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Exotic fish species frequently acquire native parasites despite the absence of closely related native hosts.
They thus have the potential to affect native counterparts by altering native host-parasite dynamics. In
New Zealand, exotic brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss have acquired two
native trematodes (Telogaster opisthorchis and Stegodexamene anguillae) from their native definitive host
(the longfin eel Anguilla dieffenbachii). We used a combination of field surveys and experimental infec-
tions to determine the relative competence of native and exotic fish hosts for these native parasites. Field
observations indicated that the longfin eel was the superior host for both parasites, although differences
between native and exotic hosts were less apparent for S. anguillae. Experimental infections indicated
that both parasites had poorer establishment and survival in salmonids, although some worms matured
and attained similar sizes to those in eels before dying. Overall, the field surveys and experimental infec-
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Salmonid tions indicate that these exotic salmonids are poor hosts of both native trematodes and their presence
Disease may decrease native parasite flow to native hosts.
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Introduction cur (e.g. rainbow trout Oncorhynchus mykiss native to North

Whether through accidental introductions or intentional re-
leases, many species attain distributions beyond their natural
ranges and form novel interactions with native counterparts. Inter-
actions mediated by predation and competition are frequently ci-
ted as detrimental outcomes of the presence of exotic species in
novel habitats (e.g. Ricciardi et al., 1998; Wiles et al., 2003).
Increasingly, however, exotic-native interactions mediated by dis-
ease are also recognised (e.g. Van Riper et al., 2002; Tompkins
et al., 2003; LaDeau et al., 2007). Exotic salmonid fishes, for exam-
ple, have long been known to influence native communities
through novel predatory and competitive interactions (Crowl
et al., 1992; Townsend, 2003), while the possibility of additional
interactions mediated by disease have only recently been high-
lighted (Tompkins and Poulin, 2006; Kelly et al., 2009a).

Although salmonids are native to cold water environments of
the Northern Hemisphere, global translocation for angling and
aquaculture (Crawford and Muir, 2008) has resulted in the ex-
change of fish between regions where native salmonids already oc-
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America’s Pacific Coast introduced to the United Kingdom, and
brown trout Salmo trutta native to Eurasia introduced to North
America; MacCrimmon and Marshall, 1968; MacCrimmon, 1971)
and the introduction of salmonids to regions where they were nat-
urally absent (e.g. Australasia, South America). Salmonids intro-
duced to the Southern Hemisphere have largely escaped
salmonid-adapted diseases because the introduction of parasite-
free ova or fry (Kennedy and Bush, 1994), and the use of multi-
ple-stage translocations (e.g. New Zealand brown trout originated
from fish introduced to Australia; MacCrimmon and Marshall,
1968), severely limited the likelihood of co-introducing diseases
during translocations. However these fish have not escaped disease
burdens entirely, with exotic salmonids acquiring generalist para-
sites from native fish communities (Dix, 1968; Ortubay et al., 1994)
and, in some cases, attaining equal or greater parasite species rich-
ness than in their area of origin (Poulin and Mouillot, 2003).

The ease with which exotic salmonids acquire native parasites
increases the potential for these fish to modify native host-parasite
dynamics, either acting as competent parasite reservoirs that
“spillback” infection to native hosts (see Daszak et al., 2000; Kelly
et al., 2009b), or as incompetent parasite hosts that dilute disease
burdens in native hosts (e.g. Telfer et al., 2005; Kopp and Jokela,
2007). While few studies have investigated the influence of exotic
salmonids on native host-parasite dynamics, assessments of Acan-
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thocephalus tumescens in rainbow trout (Paterson et al., 2013) and
Acanthocephalus galaxii in brown trout (Paterson et al., 2011) sug-
gest that exotic salmonid competence for native parasites often
differs from that of the native hosts.

