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Abstract

Monitoring the ecological impacts of environmental pollution and the effectiveness of reme-

diation efforts requires identifying relationships between contaminants and the disruption of

biological processes in populations, communities, or ecosystems. Wildlife are useful bioindi-

cators, but traditional comparative experimental approaches rely on a staunch and typically

unverifiable assumption that, in the absence of contaminants, reference and contaminated

sites would support the same densities of bioindicators, thereby inferring direct causation

from indirect data. We demonstrate the utility of spatial capture-recapture (SCR) models for

overcoming these issues, testing if community density of common small mammal bioindica-

tors was directly influenced by soil chemical concentrations. By modeling density as an inho-

mogeneous Poisson point process, we found evidence for an inverse spatial relationship

between Peromyscus density and soil mercury concentrations, but not other chemicals,

such as polychlorinated biphenyls, at a site formerly occupied by a nuclear reactor. Although

the coefficient point estimate supported Peromyscus density being lower where mercury

concentrations were higher (β = –0.44), the 95% confidence interval overlapped zero, sug-

gesting no effect was also compatible with our data. Estimated density from the most parsi-

monious model (2.88 mice/ha; 95% CI = 1.63–5.08), which did not support a density-

chemical relationship, was within the range of reported densities for Peromyscus that did

not inhabit contaminated sites elsewhere. Environmental pollution remains a global threat to

biodiversity and ecosystem and human health, and our study provides an illustrative exam-

ple of the utility of SCR models for investigating the effects that chemicals may have on wild-

life bioindicator populations and communities.
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Introduction

Wildlife populations and communities have played critical roles as bioindicators of environ-

mental contamination for decades. Numerous species have been used to evaluate the presence

of heavy metals and persistent organic pollutants in ecosystems, examine the associated physi-

ological effects of bioaccumulation, and determine the effectiveness of environmental remedi-

ation efforts [1–3]. Given the growing human population and the prevalence of environmental

pollution as a global threat to biodiversity, ecosystems, and human health [4–7], wildlife likely

will continue to be used as bioindicators into the foreseeable future [8, 9]. General consensus

exists regarding the criteria that make a particular wildlife species useful as a bioindicator [2,

10, 11], and studies at the individual level of the molecular, cellular, and physiological effects of

pollutants on wildlife are prevalent [12]. Despite promising achievements and revealing find-

ings, the impacts of environmental pollutants on wildlife at higher levels of biological organiza-

tion remain poorly understood. Indeed, a major challenge to developing reliable predictions

about the ecological ramifications of pollution and evaluating the effectiveness of remediation

efforts is causally linking pollutants to disruption of natural biological processes in popula-

tions, communities, and ecosystems [12–14].

A commonly employed experimental design for investigating population- or community-

level effects of environmental contaminants is the comparative impacted versus reference

approach, or treatment versus control [15]. For instance, no appreciable differences were found

in white-footed mice (Peromyscus leucopus) population sizes or densities between reference

sites and sites contaminated with heavy metals or polychlorinated biphenyls (PCBs), leading

researchers to conclude that contaminant levels had little to no adverse population-level effects

[16–18]. In contrast, discrepancies were detected in population sizes or densities of American

mink (Neovison vison), North American river otter (Lontra canadensis), and Eurasian otter

(Lutra lutra) between reference sites and PCBs-contaminated sites, which, in some cases, led to

the invocation of immediate changes to environmental remediation practices [19–21]. How-

ever, such comparative experimental designs rely on a very strong but typically unverifiable

assumption that the impacted and reference sites would support the same population sizes or

densities had pollution never occurred [22]. In addition, it is common that this type of approach

does not account for differential animal detectability among sites, generally provides facile

mono-explanations that oversimplify ecological complexities, and typically fails to sufficiently

establish direct causality [12, 13, 22, 23]. As Linzey and Grant [16] and Phelps and McBee [18]

noted, observed differences in population demographics among impacted and reference sites

may instead be the result of variation in other exogenous factors that are often not evaluated;

for example, quantity and quality of available food resources, habitat heterogeneity, predation

pressure, disease type and prevalence, or competition with heterospecifics [24, 25]. Thus, across

the fields of ecotoxicology and pollution biomonitoring, researchers have called for the adop-

tion or development of analytical methods that facilitate explicit identification and quantifica-

tion of relationships between pollutants and populations, communities, or ecosystems [12–14].

