporter
gene expression have been applied to analyze adenoviral vectors. The major drawback to approaches that tag viruses with
reporter genes is that these systems require initial viral infection and subsequent cellular expression of a reporter gene to
allow non-invasive imaging. As an alternative to conventional vector detection techniques, we developed a specific genetic
labeling system whereby an adenoviral vector incorporates a fusion between capsid protein IX and human metallothionein.
Our study herein clearly demonstrates our ability to rescue viable adenoviral particles that display functional
metallothionein (MT) as a component of their capsid surface. We demonstrate the feasibility of 99mTc binding in vitro to
the pIX-MT fusion on the capsid of adenovirus virions using a simple transchelation reaction. SPECT imaging of a mouse
after administration of a 99mTc-radiolabeled virus showed clear localization of radioactivity to the liver. This result strongly
supports imaging using pIX-MT, visualizing the normal biodistribution of Ad primarily to the liver upon injection into mice.
The ability we have developed to view real-time biodistribution in their physiological milieu represents a significant tool to
study adenovirus biology in vivo.
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Introduction

Barrier to gene therapy approaches for cancer
As the limits of existing treatments for cancer are recognized,

clearly novel therapies must be considered for successful

treatment; cancer therapy using adenovirus (Ad) vectors is a

promising strategy. The existing approaches to gene therapy/

virotherapy of cancer can be divided into five broad categories:

a) mutation compensation, b) molecular chemotherapy,

c) genetic immunopotentiation, d) genetic modulation of

resistance/sensitivity, and e) oncolytic therapy or virotherapy.

Through 2009, Ad vectors were employed in a quarter of gene

therapy clinical trials worldwide [1]. However tracking the

biodistribution of Ad vectors in vivo is limited to invasive

procedures such as biopsies, which are error prone, non-

quantitative, and do not give a full representation of the

pharmacokinetics involved.

Current detection methods are inadequate for Ad vector
systems

Several imaging studies have attempted to address this problem,

including the use of positron emission tomography (PET) scanning

to detect herpes simplex virus thymidine kinase (HSV-TK) as a

reporter of oncolytic herpes simplex virus replication [2].

However, detection was restricted to infected cells expressing the

reporter gene, which does not represent the physical distribution of

the virus itself. Another group employed soluble hCEA and bhCG

peptide markers as a way to monitor oncolytic measles virus

therapy in mice, which correlated with therapeutic outcome but

could not show viral localization [3]. Other conventional imaging

systems for adenovirus based gene therapy have been designed to

detect transgene expression of reporters such as green fluorescent

protein (GFP) [4], somatostatin receptor type 2 (SSTR-2) [5,6],

sodium iodide symporter [7], luciferase [8], and HSV-TK [9].

Despite their utility for assessing gene delivery and expression,
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these reporters by themselves are not suitable for monitoring

physical biodistribution. The major drawback to approaches that

tag viruses with reporter genes is that these systems require initial

viral infection and subsequent cellular expression of a reporter

gene to allow non-invasive imaging.

Capsid protein IX is a potential location for labeling Ads
To overcome this limitation, we devised a novel approach to

incorporate the human metallothionein (MT) protein as a fusion to the

Ad minor capsid protein pIX (pIX). This would allow us to directly

label Ads and determine if this approach can be used to monitor virus

delivery in vivo by non-invasive imaging. Recent work by several

groups has defined the C-terminus of pIX as a locus presenting

incorporated ligands on the virus surface. Protein IX is a small

polypeptide of 140 residues (14.7 kDa) that acts as a cement protein to

stabilize hexon-hexon interaction and therefore the capsid structure

itself [10]. Four trimers of pIX interact with a group of nine (GON)

hexons in each facet of the icosahedron [11], resulting in 240 copies of

the protein per virion [12]. In addition, pIX has been implicated as a

transcriptional activator of several viral and cellular TATA-containing

promoters, including adenoviral E1A, E4, and major late promoters

[13]. Based on the understanding the pIX C-terminus is surface

exposed [14,15], pIX has been exploited as a location to incorporate

heterologous peptides (namely lysine octapeptide and polylysine) into

its C-terminus for retargeting purposes [16]. A single chain variable

fragment (scFv) against beta-galactosidase [17] and a single-chain T-

cell receptor (scTCR) directed against the melanoma-associated

antigen (MAGE) [18] were also successfully fused to pIX and

assembled into virions. Based on these data, we also demonstrated that

pIX would be a suitable location for incorporating reporter genes,

such as firefly luciferase [19] and GFP [20,21]. However, these fusions

require optical imaging techniques that are not clinically compatible

and may be limited by depth of light penetration.