In Lake Pearson, New Zealand, the co-existence of brown and
rainbow trout presents an opportunity to compare the compe-
tence of two exotic salmonids for native fish parasites simulta-
neously. Although knowledge of native host-parasite dynamics
in this lake was lacking prior to the current study, the native fish
community was known to be comprised of multiple hosts of the
native trematodes Stegodexamene anguillae MacFarlane, 1951 and
Telogaster opisthorchis MacFarlane, 1945. These trematodes co-in-
fect their definitive native eel hosts, Anguilla spp. (S. anguillae -
upper intestine, T. opisthorchis - lower intestine; MacFarlane,
1945, 1951), and have been reported in exotic salmonids else-
where in New Zealand (Dix, 1968; Hine et al., 2000; Kelly
et al., 2009a). Both trematodes exhibit similar life cycles, with
eggs released from adult worms reaching the water column with
eel faeces, and the first intermediate host (the snail Potamopyr-
gus antipodarum) becoming infected by either ingesting eggs
(for T. opisthorchis) or encountering free-living larvae that
emerge from eggs (for S. anguillae). Second intermediate hosts,
the native fish Galaxias spp. and Gobiomorphus spp., become in-
fected by encountering cercarial infective stages released from
snails that encyst as metacercariae in fish tissues. Eels acquire
trematodes by consuming infected second intermediate hosts.
Salmonids are known to prey on both Galaxias and Gobiomorphus
in New Zealand lakes (e.g. McCarter, 1986; Rowe et al., 2002).
Hence, they too frequently encounter trematode metacercarial
cysts. Exotic salmonids may therefore modify native host-para-
site dynamics by altering the abundance of second intermediate
hosts through predation, in addition to altering disease burdens
in both intermediate and definitive hosts.

Here we apply a three-pronged approach to (i) quantify the rel-
ative competence of native and exotic fish hosts for these two gen-
eralist native parasites and (ii) determine whether salmonid
species differ in their influence on native host-parasite dynamics.
First, we use field data to evaluate the relative acquisition of native
trematodes by native and exotic hosts. Second, we use experimen-
tal infections to determine whether host competence for native
parasites differs between exotic salmonids, and between
native and exotic hosts. Third, we consider how the acquisition
of native parasites by exotic salmonids may influence native
host-parasite dynamics.

Materials and methods
Study site

Lake Pearson (24°10'520E, 57°87’570N) is a small, shallow lake
(1.79 km?, maximum depth 17 m) situated in the Waimakariri Riv-
er Catchment, South Island, New Zealand. The fish community is
comprised of four native fish species (longfin eel Anguilla dieffenba-
chii, common bully Gobiomorphus cotidianus, upland bully Gobio-
morphus breviceps and koaro Galaxias brevipinnis), and four exotic
salmonids (brown trout, rainbow trout, chinook salmon Oncorhyn-
chus tshawytscha and lake trout Salvelinus namaycush), though the
latter two salmonids are considered rare (Hutchison, 1981; Rowe
and Graynoth, 2002).

Field surveys

Field surveys were conducted during April-May (Austral Au-
tumn) and September 2008 (Austral Spring) to determine the prev-
alence (proportion of infected individuals) and infection intensity

(number of parasites per infected host; Bush et al., 1997) of T. opis-
thorchis and S. anguillae in second intermediate and definitive fish
hosts. Salmonids were sampled using sinking 25 m multi-panel gill
nets (mesh sizes: 13, 25, 38, 56, 70 mm) set for 1-2 h during day-
light hours, while longfin eels were sampled using unbaited fyke
nets (wing length 450 cm, stretched mesh size 20 mm) set over-
night. Koaro and bullies were sampled using unbaited minnow
traps (height 25 cm, length 45 cm, stretched mesh size 5 mm) set
overnight, with seine nets used to capture additional fish when
minnow traps obtained fewer than 30 individuals/species/survey.
The number of fish captured by each sampling technique was used
to determine the relative abundance ratios of fish hosts, compara-
ble only between species caught using the same sampling
technique.