Individual heterogeneity in demographic parameters is influenced by animals’ interactions

with the environment, which ultimately affects population dynamics [26–28]. For example,

high levels of persistent organic pollutants may reduce survival or reproductive rates of indi-

vidual seabirds, which can perturb overall population growth [29, 30]. Population density is an

ecological demographic parameter that represents the culmination of important vital rates,

reflects the environmental conditions that exert effects on populations, and is therefore a

robust metric for quantifying population-environment relationships [24, 25]. Conventional

methods for estimating density of wildlife populations rely on first estimating population size

(abundance), typically via non-spatial capture-recapture models [31], and then applying
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estimated population size ad hoc to a notional ‘effective sampling area’ [32]. However, because

spatial information about captures and recaptures of animals relative to trap locations is not

incorporated in conventional capture-recapture models, the effective sampling area is

unknown and must be arbitrarily delineated; and individual heterogeneity in detection proba-

bilities that arises due to the varying proximity of animal activity (home range) centers to traps

is difficult to accommodate in conventional models [32, 33]. Consequently, densities that are

derived from population sizes estimated by conventional capture-recapture models tend to be

positively biased, sometimes by�200% [34–36].

Relatively recently developed spatial capture-recapture (SCR) models surmount the afore-

mentioned issues by including a state model for the spatial distribution of animal activity cen-

ters across a defined geographical area and a distance-dependent detection model in which

detection probability declines with increasing distance between an animal’s activity center and

a trap [32, 33, 37, 38]. Whereas population size is the estimated parameter of interest in con-

ventional capture-recapture models, SCR models directly estimate density. Unbiased estimates

of density can be produced by SCR models [32, 33, 37], which easily accommodate detection

data from a multitude of sampling methods (e.g., live-capture, camera-trapping, transect and

area searches, bioacoustics, etc.), and have been successfully applied to a wide array of taxa,

from amphibians to songbirds to large mammals [34, 36, 39].

Modeling animal density using a homogeneous Poisson point process state model, or that

animal activity centers are spatially distributed at random (density is constant across space), is

a common approach with SCR models. A unique feature of SCR models is that hypotheses

about spatial variation in animal density due to population-environment relationships can be

formally tested by replacing the homogenous Poisson point process model with an inhomoge-

neous Poisson point process model, which allows animal density to spatially vary with values

of environmental covariates [32, 33, 35]. For example, using SCR inhomogeneous Poisson

point process models, important relationships between American black bear (Ursus ameri-
canus) density and forest cover, human development, elevation, and hydrology have been

revealed and quantified [40–42]. Effectively, SCR inhomogeneous Poisson point process mod-

els provide a straightforward approach for testing whether animal density is directly related to

measurable environmental conditions.

Here, we demonstrate the utility of SCR models for investigating and quantifying whether

density of small mammal bioindicators is directly influenced by local concentrations of chemi-

cals in soil; specifically, inorganic elements (i.e., metals) and organic chemicals, such as PCBs.

Peromyscus spp. (deer mice) are effective bioindicators of environmental contamination in ter-

restrial environments, because they have a wide-spread distribution, generally occur in large

numbers, are easy to survey and capture, and have high exposure to potential contaminants in

vegetation and soil due to their omnivorous diet and burrowing behavior [43, 44]. Further-

more, high concentrations of some chemicals, such as PCBs, have been linked to developmen-

tal issues, abnormal liver, spleen, and adrenal functions, and reduced survival and

reproductive rates of Peromyscus, all of which could result in population reductions [45, 46].

Therefore, we hypothesized that density of a Peromyscus community would be inversely

related to concentrations of chemicals in soil, or more specifically, that density would be lower

where chemical concentrations were higher.

Methods

Study area

Los Alamos National Laboratory (LANL) was established in northern New Mexico, USA, in

1943 as part of the Manhattan Project, primarily to design and build atomic weapons. LANL is
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situated on a series of mesas of the Pajarito Plateau, which are subdivided by multiple east-

west oriented canyons. Our study occurred in Los Alamos Canyon, where some of the earliest

nuclear operations in the United States occurred. Five experimental nuclear reactors were

active in Los Alamos Canyon during 1944–1992, and demolition of the final reactor occurred

in 2002 [47]. As a result of reactor operations, multiple inorganic and organic chemicals are of

environmental monitoring interest [48–50].

The width of Los Alamos Canyon within our study area is approximately 400 m, and eleva-

tion ranges from 2,100 m at the canyon floor to 2,200 m at the canyon rim. Habitat on the

north-facing canyon slope and in the canyon bottom is mixed conifer; and piñon pine (Pinus
edulis) and one-seed juniper (Juniperus monosperma) habitat comprise the south-facing can-

yon slope [51]. The climate is semi-arid with an average annual precipitation of 48 cm and

mean annual temperature of 9.1 C˚ [52].