Non-invasive imaging using a pIX-MT fusion
MT is a ubiquitous, low molecular weight, metal-binding protein

that participates in heavy metal metabolism and detoxification.

Mammalian forms of MT bind seven metal ions in tetrahedral

metal-thiolate clusters, including a commonly used medical isotope

of technetium (99mTc) useful for radioimaging by single photon

emission computed tomography (SPECT) [22]. Several studies have

shown that MT can be genetically engineered or conjugated with

targeting proteins such as monoclonal antibodies [23,24,25] and

streptavidin [26], and that 99mTc can be bound in vitro to the

complexes using a simple transchelation reaction.

In our current study, we sought to incorporate MT within pIX to

determine if a fusion of this type could retain functionality in this

context. Our study herein clearly demonstrates our ability to rescue

viable adenoviral particles that display functional MT as a

component of their capsid surface. The alternative display of MT

on the capsid may offer advantages with respect to direct functional

applications of this gene product. Our innovative use of a structural

fusion protein incorporating MT provides the non-invasive imaging

advantages for detecting physical biodistribution and spread of Ad

vectors after administration that is not possible employing a reporter

gene. Further, the ability to noninvasively observe Ad function on a

whole-body level, allows the possibility of detecting virus dissem-

ination outside the tumor site(s) for monitoring clinical safety.

Materials and Methods

Cell culture
Human embryonic kidney epithelial (HEK293) cells were

obtained from and cultured in the medium recommended by

the American Type Culture Collection (Manassas, VA). The

HEK293 cell line was grown in high glucose Dulbecco’s Modified

Eagle Medium (DMEM; Invitrogen; Carlsbad, CA) supplemented

with 10% fetal bovine serum (Atlanta Biologicals; Lawrenceville,

GA), 100 IU/ml penicillin, 100 mg/ml streptomycin, and 2 mM

L-glutamine. The cells were incubated at 37uC and 5% CO2

under humidified conditions.

Animals
Female C57BL6 mice at 4–6 weeks of age were obtained from

Charles River Laboratories (Wilmington, MA). All animals

received humane care based on guidelines set by the American

Veterinary Association. The experimental protocols involving live

animals were reviewed and approved by the Institutional Animal

Care and Use Committee of LSU Health Sciences Center at

Shreveport (Protocol #P-08-017). For the SPECT imaging

studies, mice were also pretreated with warfarin (5 mg/kg)

dissolved in peanut oil and administered by subcutaneous injection

at 3 days and 1 day prior to the Ad vector injections.

Recombinant Adenovirus Construction
A pIX-MT intermediate sequence in pUC57 was constructed by

synthesizing a 932 bp DNA fragment (GenScript; Piscataway, NJ)

corresponding to: amino acids 106–140 of the Ad serotype 5 (Ad5)

pIX protein coding sequence, followed by a 15 amino acid linker

(GGGGSGGGGSGGGGS), amino acids 1–61 of the human

metallothionein 1A sequence, a 16 bp DNA linker sequence

(TGAGCTAGCGACGTCA), and the 583 bp DNA sequence

immediately upstream of the pIX gene (bp 4032–4614; Genbank

accession AY339865). This synthetic DNA fragment was subcloned

directly into the MfeI - BstXI sites of the AdenoVatorCMV5 shuttle

vector (QBiogene; Carlsbad, CA). A turboGFP cDNA sequence

(Axxora; San Diego, CA) was also subcloned into the CMV5

expression polylinker site of pAdenoVatorCMV5 for use as a

reporter gene. The resulting pAdenoVatorCMV5-tGFP-pIX-MT

shuttle vector was used to construct an adenovirus by homologous

recombination with pAdEasy1 (containing the E1 and E3 deleted

Ad5 backbone) in E. coli using methods previously described [27].

The resultant recombinant plasmid was linearized with Pac I and

transfected into HEK293 cells to generate the Ad-tGFP-pIX-MT

virus. Construction of the Ad-IX-EGFP and Ad-CMV-EGFP

vectors used as controls has been described previously [20].