A random sub-sample of up to 30 fish per species per sampling
period was euthanized (totals: 47 brown trout, 42 rainbow trout,
40 common bully, three upland bully, two koaro). Fork length (FL
mm; salmonids) or total length (TL mm; native fish) were recorded
for each fish prior to preserving the alimentary canal (oesophagus
to anus) in 10% buffered formalin. Remaining body tissues of bul-
lies and koaro were frozen for later examination for metacercarial
cysts. Body tissues of salmonids were not examined for metacer-
carial cysts because previous field surveys showed brown trout
had very low prevalence and infection intensity of metacercarial
cysts, although sympatric native fish had moderate infections
(Kelly et al., 2009a). Longfin eels were not examined for intestinal
parasites and were instead released alive, as this native fish is of
high conservation status in Lake Pearson. To provide a reference
for trematode prevalence, infection intensity and maturity in na-
tive definitive hosts, nine longfin eels were collected from a nearby
lake that supported the same fish species as Lake Pearson (Lake
Sumner; 24°42'440E, 58°33’810N).

Trematodes in the alimentary canals of trout and eels were enu-
merated in the laboratory. The development status (non-gravid or
gravid, based on the presence of eggs in utero) and worm size (cal-
culated from the surface area of an ellipse =7 x (L/2) x (W/2),
L =length in pm and W = width at widest point in pm) were deter-
mined for each worm. The number of eggs in the uterus and egg
volume (V=7 x L x W?/6, where L =length and W = width) of a
subsample of five eggs were measured for each gravid worm.
Stomach contents of each definitive host were examined to esti-
mate the number of koaro and bullies consumed.

The density of the snail P. antipodarum was estimated from 12
benthos samples (706 cm?) collected from random locations with-
in 5 m of the shore during April-May 2008 (n = 12), with samples
preserved in 10% formalin prior to enumeration of snails.

Experimental infection

An infection experiment was conducted to evaluate rates of par-
asite establishment, fecundity and mortality for both trematode
species in native and exotic definitive hosts. Brown trout (FL
107-148 mm) were collected by electric fishing from the Cap Burn
(22°95'560E, 55°46'220N), Otago. Rainbow trout (FL 182-244 mm)
were obtained from Otago Fish and Game’s Macraes Hatchery,
Otago. Wild-caught longfin eels (TL 460-550 mm) were sourced
from New Zealand Eels Limited, Te Kauwhata, Waikato. All fish
were acclimatised in separate 200 L tanks in the University of
Otago’s controlled climate facilities (13 h day/11 h night period,
10 °C, 15% daily water change) for 2 weeks prior to experimenta-
tion. A common food consumed by all fish species was not avail-
able so fish were maintained on different diets fed ad libitum
(longfin eel and brown trout - blood worms; rainbow trout — com-
mercial fish pellets).

Experimental fish were treated during acclimatisation with an
anthelmintic, Praziquantel, in tablet form (25 mg - longfin eel;
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12.5mg - rainbow and brown trout). The anthelmintic was
administered orally to fish anaesthetised in a benzocaine solution
(100 ppm), with fish placed in a tank of aerated freshwater for
5 min post-recovery to ensure regurgitation did not occur. Experi-
mental fish were maintained for a further 7 days prior to experimen-
tal infection, to allow for the elimination of residual anthelmintic
from body tissues and its excretion into tank water (Bjérklund and
Bylund, 1987). The reabsorption of active ingredients excreted from
fish was minimised through daily water changes. Anthelmintic effi-
cacy was tested by assessing parasite infections in a sub-set of five
treated and untreated fish per species. Treated and untreated fish
were autopsied 48 h post-anthelmintic exposure, with no intestinal
parasites recovered in brown or rainbow trout in either treatment.
Intestinal parasites were also absent from anthelmintic-treated eels,
while all untreated eels contained trematodes (mean infection
intensity of both species combined =64 adult trematodes per
individual).