Small mammal trapping

We conducted a five-day capture-mark-recapture survey during April 2017 by live-captur-

ing small mammals using folding Sherman traps (7.62 × 8.89 × 22.86 cm; H.B. Sherman

Traps, Tallahassee, Florida). We placed one hundred traps in five rows of 20 traps in each of

three trapping grids, for a total of 300 traps; spacing between traps within grids averaged

4.55 m and spacing between the centers of grids averaged ~170 m (Fig 1). The western-most

trapping grid was located on the former footprint of one reactor, and the other two grids

were placed east and downstream. We baited traps with a mixture of sweet feed and peanut

butter each night and checked all traps the following morning. We identified the species

and sex of all captured animals and recorded additional morphological information. We

marked each captured individual with a uniquely numbered ear tag when first captured,

which enabled individual identification in subsequent capture occasions. We released all

captured individuals near their respective capture locations. All capture and handling meth-

ods were approved by an Institutional Animal Care and Use Committee (protocol #16–30),

followed standardized guidelines for humane capture and handling of wildlife [53], and

occurred under a New Mexico Department of Game and Fish scientific collection permit

(#2864).

Fig 1. The locations of three trapping grids in Los Alamos Canyon, Los Alamos National Laboratory, New

Mexico, USA, relative to the stream and gradient of the canyon’s elevation. Figure was created using ArcGIS 10.4.1.

https://doi.org/10.1371/journal.pone.0238870.g001
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Soil collection and chemical concentrations

We collected soil samples from each of the three trapping grids for chemical analysis. We first

divided each grid equally into six subgrids, and within each subgrid, we collected one compos-

ite soil sample from five randomly selected locations. Soil samples were collected with a

10-cm-diameter soil ring that was driven 5 cm into the ground with a hammer. We homoge-

nized all five composite samples from a subgrid in a sealed plastic bag, which we then aliquoted

into a sample container for chemical analysis. We collected a total of 18 composite samples

from 18 subgrids (six from each of the three grids; Fig 1).

Soil samples were analyzed for inorganic elements at Australian Laboratory Services (Fort

Collins, Colorado), and were analyzed for PCBs and dioxin and furan congeners at Cape Fear

Analytical, LLC (Wilmington, North Carolina; see S1 Appendix for more details). Radionu-

clides were not assessed, because they were not identified as chemicals of potential ecological

concern. The World Health Organization developed toxic equivalency factors (TEFs) for tetra-

chlorinatedibenzodioxin-2,3,7,8 (TCDD)-like compounds, which can be used to determine

the relative potency or toxic equivalents (TEQs) of dioxin-like compounds [54]. We calculated

TEQs for all aryl hydrocarbon-binding PCB, dioxin, and furan congeners by multiplying each

congener by its respective mammalian-specific TEF [54], which we then added together for a

total TEQ for each soil sample.

Statistical analyses

Soil chemistry. We assigned all chemicals that were nondetects to a concentration equal

to the detection limit (i.e., the laboratory’s detection or reporting limits, based on standardized

reporting). A nondetect is a chemical concentration that is somewhere between zero and the

analytical laboratory’s reporting limit but is too small to accurately quantify [55]. Reporting

nondetects at the detection limit is preferred over other methods, such as reporting at half the

detection limit, substituting with zeros, or disregarding them entirely, provided statistical anal-

yses are used that can accommodate censored data [55]. For datasets containing nondetect val-

ues (i.e., censored), we made comparisons among groups using a Gehan-Wilcoxon test [56].

For datasets that did not contain nondetect values, we used a nonparametric Kruskal-Wallis

One-Way ANOVA on Ranks test. If support existed for substantial differences in the concen-

trations among grids (P< 0.05), we applied a post hoc Dunn’s test with a Bonferroni correc-

tion for multiple pairwise comparisons.

Kriging. Kriging is a commonly used geostatistical modeling technique to probabilisti-

cally interpolate or predict values across space from a set of observed values. We applied

empirical Bayesian kriging, implemented in the ArcGIS Pro 2.2 Geostatistical Wizard (ESRI,

Redlands, CA), to predict chemical concentration values at locations across the study area

where samples were not collected, based on the spatial locations of observed concentrations.

Empirical Bayesian kriging tends to produce more accurate predictions from small datasets

compared with other kriging approaches [57, 58]. We only applied kriging to chemicals that

had concentrations that were supported as being different among the three grids (P< 0.05),

which suggested that sufficient variation existed to quantify potential density-chemical rela-

tionships. Many dioxin and furan congeners met this criterion, so we used TEQs as surrogates.