Virus propagation and purification
Viruses were propagated in HEK293 cells, which do not express

wild-type pIX. Viruses were purified by double CsCl ultracentri-

fugation and dialyzed against Dulbecco’s phosphate buffered

saline containing 10% glycerol. Final aliquots of virus were

analyzed for viral particle (v.p.) titer using absorbance at 260 nm

and a conversion factor of 1.161012 viral particles per absorbance

unit (v.p./OD260). Multiplicity of infection (m.o.i.) was deter-

mined using an Adeno-X Rapid Titer Kit (Clontech; Mountain

View, CA) and represents the number of infectious units (i.f.u.) of

virus. Viruses were stored at 280uC until use. The Ad-tGFP-pIX-

MT virus titer used was 1.261011 v.p./mL and 1.46109 i.f.u./mL.

Fluorescence Microscopy
Epifluorescence microscopy was performed using an inverted

Eclipse TE300 microscope (Nikon Instruments, Melville, NY)

equipped with a CoolSNAP fx monochrome CCD camera (Roper

Scientific - Princeton Instruments; Trenton, NJ). Images were

acquired with a 20X objective and processed with IPLab imaging

software (Scanalytics, Inc.; Fairfax, VA).

pIX-Metallothionein Incorporation into Adenovirus
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Western Blot Analysis
Purified Ad-tGFP-pIX-MT and Ad-CMV-EGFP virions were

resolved on precast 4–20% gradient SDS-PAGE gels (Thermo

Scientific Pierce; Rockford, IL), and transferred to nitrocellulose

membranes. Staining was performed using 1:500 dilution of an

anti-human metallothionein monoclonal antibody (clone

UC1MT; Abcam, Inc.; Cambridge, MA) or 1:500 dilution of a

monoclonal anti-adenovirus fiber monoclonal antibody (clone

4D2; Abcam), followed by a 1:1,000 dilution of a secondary HRP-

conjugated goat anti-mouse IgG antibody (Santa Cruz Biotech-

nology, Inc.; Santa Cruz, CA). Specific protein bands were

detected by chemiluminescence using Amersham ECL Plus

reagents (GE Healthcare; Piscataway, NJ).

Assessment of Replication of Virus
Increase in the copy number of the E4 gene was used as a

surrogate to determine virus propagation. At 1, 2, 3, and 4 days

post-infection of HEK293 cells, aliquots of culture media (300 mL)

were removed and frozen at 280uC until use. Total DNA was

purified using a QIAamp DNA Mini Kit (Qiagen, Valencia, CA).

E4 gene copy number was determined using specific E4 primers

and TaqMan probes for real-time polymerase chain reaction

(PCR) as previously described [28] with TaqMan fast reagents

(Applied Biosystems, Framingham, MA) and measured against a

standard curve made from known amounts of adenovirus genome.

Thermostability assay
Fifty thousand HEK293 cells were subcultured overnight into

24-well tissue culture plates with 1 ml DMEM medium containing

10% FBS. Prior to infection, the viruses were incubated for 0, 15,

45, 60, and 90 min time periods at 45uC, and subsequently, the

heat-treated viruses were used to infect the HEK293 cells. At 24 h

post infection, the plates were analyzed for relative fluorescence

intensity of GFP using a Fluoroskan Ascent Microplate Fluorom-

eter (Thermo Fisher Scientific; Waltham, MA).

Radiolabeling of virus and gel chromatography
For radiolabeling Ad virions, 99mTc-pertechnetate was reduced

in the presence of glucoheptonate using a commercially available

kit (DRAXIS Specialty Pharmaceuticals Inc.; Kirkland, Quebec,

Canada) for 15 min at room temperature and added directly to

aliquots of Ad at a ratio of 10:1. Incubation with Ads proceeded

for 60 min at 37uC. Purification of free 99mTc from labeled

adenovirus virions was performed by gel filtration using Sephacryl

S-200 HR (GE Healthcare; Piscataway, NJ). Sephacryl resin was

loaded into a 20 mL disposable column (Bio-Rad) and pre

equilibrated with phosphate buffered saline (PBS) containing 5%

glycerol. One mL aliquots of radiolabeled virus were applied to the

columns, and 10 drop fractions were collected using an automated

fraction collector. The viral particle (v.p.) titer of each fraction was

determined by measuring the absorbance at 260 nm in a

spectrophotometer, using a conversion factor of 1.161012 v.p./

OD260 [29]. The radioactivity was measured with a dose

calibrator (Capintec, Inc.; Ramsey, NJ).