For each trematode species, five experimental fish of each species
were randomly assigned to three infection time periods (5, 15 or
25 days, based on relationship between adult size and age at first
reproduction; Trouve et al., 1998) and placed into individual 30 L
tanks without food for 48 h prior to experimentation. Common bully
(n=120), naturally infected with T. opisthorchis (mean intensity
43.2)and S. anguillae metacercariae (mean intensity 25.0), were col-
lected from Lake Waihola (22°84'950E, 54°61'500N), Otago, and
transported live to the laboratory. Live metacercariae were carefully
removed from the body tissues of freshly euthanized fish and placed
into gelatine capsules (size 0-00) at densities reflecting the average
infection intensity of trematodes in bullies of Lake Pearson (40-50 S.
anguillae, or 80-100 T. opisthorchis). As progenetic reproduction can
occur in both trematode species (MacFarlane, 1945, 1951), whereby
eggs are produced while trematodes are encysted in second inter-
mediate hosts, metacercarial cysts with progenetic eggs were
omitted from the experiment. Capsules were administered to anaes-
thetised fish as for the anthelmintic treatment, with all infected fish
maintained in individual tanks on their respective diets post-infec-
tion. At the completion of each infection period (5, 15 or 25 days),
fish were euthanized and immediately examined for parasites by
removing the alimentary canal from oesophagus to anus and split-
ting it longitudinally. The number of trematodes was noted prior
to fixing the parasites in 10% buffered formalin. Worm measure-
ments were made as in the field survey.

Statistical analyses

Statistical analyses were conducted using R (version 2.13.1, R
Core Team, 2011). For field and experimental infection data,

Table 1

non-parametric analyses (Mann-Whitney-Wilcoxon and Kruskal-
Wallis) were used because assumptions for parametric tests could
not be met (e.g. unequal sample sizes and/or variances), with sam-
ples also pooled across seasons to increase sample size. Post-hoc
tests were used to assess where differences existed when variance
was significant between more than two species. In experimental
infections, establishment was only assessed at 5days post-
infection between species.

Parasite flow

Parasite flow diagrams were constructed to graphically assess
the potential influence of exotic salmonid presence on T.
opisthorchis and S. anguillae in their native hosts. Although a par-
asite’s fitness can be negatively influenced by the presence of an-
other parasite species (e.g. Holland, 1984; Poulin et al., 2003),
and both trematodes co-infect the same second intermediate
and definitive host species, each trematode was evaluated sepa-
rately because T. opisthorchis and S. anguillae occupy different
parts of the eel's gut (Macfarlane, 1952) and their occurrence
in fish is positively correlated (Hine and Francis, 1980). It thus
seems safe to assume that T. opisthorchis and S. anguillae do
not compete for space in the gut, which could otherwise have
resulted in their lowered establishment, growth and maturity
in each other’s presence.

Common and upland bully could not be distinguished in the sal-
monid gut content analysis. We therefore assumed that the rate at
which definitive hosts acquire infection from each bully species is
proportional to the relative abundance of the bully species in the
lake. Mortality of T. opisthorchis in longfin eels could not be param-
eterised from infection experiments, as worms survived beyond
25 days post-infection and did not show decreasing infection
intensity with time. Rather, mortality was calculated from a
regression of longevity of adult trematodes against their body size
(y =260.63x — 777.99), based on a compilation of platyhelminth
life history data (Trouve et al., 1998).

Results
Field surveys

Two exotic salmonid species, brown trout (n =71 [47 dissected
for parasites], FL 117-610 mm) and rainbow trout (n =42 [42], FL
87-536 mm) were captured in Lake Pearson (ratio 2.6:1, gill nets).
Three native fish species were captured by minnow trap; common
bully (n=290 [40], TL 20-114 mm), upland bully (n=40 [3], TL
26-59 mm) and koaro (n = 2 [2], TL 39-65 mm; ratio 95:13:1). Fyke

Seasonal prevalence, intensity and reproductive status of the trematodes Telogaster opisthorchis and Stegodexamene anguillae naturally infecting exotic salmonids (Lake Pearson)

and native longfin eel (Lake Sumner).