Prior to kriging, we assessed each chemical for outliers and normality using an iterative

Grubbs test and a Shapiro-Wilk test, respectively [59, 60]. We log-empirical transformed non-

normal data, because soil chemical concentrations cannot be negative; values were back-trans-

formed for estimating prediction surfaces. We removed outliers from the analysis to improve

prediction accuracy, but included them in the final prediction surfaces [61]. We applied all

semi-variograms that are available under empirical Bayesian kriging, which are spatial
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autocorrelation models that predict the relationship of concentrations as a function of distance

and direction. We selected the best semi-variogram for each chemical via cross-validation,

based on the following goodness-of-fit measures: mean error (ME), mean standardized error

(MSDE), mean standard error (MSE), root-mean-square error (RMSE), and root-mean-square

standardized error (RMSSDE) [58, 62–64].

Spatial capture-recapture. We fit single-session closed population SCR models by maxi-

mizing the full likelihood in the R statistical software package secr v3.1.7 [65, 66] to estimate

Peromyscus density and density-chemical relationships. The live-traps that we used were sin-

gle-catch, which introduces dependence among traps and trap-specific competition among

individuals [32, 67]. A likelihood estimator for single-catch traps has not been developed yet

(but see Distiller and Borchers [68]), but Efford et al. [67] found that modeling single-catch

traps as multi-catch can produce unbiased estimates of density if trap saturation is <86%.

Therefore, after calculating trap saturation, or the average proportion of traps that were occu-

pied at the end of each occasion, we modeled traps as multi-catch via a multinomial observa-

tion model [32, 67, 69]. Recaptures of multiple individuals occurred in traps that were located

on>1 sampling grid (i.e., cross-grid captures), effectively constituting a pseudo-clustered sam-

pling design; therefore, we collapsed the grid-specific capture histories into a single study area

capture history with five occasions [41, 70, 71].

We fit all models under the common assumption that the probability of capturing an indi-

vidual decreased with increasing distance between a trap and the animal’s activity center

according to a half-normal curve [32, 37]. This detection function has two parameters that are

estimated, the probability of capture at the activity center of an individual (g0) and the spatial

scale of detection (σ), the latter of which reflects how rapidly capture probability declines with

distance from a trap [32, 33]. A default assumption of SCR models is that animal home ranges

are approximately circular, but this is often violated in natural populations due to a myriad of

factors, such as territoriality, heterogeneous distribution of resources, or movement-restricting

landscape features [72, 73]. If home ranges are elongated in a particular direction (e.g., because

of landscape features that restrict movement, such as canyons or rivers) and traps are deployed

primarily along the major axis of animal movement such that the trapping array aligns with

the directionality of home ranges, estimated density may be severely biased under the circular-

ity assumption [72]. Our trapping grids were collectively oriented along the direction of Los

Alamos Canyon (the x-axis), with minimal trap coverage along the y-axis, and exploratory

analyses suggested that animal movement may have been predominantly aligned with the can-

yon. Therefore, we applied an anisotropic transformation to the detection function, which has

been shown to mitigate density estimate bias in such scenarios [72, 74]. We implemented the

anisotropic transformation using the R package geoR [75, 76], specified the anisotropy angle

parameter (FA) as 105˚ (1.83 radians) based on the orientation of the canyon, and estimated

the anisotropy ratio parameter (FR) via maximum likelihood [74].

To test the importance of potential sources of variation in detection function parameters,

we initially used the default SCR homogeneous Poisson point process model to describe the

spatial distribution of animal activity centers across the state space (S), or area of integration.

We defined S by buffering each trap by the recommended ~3× σ estimated from the most par-

simonious model to ensure that all activity centers of individuals with a non-negligible proba-

bility of capture were included [32]. We specified a fine-resolution mask point spacing of 10 m

for S to conform to the recommended <1× σ that is needed to eliminate bias that can be

caused by discretization of S [32, 77]. We then fit models with the following effects modeled

on g0 and/or σ, per the recommendations of Gerber and Parmenter [78] for SCR analysis of

small mammal detection data. Because traps were baited, we modeled a trap-specific learned

behavioral response (bk) on g0 [74, 79]. Male Peromyscus sometimes have larger home ranges
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than females [80], which could influence detection and movement rates; therefore, we fit mod-

els with sex as a grouping covariate on g0 and/or σ [81–83]. Additionally, because three species

of Peromyscus were captured during our study, which might have differential space use and

detection rates among them [80], we also fit models with species as a grouping covariate on g0

and/or σ [83]. To investigate if individual heterogeneity in detection or space use existed that

was not accounted for by sex or species, we fit models with latent two-class finite mixtures (π)

on g0 and/or σ [84, 85].