Metal competition assay
Aliquots of the radiolabeled Ad-tGFP-pIX-MT were incubated in

the absence or presence of non-radioactive competitor metal ions. After

addition of competitor metals using 100X stock solutions, the aliquots

were incubated at room temperature for 15 min. The adenovirus-

bound and free 99mTc were separated by gel chromatography using

micro spin columns (Bio-Rad; Hercules, CA), and quantified using a

NaI (Tl) c-counter (PerkinElmer Inc.; Waltham, MA).

HPLC analysis of 99mTc radiolabel stability
Aliquots of the radiolabeled Ad-tGFP-pIX-MT were incubated

for 30 min at 27uC in PBS containing 5% glycerol, with the

absence presence of 50% mouse serum (Sigma-Aldrich; St. Louis,

MO). Aliquot were also incubated for 30 min with 50% mouse

serum at increasing temperatures (37, 42, 45, 50, and 55uC).

Afterwards, adenovirus particles were analyzed by HPLC as

previously described [30] on a Dionex DX500 Chromatography

System (Dionex Corp; Sunnyvale, CA) using a strong anion

exchange Bio-Monolith QA HPLC column (Agilent technologies;

Santa Clara, CA). The HPLC system was equipped with in-line

UV (260 nM) and Nal(Tl) gamma scintillation detectors interfaced

to a multichannel analyzer. Software analysis was performed for

the UV detector using Chromeleon 6.80 (Dionex) and was

performed for the gamma scintillation detector using PeakSimple

3.85 (SRI Instruments, Torrance, CA).

SPECT/CT scanning of Ad-infected mice
Two mice were injected via the tail vein with approximately

1 mCi of the radiolabeled Ad-tGFP-pIX-MT, and image acquisi-

tion was started at 60 min afterwards. Similarly, one mouse was

injected with approximately 1 mCi of 99mTc-glucoheptonate and

one mouse was injected with approximately 1 mCi of 99mTc-

pertechnetate. The animals were anesthetized using isoflurane and

fixed in a prone position on the bed and center of rotation relative to

the gantry of a dedicated small animal trimodality PET/SPECT/

CT system (Gamma Medica-Ideas, Northridge, CA). After 60 min,

3D SPECT imaging was performed in a step-and-shoot manner

using the following acquisition parameters: 64 projections, 30

seconds/projection (35-minute image acquisition), with a 140 keV

photopeak 610% window. SPECT 3D reconstruction was carried

out using Amira software (Gamma Medica-Ideas). Immediately

after SPECT imaging was performed, CT images were acquired

using the same coordinates as SPECT with 256 projections and

102461024 projection matrix size and a voltage of 60 kV;

reconstructions were performed using filtered back-projections.

Reconstructed data was saved as DICOM files and were imported

for further analysis to AMIDE (version 0.9.2; Andy Loening)

freeware. Volumes of interest (VOIs) from each image were

manually defined and image analyses were performed; the AMIDE

ROI statistics tool was used to obtain the mean voxel values for the

VOI. The percent activity for each VOI was determined as (VOI

mean voxel value6VOI voxel number)/(total image mean voxel

value6total image voxel number)610.

Statistical analysis
All data are expressed as means 6 SE. In vitro experiments were

performed in triplicate. Statistical analysis was carried out using

Student’s t-test, or for multiple comparisons, two-way ANOVA

using GraphPad Prism version 5.0 software. Statistical significance

was set at P,0.05.

Results

Constructing an adenovirus vector containing a pIX-MT
fusion

We initiated this work to construct an adenovirus by using an E.

coli recombination system with a shuttle vector and the adenovirus

backbone plasmid. As a labeling system, we incorporated the MT

coding sequence as a C-terminus fusion to the pIX protein. We

used the E. coli recombination system to generate a recombinant

replication deficient Ad containing an E1A expression cassette

with tGFP sequence under control of the CMV promoter. The

resulting recombination inserted shuttle vector sequences contain-

pIX-Metallothionein Incorporation into Adenovirus
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ing the expression cassette and pIX-MT fusion gene into the

pAdEasy1 adenovirus backbone replacing the E1A and E1B

sequences. (Fig. 1A). The identity of the recombinant genome was

validated by restriction enzyme digestion and PCR analysis and was

confirmed by DNA sequencing (data not shown). The resulting

pAd5.CMV5-tGFP-pIX-MT plasmid vector was used to rescue an Ad

virion by linearization with Pac I and transfection into HEK293 cells.