Parasite species Host No. of hosts Season Prevalence % (CI) Mean intensity (+SE) Gravid (%)
T. opisthorchis BT 32 Pre-winter 22 (9.9-40.4) 10.57 £6.19 2
15 Post-winter 33 (13.0-61.3) 10.20 £5.09 2
RT 30 Pre-winter 17 (6.3-35.5) 4,00 +1.48 0
12 Post-winter 67 (35.4-88.7) 5.14 £2.09 4
LE 11 Pre-winter 82 (47.8-96.8) 62.5+279 80
3 Post-winter 67 (12.5-98.2) 25+17 83
S. anguillae BT 32 Pre-winter 9(2.5-26.2) 1.67 £0.33 10
15 Post-winter 53 (27.4-77.8) 3.43+1.00 14
RT 30 Pre-winter 17 (6.3-35.5) 7.4+4.11 3
12 Post-winter 67 (35.4-88.7) 2.71£0.57 13
LE 11 Pre-winter 63.6 (31.6-87.6) 184+58 85
3 Post-winter 100 (31.0 - 100) 7+35 83

Note: BT - brown trout, RT - rainbow trout, LE - longfin eel (Lake Sumner).
" Significant differences (pooled for season, P < 0.01).
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Fig. 1. Mean worm size, number of eggs and egg volume of the trematodes Telogaster opisthorchis (a, c, e) and Stegodexamene anguillae (b, d, f) naturally infecting exotic
salmonids (Lake Pearson) and native longfin eel (Lake Sumner). Error bars indicate standard error, ***Significant differences (P < 0.0001).

nets captured only longfin eel in both lakes, with eels in Lake Sumner
(n=19 [14], TL 403-1055 mm) tending to be slightly larger than
those in Lake Pearson (n =16, TL 405-830 mm; Mann-Whitney-
Wilcoxon test W = 69, P = 0.006).

Telogaster opisthorchis

Overall, T. opisthorchis prevalence was highest in longfin eel
(81.8-66.7%) compared to brown (17-67%) and rainbow trout
(22-33%; Table 1). Infection intensity was greater in longfin eel
than rainbow trout (Kruskal-Wallis X, =12.16, P=0.002). Worm
size differed between species, with the largest worms in eels and
the smallest worms in brown trout (Kruskal-Wallis X, =119.33,
P<0.0001; Fig. 1a). The majority of worms in longfin eels were
gravid (80-83%; Table 1) and contained relatively high numbers
of eggs (228.7-564.6 eggs). Few worms were gravid in brown
(2%) or rainbow trout (0-4%) and contained relatively few eggs
(10-13 and 3.5 eggs, respectively; Fig. 1c¢). Additionally, T. opisthor-
chis eggs tended to be larger in longfin eel than in either salmonid
species (Kruskal-Wallis X; = 36.60, P < 0.0001; Fig. 1e).

Table 2
Prevalence and infection intensity of Telogaster opisthorchis and Stegodexamene
anguillae metacercariae in second intermediate hosts from Lake Pearson.

Parasite Host No. of Prevalence % Mean intensity

species hosts  (CI) (£SE)

T. opisthorchis Common bully 40 32.5(19.1-49.2) 1.31x0.17
Upland bully 3 66.7 (12.5-98.2) 30
Koaro 2 0 (0-80.2) -

S. anguillae Common bully 40 25(13.2-41.5) 2505
Upland bully 3 0 (0-69.0) -

Koaro 2 50 (9.4-90.5) 2

Stegodexamene anguillae

Prevalence of S. anguillae tended to increase in all hosts over
winter, with highest prevalence recorded in the relatively few
longfin eels captured (n =9-3, 63.6-100%, respectively; Table 1).
Infection intensity did not differ between hosts (Kruskal-Wallis
X5 =3.41, P=0.182). Worms recovered from longfin eels were lar-
ger than those in either salmonid (Kruskal-Wallis X, =76.94,
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Prevalence, infection intensity, size and reproductive status of the trematodes Telogaster opisthorchis and Stegodexamene anguillae in experimentally infected exotic brown trout
and rainbow trout, and native longfin eel.