To investigate density-chemical relationships, we modeled the spatial distribution of indi-

vidual activity centers across S as an inhomogeneous Poisson point process. Specifically, we

modeled Peromyscus density as a log-linear function of the concentrations of manganese, mer-

cury, PCBs, and TEQ values in soil [32]. Inhomogeneous Poisson point process SCR models

are computationally demanding; therefore, we fit these models with only the effects on detec-

tion function parameters for which 95% confidence intervals of coefficient estimates did not

overlap zero (for bk and π) or overlap among sexes or species in the aforementioned homoge-

neous Poisson point process models. We used Akaike’s Information Criterion corrected for

small sample size (AICc) for model selection, wherein we conservatively considered models

�4 ΔAICc units from the top model as competing [86, 87]. However, we also followed the

additional recommendations by Arnold [87] for direct a priori hypothesis testing, whereby we

report the results of models that represent hypothesis-related manipulations of key model

parameters (i.e., density varying as a function of chemical concentrations) even if uninforma-

tive parameters were present.

Results

Small mammal trapping

We captured 31 individual Peromyscus (20 males: 11 females) 78 total times in 49 separate

traps (16.3% of all traps) across 1,500 trap-nights; 30 captures were males and 48 captures were

females. Three species were captured and the number of captures varied among them, with

individual P. boylii (n = 17), P. maniculatus (n = 4), and P. truei (n = 10) being captured 43, 12,

and 23 times, respectively. With the species combined, the total number of captures within an

occasion ranged from 13 to 18, and 47 total recaptures were obtained, with 44 of those being

spatial recaptures (i.e., recaptured in a different trap than the initial capture). The average

number of recaptures per individual was 1.52 (range: 0–5) and six individuals were captured

on>1 trapping grid. Trap saturation across all occasions was 5.20%, which was sufficiently

below the threshold required to mitigate bias in SCR density estimates from modeling single-

catch traps as multi-catch [67, 68].

Soil chemistry

Substantial differences among the three trapping grids for concentrations of multiple chemi-

cals were not supported (P> 0.05; A1 Table in S1 Appendix). However, manganese concentra-

tions were higher in soil collected from the lower grid compared with soil from the upper grid

(P = 0.04). In contrast, mercury concentrations were higher in soil collected from the upper

grid compared with soil from the middle and lower grids (P = 0.02). Similarly, PCBs concen-

trations were higher in soil samples collected from the upper grid compared with soil samples

from the middle and lower grids (P< 0.001). Most dioxin and furan congener concentrations

in soil samples varied among grids, with soil in the upper grid generally having higher concen-

trations than soil from the middle and lower grids (A1 and A2 Tables in S1 Appendix); there-

fore, we used TEQs as a surrogate. TEQs were higher in soil samples from the upper grid

compared with soil samples collected from the middle and lower grids (P< 0.01).
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Kriging

Manganese contained no outliers (Iterative Grubbs α = 0.01) and followed a normal distribu-

tion (Shapiro-Wilk W = 0.96, P = 0.61). Mercury, PCBs, and TEQs all contained two outliers

(Iterative Grubbs α = 0.01) and were non-normally distributed even after the removal of the

outliers (Shapiro-Wilk W = 0.66, P< 0.0001; W = 0.78, P< 0.01; W = 0.71, P< 0.001, respec-

tively). Based on cross-validation using the goodness-of-fit criteria, we selected the exponential

semi-variogram for both PCBs and TEQs, a whittle semi-variogram for mercury, and a power

semi-variogram for manganese (B1 Table in S2 Appendix). Prediction accuracy for all four

chemicals was acceptable, as general agreement existed between MSE and RMSE for each.

Nominal bias was present in the estimated variability (as measured by MSDE and RMSSDE),

but slight underestimation of the variation in mercury and TEQs may have been present

(RMSSDE = 0.83 and 0.82, respectively). The final predicted surfaces of chemical concentra-

tions are shown in Fig 2.