After transfection, positive Ad plaques were detected by fluorescence

microscopy (Fig. 1B). Propagated Ad-tGFP-pIX-MT virus was purified

by double CsCl ultracentrifugation. After virus purification, a

recombinant pIX-MT fusion protein was clearly detected as a 21 kD

band by western blot analysis of the purified virus using an anti-

metallothionein antibody (Fig. 1C). This band corresponds to the

expected molecular weight of the pIX-MT, and was absent in purified

Ad-CMV-EGFP virus. As a control, both the Ad-tGFP-pIX-MT and

the Ad-CMV-EGFP virus showed 60 kD bands by western blot

analysis using an anti-Ad fiber protein. These results indicate that

correct introduction of the MT protein into the viral capsid of an

adenovirus by fusing it with the minor capsid protein IX allows the

rescue of an infectious virion.

Analysis of viral DNA replication
To determine DNA replication properties of Ad-tGFP-pIX-

MT, the following experiment was performed. Ad E4 copy

numbers were analyzed after cells were infected with virus. In

brief, 10 i.f.u./cell of Ad-tGFP-pIX-MT, Ad-CMV-EGFP, or Ad-

IX-EGFP was used to infect the Human embryonic kidney

epithelial (HEK293) cell line. Aliquots of medium were collected

on 1, 2, 3, and 4 days post-infection. Total DNA was extracted

from the medium (which was used to incubate infected cells) and

analyzed for Ad5 viral E4 DNA copy number (Fig, 2). Medium

from uninfected cells was also obtained at each time point to serve

as a base line for viral replication. At 1 day post-infection, the E4

copy number for Ad tGFP-pIX-MT and Ad-IX-EGFP were

observed to be approximately 52.6 and 7.5 copies per 100 mL

aliquot of medium, while the E4 copy number value for Ad-CMV-

EGFP was 12. By 4 days post-infection, Ad5 E4 copy number for

each of the adenoviral constructs was dramatically increased to

approximately 41,200, 75,900, and 81,700 copies per 100 mL

aliquots of media for Ad-tGFP-pIX-MT, Ad-IX-EGFP, and Ad-

CMV-EGFP, respectively. Taken together, these data indicate

that the adenovirus constructs with modified pIX genes (tGFP-

pIX-MT and Ad-IX-EGFP) showed similar replication patterns in

293 cells, and this replication is comparable to an adenovirus

construct with a wild-type pIX gene (Ad-CMV-EGFP).

Thermostability of Ad-tGFP-pIX-MT virions
Modification of pIX may destabilize the capsid structure; this

possibility was assessed by comparing the thermostability of Ad-

tGFP-pIX-MT to a control Ad-CMV-EGFP virus containing the

wild-type pIX and to an Ad-IX-EGFP virus incorporating the

enhanced GFP (EGFP) protein as a fusion to pIX. Virus samples

were incubated at 45uC for various times and then quantified in

terms of infectious titer (Fig. 3). Beginning at 15 min of incubation,

the infectious titer of all viruses decreased in an exponential

fashion; the infectious titer for Ad-CMV-EGFP and Ad-tGFP-

pIX-MT were 70.8% and 40.4% of initial titers, respectively,

while the infectious titer for Ad-IX-EGFP was only 4.8% if the

initial titer. Viral titers continued to decrease between 15 and

90 min of incubation, with the time for 50% remaining titer of Ad-

Figure 1. Construction and analysis of a pIX-MT containing adenovirus. (A) Schematic representation of pIX-MT and a CMV-tGFP expression
cassette inserted into the Ad5 genome. (B) Expression of GFP in cells infected with Ad-tGFP-pIX-MT shows formation of an individual plaque. (C)
Detection of adenovirus fiber and metallothionein proteins incorporated into the purified Ad-tGFP-pIX-MT and Ad-CMV-EGFP viral particles by
western blot analysis.
doi:10.1371/journal.pone.0016792.g001
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CMV-EGFP at 26.7 min, Ad-tGFP-pIX-MT at 11.9 min, and

Ad-IX-EGFP at 3.2 min. These results indicate that the MT

addition to pIX did negatively affect the thermostability of Ad-

tGFP-pIX-MT following exposure of the virus to high tempera-

ture compared to a virus containing wild-type pIX. However,

when comparing the thermostability curves, this effect was

significantly less than that of incorporating a pIX-EGFP fusion

(two-way ANOVA, P,0.001).