Parasite Host No. of Day Prevalence Establishment (%) Mean intensity Gravid Egg numbers Egg size um®
species hosts (%) (mean * SE) (+SE) (%) (mean # SE) (mean * SE)
T. opisthorchis BT 5 5 60 3724 433+24 0 - -
5 15 0 - - - - -
RT 5 5 20 042 +04 2 50 8 3251 £ 1660
5 15 0 - - - - -
LF 4 5 40 8.04+6.5 17.5+11.5 0] - -
5 15 40 19.72 £13.2 47 £ 16 26 28.0+4.2 3628 £119
4 25 40 26.75+18.9 53.5+13.5 66 429+47 3915 + 84
S. anguillae BT 5 5 20 0.67 1 0 - -
5 15 20 133 2 50 11 84581 + 7044
RT 5 5 20 0.47 1 0 - -
4 15 0 - - - - -
LF 4 5 25 6.67 8 25 7.5+45 25895 + 5096
5 15 40 18.33+244 11+£10 60 109+15 59348 + 1694
3 25 0 - - - - -
Note: BT - brown trout, RT - rainbow trout, LE - longfin eel.
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Fig. 2. Mean worm size of the trematodes Telogaster opisthorchis (a) and Stegodexamene anguillae (b) in experimentally infected exotic brown trout and rainbow trout, and

native longfin eel. Error bars indicate standard error.

P <0.002; Fig. 1b). The majority of S. anguillae in longfin eels were
gravid (85-83%, 9.6-14 eggs/worm), while few gravid worms were
present in salmonids (rainbow trout 3-13%, 3-4 eggs/worm;
brown trout 10-14%, 10-25.3 eggs/worm; Fig. 1d). Egg volume
was significantly smaller in rainbow trout than the other fish spe-
cies (Kruskal-Wallis species X, = 31.40, P < 0.0001; Fig. 1f).

Definitive host diet

Bullies (common and upland) were the main fish type con-
sumed by salmonids, with the percentage of stomachs containing
bullies increasing over winter (rainbow trout 43-67%; brown trout
26-53%). Brown trout contained an average of 2.4-2.9 bullies/
stomach, while rainbow trout contained 1.7-4.3 bullies. Koaro
were present in fewer than 3.2-6.7% of brown trout (mean inten-
sity 2-3 koaro/stomach) and 20-7% of rainbow trout (mean inten-
sity 2.3-1 koaro/stomach) between seasons. Longfin eel stomachs
from Lake Sumner were empty or contained P. antipodarum snails.

Intermediate hosts

Of the three potential second intermediate hosts of T. opisthor-
chis and S. anguillae captured in Lake Pearson, common bully was
most abundant (87%, n = 290), with the remaining host community
comprised of upland bully (12%, n = 40) and koaro (1%, n = 2). Com-
mon bully were infected with both trematodes (prevalence: T. opis-

Days post-infection

thorchis 32. 5%, S. anguillae 25%), with T. opisthorchis also present in
upland bully and S. anguillae in koaro (Table 2).

Snails were found in all benthic samples, with an average of
631.8 snails/m?, of which an average of 50.1% were larger than
the minimum of 3.6 mm shell length recorded for infected snails
(Macfarlane, 1952).