Spatial capture-recapture

Anisotropic transformation of the detection function was supported over the default isotropic

detection function (ΔAICc = 2.1; B2 Table in S2 Appendix), indicating that Peromyscus home

ranges were generally elongated and aligned with the directionality of the canyon and orienta-

tion of trapping grids (FR = 1.7, 95% CI = 1.2–2.5; B1 Fig in S2 Appendix). A positive trap-spe-

cific behavioral response (bk) on g0 was supported (βbk = 2.0, 95% CI = 0.95–3.0), but sex

Fig 2. Spatial distributions of mercury, manganese, PCBs, and TEQs concentrations (ppm = parts per million, ppt = parts per trillion) in soil of Los Alamos

Canyon, produced from interpolation using empirical Bayesian kriging models. Figure was created using ArcGIS 10.4.1.

https://doi.org/10.1371/journal.pone.0238870.g002
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effects on g0 and σ were not well supported (βg0(sex) = -0.58, 95% CI = -1.6–0.42; βσ(sex) = -0.16,

95% CI = -0.64–0.33). Although some support existed for P. maniculatus and P. truei having

slightly smaller σ than P. boylii (βσ(PEMA) = -0.84, 95% CI = -1.3–-0.09; βσ(PETR) = -0.57, 95%

CI = -1.1–-0.06), 95% confidence intervals overlapped among species and negligible support

existed for g0 differing among species (βg0(PEMA) = 1.5, 95% CI = -0.04–3.1; βg0(PETR) = 0.47,

95% CI = -0.72–1.7). Two-class finite mixtures on g0 and σ were strongly supported (βg0(π) =

2.5, 95% CI = 1.1–3.9; βσ(π) = -1.6, 95% CI = -1.1–-2.1), indicating that non-spatial individual

heterogeneity in detection and space use existed that was not explained by sex or species.

Therefore, we retained a trap-specific behavioral response on g0 and two-class mixtures on g0
and/or σ in all inhomogeneous Poisson point process models, but excluded species and sex

effects given the nominal support for either.

The top model had an AICc weight of 0.58, whereas all five competing models (�4 ΔAICc)

had low AICc weights of 0.08–0.09 (Table 1). The two highest ranked models included density

as a homogeneous Poisson point process, whereas the four other competing models included

density as an inhomogeneous Poisson point process in which density varied as a function of

chemical concentrations in soil. Some support, although limited, existed for Peromyscus den-

sity spatially varying across the study area with mercury concentrations (βHg = -0.44, 95% CI =

-4.1–3.2), but density varying with concentrations of manganese, PCBs, or TEQs was not sup-

ported (βMn = -0.001, 95% CI = -0.01–0.01; βPCB = -0.002, 95% CI = -0.01–0.01; βTEQ = 0.001,

95% CI = -0.004–0.005). The most parsimonious top model included homogeneous density

and estimated that 29% of Peromyscus had low g0 (0.04, 95% CI = 0.01–0.13) and large σ (71

m, 95% CI = 40–128), whereas 71% had high g0 (0.31, 95% CI = 0.10–0.65) and small σ (14 m,

95% CI = 8.9–24). Given those σ estimates, we buffered all traps by 200 m, because the proba-

bility of detection at this distance was effectively zero (B1 Fig in S2 Appendix), which resulted

in a 36-ha area of integration (S; state space). Estimated community density across S was 2.9

animals/ha (95% CI = 1.6–5.1), which corresponded to a total of 104 individual Peromyscus
(95% CI = 58–183). That estimate indicated that we captured and marked 30% (95% CI = 17–

53%) of the Peromyscus community within the study area.

Table 1. Model selection of competing (�4 ΔAICc) spatial capture-recapture models that estimated Peromyscus density (D) in Los Alamos Canyon. We fit models

that included a trap-specific behavioral response (bk) on the probability of detection at the activity center of an individual (g0), and allowed g0 to vary between sexes (Sex),

among species (Species), between latent two-class mixtures (π), or to be constant (~1). We also allowed the spatial scale of detection (σ) to vary by sex, species, π, or to be

constant. Density was modeled as a homogeneous (~1) or inhomogeneous Poisson point process, the latter of which allowed the spatial distribution of animal activity cen-

ters to vary with concentrations of manganese (Mn), mercury (Hg), PCBs, or TEQs in soil. The full model selection list can be viewed in B2 Table in S2 Appendix.