Radiolabeling of Ad-tGFP-pIX-MT with 99mTc
We tested whether Ad-tGFP-pIX-MT could be radiolabeled by

99mTc binding in vitro. In this representative experiment, 99mTc-

pertechnetate was reduced in the presence of glucoheptonate for

15 min at room temperature and added directly to the adenovirus

solution. Incubation with Ad proceeded for 60 min at 37uC.

Purification of free 99mTc from labeled adenovirus virions was

performed by gel filtration using a Sephacryl S-200 column. As shown

in Fig. 4, the specific activity of the peak at fraction 30 corresponding to

the highest adenovirus infectious activity was approximately

0.13 mBq/v.p. for the Ad-tGFP-pIX-MT. Importantly, an adenovirus

construct Ad-CMV-EGFP containing the wild-type pIX showed lower

specific activity at fraction 30 (0.006 mBq/v.p.), possibly from non-

specific 99mTc binding to free sulfhydryl groups [31] on the Ad capsid

surface. These results demonstrate the feasibility of 99mTc binding in

vitro to the pIX-MT fusion on the capsid of adenovirus virions using a

simple transchelation reaction.

Metal competition assay
The heavy metals that can be bound by MT include Ag, Au, Bi,

Cd, Co, Cu, Fe, Hg, Ni, Pb, Sn, Tc, and Zn, [32], as well as Re

[33]. To determine the specificity of 99mTc binding, we performed

a metal competition assay using increasing concentrations of

CdCl2, CoCl2, CuCl2, or ZnCl2. As shown in Fig. 5, the bound

radioactivity was competed with increasing concentrations of

metal, with half maximal concentrations required for displacement

of 99mTc. Importantly, these results correlate with the relative

order of in vitro binding affinities to MT determined to be Cu . Cd

. Zn . Co [34]. In addition, Cu was capable of displacing 99mTc

from the radiolabeled Ad-tGFP-pIX-MT between 0.1 and 1 mM.

However, this concentration of Cu required for displacement is

much higher than physiological levels of Cu determined in serum

of normal mice, at approximately 400 ng/mL (0.006 mM) [35].

Stability of 99mTc radiolabel on the Ad-tGFP-pIX-MT
virions

Serum stability of the radiolabel on Ad-tGFP-pIX-MT was

investigated by incubating virions for 30 min in 50% normal mouse

serum (Fig. 6). In the absence of serum, we could detect no loss of

radioactivity at room temperature, 27uC or 37uC after incubation

for 30 min (data no shown). However, compared with radiolabeled

virus incubated in the absence of serum, approximately 80% of the

radioactivity was still bound in 50% serum after incubation at 27,

Figure 2. Replication of Ad-tGFP-pIX-MT compared to Ad-CMV-
EGFP and Ad-IX-EGFP. Viral copy number was used as an indicator of
viral replication in HEK293 cells. Growth medium was collected at 1, 2, 3,
and 4 days after infection with Ad-tGFP-pIX-MT, Ad-CMV-EGFP, or Ad-
IX-EGFP at an m.o.i. of 10 i.f.u/cell. Each point represents the mean 6 SE
of three replicate samples.
doi:10.1371/journal.pone.0016792.g002

Figure 3. Thermostability of Ad-tGFP-pIX-MT compared to Ad-
CMV-EGFP and Ad-IX-EGFP. The thermostability of each virus was
determined by incubation at 45uC for various times and quantified in
terms of infectious titer. Each point represents the mean 6 SE of three
replicate samples.
doi:10.1371/journal.pone.0016792.g003

Figure 4. Gel filtration column profile of 99mTc binding to
adenovirus containing a pIX-MT fusion protein. After incubation
with 99mTc glucoheptonate, the Ad-tGFP-pIX-MT virus containing a pIX-
MT fusion protein and the Ad-CMV-EGFP virus containing a wild-type
pIX protein were purified by gravity gel filtration using 20 mL Sephacryl
S-200 columns. Each point represents the specific activity in mBq/v.p of
individual 10 drop fractions collected.
doi:10.1371/journal.pone.0016792.g004

pIX-Metallothionein Incorporation into Adenovirus
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37, and 42uC. This loss of approximately 20% radioactivity at these

temperatures may represent loss from low affinity binding sites to
99mTc. When the virus was incubated at higher temperatures, the

remaining bound radioactivity was decreased to 46% radioactivity

at 45uC, 40% radioactivity at 50uC, and 19% radioactivity at 55uC.