Experimental infection

Telogaster opisthorchis

Establishment of T. opisthorchis did not differ among host spe-
cies at 5 days post-infection (Kruskal-Wallis X, = 1.60, P = 0.499),
with many individuals failing to acquire infection (Table 3). Worms
survived in longfin eels until 25 days post-infection, while no
worms were present in salmonids at 15 days post-infection. Worm
size did not differ between brown trout and longfin eels at 5 days
post-infection (Kruskal-Wallis X; =0.48, P=0.490; Fig. 2a). At
5 days post-infection, one of the two worms present in rainbow
trout contained mature eggs, while no gravid worms were present
in brown trout or longfin eel. The percentage of gravid worms in
longfin eel increased with infection time, with 66% of worms grav-
id at 25 days post-infection. Egg volume of worms from longfin eel
also increased with time since infection (Kruskal-Wallis 5 vs.
15 days X; =4.61, P=0.03; Table 3).
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in Lake Pearson. (Native fish images; McDowall, 2000; exotic fish; Rauque et al., 2003.)

Stegodexamene anguillae

Few fish became infected with S. anguillae, as evidenced by poor
prevalence and establishment success in all species (Table 3). High-
est establishment success occurred in longfin eel, with 6.7% of
worms establishing at 5 days and 18.3% at 15 days post-infection.
Worms were absent from rainbow trout at 15 days post-infection.
Worm size showed little variation between host species at 5 and
15 days post-infection (Fig. 2b). Twenty-five percent of worms in
longfin eel (n =8) were gravid 5 days post-infection, increasing to
60% (n=15) at 15 days post-infection. A single gravid worm was
also present in brown trout 15 days post-infection, with no gravid
worms observed in rainbow trout. Eggs present in brown trout
were larger than those in longfin eel at 15 days post-infection
(Kruskal-Wallis X; = 9.32, P =0.002, Table 3).

Parasite flow

Telogaster opisthorchis

Higher rates of parasite establishment and maturation and low-
er parasite mortality in longfin eel show that eels are the most suc-
cessful hosts of T. opisthorchis, as indicated by higher parasite
abundance in the field (Fig. 3a). Of the two salmonid species in
Lake Pearson, brown trout is likely to have greater influence on T.
opisthorchis dynamics, because this host has greater host abun-
dance and parasite establishment as shown by the higher infection

levels observed in the field. The majority of infections from second
intermediate to definitive hosts originate from common bully, as
this host is seven times more abundant than upland bully. Mean
predation rates on bullies indicate that rainbow trout encounter
more trematodes than brown trout, but the lower establishment
rate of T. opisthorchis in rainbow trout results in fewer parasites
in this salmonid host. However, as the relative density of rainbow
trout in relation to longfin eel is unknown, it is difficult to deter-
mine how the contrasting parasite competence of native and exotic
hosts will manifest in altered parasite dynamics.

Stegodexamene anguillae

Higher S. anguillae establishment rates in longfin eels than in
the salmonids are also reflected in higher parasite abundance in
the native host (Fig. 3b). Field surveys suggest that this parasite
can mature in both salmonid species (as verified experimentally
in brown trout), although poor survival of worms in salmonids
means they are unlikely to contribute significantly to the parasite
population. Worms establish at a lower rate in rainbow trout than
brown trout, but rainbow trout consume more second intermedi-
ate hosts than brown trout. Thus, rainbow trout encounter more
metacercarial cysts, resulting in higher parasite abundance in this
host. Common bullies are the major source of S. anguillae infection
for salmonids, due to this host’s high relative abundance and high
predation rates by the definitive hosts.



142 R.A. Paterson et al./International Journal for Parasitology: Parasites and Wildlife 2 (2013) 136-143

Discussion

We used a combination of field surveys and experimental infec-
tions to determine the relative competence of native and exotic
fish hosts for two native trematodes. We also used field and exper-
imental results to assess likely parasite flows through the system.
In general, field surveys demonstrated that longfin eel was the
superior host of both trematodes, though some similarities were
observed in S. anguillae infections between eels and salmonids.
Experimental infections showed that both trematode species had
poorer establishment and survival in salmonids, though some
worms matured and attained similar sizes to those in eels prior
to dying. Overall, both field surveys and experimental infections
indicated that salmonids are unlikely to increase native parasite
flow to native hosts by amplifying infection rates.