Model Ka AICc
b ΔAICc

c ωi
d logLike Deviancef

D(~1) g0(~bk + π) σ(~π) F(~1) 8 860.5 0.0 0.58 –419.0 838.0

D(~1) g0(~bk) σ(~π) F(~1) 7 864.2 3.7 0.09 –422.7 845.3

D(~PCB) g0(~bk + π) σ(~π) F(~1) 9 864.4 3.8 0.09 –419.0 837.8

D(~Mn) g0(~bk + π) σ(~π) F(~1) 9 864.5 3.9 0.08 –419.0 837.9

D(~Hg) g0(~bk + π) σ(~π) F(~1) 9 864.5 4.0 0.08 –419.0 837.9

D(~TEQ) g0(~bk + π) σ(~π) F(~1) 9 864.5 4.0 0.08 –419.0 837.9

a Number of model parameters.
b Akaike’s Information Criterion corrected for small sample size.
c Relative difference between AICc of model and the highest ranked model.
d Model weight.
e log-likelihood of model.
f Model deviance = –2 × (log-likelihood).

https://doi.org/10.1371/journal.pone.0238870.t001
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Discussion

Density is a more ecologically informative demographic parameter than abundance [24, 25,

32], which prior studies that evaluated the impacts of environmental contaminants on small

mammal bioindicators recognized [16, 18, 21, 88]. Most of those studies used conventional

capture-recapture models, however, and consequently may have derived inaccurate estimates

of density [34–37]. Furthermore, because of the limitations of conventional capture-recapture

models, prior studies were forced to use a comparative experimental approach to infer poten-

tial effects of environmental contaminants on density from indirect data, without the means to

explicitly test underlying assumptions. Spatial capture-recapture models are collectively a type

of spatial point process model, so one of their primary advantages is that density can be mod-

eled as a function of spatial covariates to directly test population- or community-environment

relationships [32, 33, 35].

Sutherland et al. [21] provided the first example of the effectiveness of SCR models for esti-

mating density of a wildlife bioindicator in the context of environmental contamination.

Although the findings from that study were revealing, the authors used a traditional compara-

tive experimental approach that was predicated on the untestable assumption that in the

absence of PCBs contamination, both study areas would support the same densities of Ameri-

can mink [15, 22]. Those authors did apply SCR inhomogeneous Poisson point process models

to investigate if mink density spatially varied with distance from the pollution source, but they

did not directly model PCBs concentration on mink density. In contrast, we explicitly modeled

Peromyscus density as an inhomogeneous Poisson point process to test relationships between

density and concentrations of multiple chemicals in soil. Coefficient point estimates for all

density-chemical relationships that we analyzed suggested that Peromyscus density may have

been lower where chemical concentrations in soil were higher. Among the inhomogeneous

Poisson point process models that we fit, the most support existed for an inverse relationship

between mercury concentrations and density; mercury has been implicated in deleterious

effects observed in populations of Peromyscus and other wildlife elsewhere [89, 90]. However,

we cautiously interpret this density-mercury relationship, because the 95% confidence interval

overlapped zero, indicating that no effect was also compatible with the data. Therefore, these

results and any associated conclusions must be considered in the context of SCR model

assumptions, our model specifications, and our study design, which we discuss below [91, 92].

Accuracy of density estimated by SCR models is often dependent on the capture-recapture

survey duration [32, 93]. Most small mammal bioindicators, including Peromyscus, are r-
selected species that have high reproductive and mortality rates and generally short lifespans

compared with K-selected large mammals [94, 95]. Therefore, short survey periods should be

used for r-selected species to mitigate bias that can result from violating the demographic clo-

sure assumption of single-session capture-recapture models [32, 37]; however, the potentially

optimal survey period length for r-selected species that can produce density estimates with

both high precision and accuracy is approximately 14–30 days [93]. Relative to the life history

characteristics of Peromyscus, our five-day survey may have been too short to obtain sufficient

data for precisely estimating density-chemical relationships. This is supported by the very

large estimated coefficient of variation for all density-chemical coefficient estimates

(CV> 250%), which was reflected in the wide confidence intervals for the density-mercury

relationship. However, considering the estimated number of Peromyscus in the study area

(N = 104 individuals), we likely captured and marked 30% of the community, which is not a

small sample size. Furthermore, the number of individuals that we captured, the number of

spatial recaptures that we obtained, and our survey period length were similar to most other

capture-recapture studies of Peromyscus. For example, Linzey and Grant [16] captured an
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average of 16 individual Peromyscus during each of their three-day survey periods, Phelps and

McBee [18] captured an average of 34 individual Peromyscus during each of their five-day sur-

vey periods, and Gerber and Parmenter [78] captured an average of 37 individual Peromyscus
during each of their five-day survey periods. Nevertheless, recent studies have identified survey

durations being overly brief as a widespread and common problem with small mammal cap-

ture-recapture studies in general [93, 96–98].