This result is similar to the results in Fig. 3 showing inactivation of

virus infectivity at 45uC, as well as previous data demonstrating

virus inactivation at temperatures between 48 and 54uC [36].

SPECT analysis of adenovirus administration in vivo
After radiolabeling the Ad-tGFP-pIX-MT, we determined

whether SPECT imaging could be used to monitor Ad

biodistribution and uptake in vivo. In the experiment shown in

Fig. 7, a female C57BL6 mouse was injected intravenously with
99mTc-labeled Ad-tGFP-pIX-MT. One hour after administration,

the animal was imaged; clear localization of activity to the liver

(4568%) was seen (Fig. 7C), and bladder activity (3263%) was also

detected. This result strongly supports imaging using pIX-MT,

visualizing the normal biodistribution of Ad primarily to the liver

upon injection into mice. As a control, in vivo imaging of a mouse

in Fig. 7A injected with 99mTc-pertechnetate alone showed no liver

signal, with localization to stomach (1463%) and bladder

(1662%). Likewise, in vivo imaging of a control mouse in Fig. 7B

injected with 99mTc-glucoheptonate alone also showed no liver

activity, with activity localization to kidneys (2268%).

Liver tropism of administered Ad5 vectors results in rapid

sequestration. Key components of this process have recently been

elucidated, involving Ad capsid interaction with multiple vitamin

K-dependent coagulation factors [37]. Specifically, coagulation

factor 6 (FX) binds to the capsid hexon protein and mediates the

majority of the Ad5 liver tropism, presumably via heparin sulfate

proteoglycan-mediated pathways [38,39,40]. Pretreatment with

the drug warfarin, which inhibits vitamin K-dependent coagula-

tion factor production, can deplete circulating FX levels and

decrease the liver tropism of i.v. administered Ad5. As shown in

Fig.7D, warfarin pretreated mice exhibited a decrease in liver

activity (1468%) compared with untreated mice (Fig. 7C), as well

as a diffuse peritoneal imaging pattern. Together, these data

illustrate that the pIX-MT fusion retains its metal binding capacity

at the pIX locale and can function in an in vivo context, thus

making non-invasive imaging analysis feasible.

Discussion

We have shown herein that our novel pIX-MT labeling strategy for

adenovirus yields rescuable virions. The pIX protein is a structural

component of the Ad that stabilizes hexon-hexon interactions; there

are 240 pIX molecules per virion. With a capacity of 7 metal ions

bound per pIX-MT fusion protein, as many as 1680 metal ions can

bind per virion. The highly conserved metallothionein structure

potentially offers the additional advantage of lower immunogenicity, by

‘‘shielding’’ the Ad from preexisting humoral immunity [41]. Direct

western blot analysis of purified Ad-tGFP-pIX-MT produced a protein

band that corresponded to a pIX-MT fusion. This data indicates that

the pIX-MT fusion was successfully incorporated into the Ad pIX

locale. Most importantly, Ad-tGFP-pIX-MT demonstrated specific
99mTc binding in vitro when incubated with 99mTc-glucoheptonate.

This study also demonstrated our ability to create a virus that

encompasses a protein motif useful for SPECT imaging. The majority

of previous imaging strategies have focused on incorporating reporter

gene using a single imaging modality whereas; our unique virus

incorporates the potential for multiple imaging modalities.

Knowledge of biodistribution is crucial in assessing the efficacy

of Ad mediated therapies. Clinical trials completed so far have had

to rely on conventional histology of biopsy specimens and analysis

of body fluids to detect virus; the majority of biodistribution studies

have involved PCR-based techniques. For example, after intrave-

nous administration at the highest dose of a replication deficient

Ad5CMV-p53, the presence of a unique 89 bp amplicon specific

to Ad5CMV-p53 DNA was detectable by Q-PCR in the plasma of

4 of 5 patients at day 14 and 2 of 3 assessable patients at day 28

[42]. In addition, the presence of Ad5CMV-p53 DNA was

detected within biopsies of tumor metastasis distant from the

intravenous administration site in 6 of 7 assessable patients.