Of the two salmonid species in Lake Pearson, brown trout is
likely to make the greater contribution to the populations of both
parasites, due to its higher relative host density, infection intensity
and establishment rate. Rainbow trout are more likely to act as a
parasite sink because they consume a greater proportion of the
second intermediate host fish, and worms have poorer establish-
ment and survival in this host compared to both brown trout and
longfin eel. Poorer establishment and survival of trematodes in sal-
monids compared with longfin eels appear to be the main reasons
why salmonids are inferior hosts, as trematodes which do persist
in salmonids achieve similar sizes to those in eels.

Although our study showed that salmonids had poor competence
for native trematodes, the potential for salmonids to dilute infection
in native hosts cannot be inferred solely from this. Relative densities
of exotic and native hosts strongly influence whether native parasite
dynamics will be altered by the presence of an exotic host (Paterson
et al, 2011). Whilst the densities of longfin eel in Lake Pearson are
unknown, previous studies of shared native parasites from native-
exotic host complexes allow us to consider how exotic salmonids
may influence parasite dynamics under given relative host densities.
For example, if the density of salmonids relative to longfin eels is
low, infection in native hosts may remain unchanged (as the density
of salmonids would be too small for the poor parasite competence of
salmonids to influence the overall parasite transmission dynamics).
Alternatively, equal or greater density of salmonids in relation to
longfin eels may reduce infection in native hosts, as the poor compe-
tence of exotic salmonids for native parasites could decrease the
overall egg output from definitive hosts.

Infection dilution in native hosts, driven by the poor host com-
petence of an exotic host for a shared native parasite, may only oc-
cur if infection to native hosts becomes limiting. Although
parasites that encounter salmonids, following the consumption of
their second intermediate host, are effectively removed from the
parasite populations due to the poor competence of salmonids, it
is common for a large proportion of infected second intermediate
hosts not to encounter their definitive hosts, due, for example, to
the effects of natural mortality or parasite induced mortality (Pou-
lin, 2007). Hence, the consumption of second intermediate hosts by
salmonids that were unlikely to encounter longfin eels may not al-
ter parasite transmission to the native host. However, if infection
from the second intermediate host population is limiting, either
through naturally low host abundance prior to salmonid introduc-
tion, or driven by resource competition from salmonids, eels may
experience reduced infection. Infection rates in intermediate hosts
may also remain unchanged if the lowered infection intensity of
trematodes supported by eels can still provide sufficient parasite
eggs to maintain infection in the first intermediate host. Addition-
ally, trematodes reproduce asexually in their first intermediate
host, producing thousands of cercariae to increase their transmis-
sion to second intermediate hosts; the effect of a reduction in

egg output from definitive hosts may be trivial when compared
with the chance of cercariae encountering second intermediate
hosts.

We are mindful that the conclusions drawn from this study must
be treated with some caution due to small field survey sample sizes
in some instances, lack of lake replication, and our need to obtain
definitive eel hosts from an alternative lake. Although fewer eels
were captured from Lake Sumner than salmonids from Lake Pearson,
this native definitive host provides us with an indication of the prev-
alence and infection intensity that could be expected in the main
study lake. Similarly prevalence and infection intensity estimates
from upland bully and koaro are weakened by low sample sizes;
however, given that these species are less abundant than common
bully, they are less likely to strongly influence parasite dynamics.
Additionally, the lack of replication at the lake scale is overcome
by the use of experimental infections that provide some generality
of what is likely to be occurring in lake systems, independent of
lake-specific effects. We emphasise that understanding how exotic
species influence native parasite dynamics may not be as simple
as sampling hosts in the field or experimentally determining host
competence for parasites, as field surveys and experimental infec-
tions do not take into account the influence of host densities on par-
asite dynamics. Furthermore, it may be unwise to generalise trends
from previous studies of the influence of exotic salmonids on native
parasites because they may falsely indicate that an exotic species
will be a competent host for a native parasite. This study shows that
the risks posed by exotic species that have acquired native parasites
need to be evaluated on a case-by-case basis.
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