Although the three grids that we collected soil samples from appeared to have covered suffi-

cient variation in the soil concentrations of chemicals, the kriging models relied on concentra-

tions obtained from just 18 composite samples. Compositing samples from multiple subgrids

may have diluted or concentrated the overall soil chemical concentrations and thus, might not

be the most appropriate collection method if the end goal is to estimate concentrations over a

broader spatial extent via kriging. However, compositing soil samples prior to chemical analy-

ses allowed for a greater generalization of chemical loads in the study area via kriging. Whether

our small sample size was sufficient for accurately interpolating values across the entire study

area is unclear; although, empirical Bayesian kriging models are typically accurate with small

datasets [57, 58] and our cross-validation results suggested that prediction accuracy for each

chemical was high [58, 62–64]. Additionally, RMSSDE and MSDE values indicated that the

kriging models accurately estimated the variance in the predictions, though nominally poorer

for mercury and TEQs. Selection of a different semi-variogram creates a unique raster to rep-

resent chemical concentrations, and although the differences among semi-variograms are typi-

cally minimal [58], selection could potentially influence quantification of density-chemical

relationships using SCR models. All semi-variograms for each chemical produced similar ras-

ters of predicted values, and many cross-validation criteria differed only slightly among semi-

variograms, suggesting negligible influences of semi-variogram selection.

The specification of our inhomogeneous density SCR models assumed that any relation-

ships between the soil chemicals and the Peromyscus community would be linear and direct

(i.e., from soil to individuals). The three species that we captured during our study all exhibit

prolific burrowing behavior and similar microhabitat selection, so this was a reasonable

assumption founded on species ecology [99, 100]; pooling data from multiple Peromyscus spe-

cies is also a very common approach for both environmental contamination and capture-

recapture studies [16, 18, 78]. Nevertheless, the influence of environmental chemicals on Pero-
myscus density could also occur through indirect pathways. For example, physiological effects

of chemical exposure on individual animals could suppress vital rates, such as survival or

reproduction, which consequently influences community abundance and density [45, 46].

Additional indirect pathways through which environmental contaminants could influence

Peromyscus density include, but are not limited to, perturbation of vegetation growth that

degrades the distribution and availability of concealing cover or food resources [101, 102], or

altering the density or spatial distribution of heterospecific resource competitors (e.g., shrews

[Soricidae spp.]; [103]).

Although SCR models account for spatial heterogeneity in detection probabilities, it is vital

to also investigate non-spatial sources of variation in detection function parameters (g0 and σ)

to improve the accuracy of estimated density [32]. The lack of support for species-specific vari-

ation in either g0 or σ strongly indicates that our density estimates were representative of a Per-
omyscus community that was comprised of multiple species with comparable space use and

detectability [80]. We also found no evidence that g0 or σ differed between the sexes, though

we acknowledge the short survey duration that resulted in a relatively small number of sex-spe-

cific spatial recaptures may have contributed to this result [69, 82, 85]. Nevertheless, our esti-

mated community density was similar to other spatially explicit estimates for Peromyscus in

locales where environmental contamination was not a known issue [78, 96, 98]. Considering

PLOS ONE Effects of soil chemicals on small mammal density

PLOS ONE | https://doi.org/10.1371/journal.pone.0238870 September 17, 2020 11 / 17

https://doi.org/10.1371/journal.pone.0238870


the uncertainty depicted by the confidence intervals for the negative density-mercury coeffi-

cient estimate, the existing concentrations of mercury in soil likely had a nominal adverse

community-level effect on Peromyscus in Los Alamos Canyon during our survey period.

Conclusions

Environmental pollution is a prominent threat to ecosystem and human health that is likely to

worsen as human populations increase in size and distribution globally. Robust analytical

methods are needed that can identify and quantify relationships between pollutants and popu-

lations or communities of wildlife bioindicators to evaluate the ecological consequences of pol-

lution and the effectiveness of remediation efforts. Our study demonstrates how SCR models

can be used in a traditional hypothesis-testing framework to evaluate biological and ecological

effects of environmental contaminants on animal density and space use. For studies similar to

ours that focus on terrestrial small mammal bioindicators, we suggest the following to attempt

to improve investigations of the impacts that environmental chemicals in soil may have on

populations or communities: 1) extend the duration of capture-recapture surveys to obtain

sufficient spatial detection data without violating the demographic closure assumption; 2)

increase the spatial intensity of non-composite soil sampling (i.e., number and extent of sam-

ples) to reduce uncertainty in kriging predictions; and 3) attempt to include heterospecifics in

the capture-recapture survey to account for possible resource/space competition. An optimal

research approach may be one that incorporates said recommendations in a comparative

experimental design, but that analyzes detection data from each site using SCR models with an

inhomogeneous Poisson point process density model to test if bioindicator densities at multi-

ple sites, or in multiple populations or communities, are directly influenced by chemical

concentrations.
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