However, these results only provide data on the presence of a

nucleotide sequence and not on the presence of viral vector

Figure 5. Concentration dependence of competition for metal
binding to purified virus. Aliquots of 99mTc-radiolabeled Ad-tGFP-
pIX-MT were incubated for 15 min at 37uC with the indicated
concentrations of CdCl2, CoCl2, CuCl2, or ZnCl2. Virus bound 99mTc
was determined counting radioactivity after purification through micro
spin columns.
doi:10.1371/journal.pone.0016792.g005

Figure 6. Comparison of 99mTc radiolabel stability on Ad-tGFP-
pIX-MT. After 30 min incubation with 50% normal mouse serum at
increasing temperatures, samples were analyzed by HPLC on a Bio-
Monolith column for 99mTc-radiolabeled Ad-tGFP-pIX-MT in each
sample. Radioactivity of peaks corresponding to Ad-tGFP-pIX-MT were
quantified and normalized to the radio activity of peaks corresponding
to Ad-tGFP-pIX-MT after 30 min in the absence of serum at 27uC. Each
point represents the mean 6 SE of three replicate samples.
doi:10.1371/journal.pone.0016792.g006

pIX-Metallothionein Incorporation into Adenovirus

PLoS ONE | www.plosone.org 6 February 2011 | Volume 6 | Issue 2 | e16792



particles. In addition, these results highlight the shortcomings of

current vector detection methods: the need to acquire multiple

biopsies using an invasive procedure that is prone to sampling

error and is concomitantly impractical for repeated monitoring of

the entire tumor.

Radiotracer imaging technologies that can measure the distribution

of radiolabeled tracers in vivo are now widely available and have a wide

range of research and clinical applications. Two classes of radiotracer

imaging systems exist: those designed to imaging SPECT radionuclides

such as 99mTc and those designed to image PET radionuclides such as
64Cu. Thus, besides SPECT imaging using 99mTc, the pIX-MT

could also be used for non-invasive PET imaging, using 64Cu

binding. SPECT and PET techniques are able to image as low as

10-10 to 10-12 M of radiolabeled moieties. Each imaging modality has

advantages and disadvantages, and thus has specific applications. In

general, PET has higher spatial resolution and sensitivity, and is easier

to quantify than SPECT. However, SPECT radiotracers are cheaper

and much more widely available. Likewise, next-generation SPECT

systems have dramatically increased sensitivity. In addition to

evaluation of biodistribution by initially in vitro 99mTc radiolabeled

replication deficient Ads, we expect virions containing the pIX-

metallothionein fusion proteins can also be potentially labeled using
188Re [33]. This method could offer the advantage of dual-functional

SPECT imaging and radionuclide therapy [43,44,45].

In total, as hypothesized these data clearly establish the functionality

of pIX-MT when incorporated into the adenovirus capsid at the pIX

locale. The ability to view real-time molecular biodistribution events in

their physiological milieu represents a significant tool to study

adenovirus biology in vivo. Although in vitro studies can serve as a

simplified controlled model to study Ad behavior in tumor cells, their

simplicity strips them of the complexities of a three-dimensional tumor

environment that has profound effects on Ad performance. Ultimately,

the highest yield of valuable information about Ads will come from in

vivo preclinical studies and application of Ad vectors in patients.

It has become clear that cell-specific transductional retargeting

of Ad vectors is of fundamental importance with respect to

deriving their full benefit in the context of the gene therapies

[46,47,48]. These transductional retargeting strategies, whereby

Ad viruses are designed to selectively infect target cells, have the

potential for reducing deleterious side effects and increasing the

therapeutic index of these agents. The pIX-MT labeling system

demonstrated herein, offers the potential for noninvasive dynamic

imaging of Ad biodistribution that can be easily used by existing

nuclear medicine imaging modalities. Importantly, this tool can be

used for preclinical development of transductional retargeted Ads,

and it would be practical in the clinical setting to monitor the

therapeutic application of these agents.
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Figure 7. SPECT imaging analysis of a mouse injected with an adenovirus containing a capsid-incorporated pIX-MT fusion protein.
C57BL6 mice were injected intravenously with approximately 1 mCi of 99mTc in 0.3 mL PBS, and scanned at 30 min after the injection. Afterwards, 3D
renderings of SPECT images in blue-purple-red-yellow scale against CT projections in grey scale were obtained. Shown are: (A) coronal image of a
normal mouse injected with 99mTc-pertechnetate; (B) coronal image of a mouse injected with 99mTc-glucoheptonate; (C) coronal and sagittal images
of a normal mouse injected with 99mTc-Ad-tGFP-pIX-MT; and (D) coronal and sagittal images of a mouse pretreated with warfarin injected with 99mTc-
Ad-tGFP-pIX-MT.
doi:10.1371/journal.pone.0016792.g007
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