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Abstract

High-throughput genomic technologies enable researchers to identify genes that are co-regulated with respect to specific
experimental conditions. Numerous statistical approaches have been developed to identify differentially expressed genes.
Because each approach can produce distinct gene sets, it is difficult for biologists to determine which statistical approach
yields biologically relevant gene sets and is appropriate for their study. To address this issue, we implemented Latent
Semantic Indexing (LSI) to determine the functional coherence of gene sets. An LSI model was built using over 1 million
Medline abstracts for over 20,000 mouse and human genes annotated in Entrez Gene. The gene-to-gene LSI-derived
similarities were used to calculate a literature cohesion p-value (LPv) for a given gene set using a Fisher’s exact test. We
tested this method against genes in more than 6,000 functional pathways annotated in Gene Ontology (GO) and found that
approximately 75% of gene sets in GO biological process category and 90% of the gene sets in GO molecular function and
cellular component categories were functionally cohesive (LPv,0.05). These results indicate that the LPv methodology is
both robust and accurate. Application of this method to previously published microarray datasets demonstrated that LPv
can be helpful in selecting the appropriate feature extraction methods. To enable real-time calculation of LPv for mouse or
human gene sets, we developed a web tool called Gene-set Cohesion Analysis Tool (GCAT). GCAT can complement other
gene set enrichment approaches by determining the overall functional cohesion of data sets, taking into account both
explicit and implicit gene interactions reported in the biomedical literature.
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Introduction

Microarray technologies are routinely used to examine gene

expression profiles under different experimental conditions.

However, statistical analysis of microarray experiments still

remains challenging, due in part to sensitivity (low signal to noise)

of the method as well as technical, biological and multiple testing

confounds. A large amount of effort has focused on developing

mathematical models to normalize and identify differentially

expressed genes [1]. Simulation studies can be used to measure the

performance of different statistical methods [2]. However, these

studies have limitations on sample sizes and uncertainty in degree

of conformability between stimulated datasets and real microarray

data. Jeffery and coworkers [3] compared gene sets generated by

10 different feature selection methods, for example, significance of

microarrays (SAM), analysis of variance (ANOVA), empirical

Bayes t-statistics, and found that there was a big discrepancy in

gene sets produced by different algorithms. Most importantly,

these methods did not include any functional (biological)

information to evaluate differentially expressed gene sets.

To incorporate biological information into algorithms for

identification of meaningful gene sets, most of the existing methods

utilize functional category enrichment analysis based on Gene

Ontology (GO) [4–7]. GO contains a structured, precisely defined,

controlled vocabulary for describing the role of genes and gene

products in any organism [8]. Although the standard enrichment

methods are useful to interpret the common function in a group of

genes/proteins, these methods have certain drawbacks. First, each

GO term is treated independently by these methods; hence,

associations among multiple GO terms are ignored. Second, it is

hard to evaluate the overall significance of functional cohesion within

a gene/protein group when multiple GO terms are enriched [9].

In recent years, a growing number of studies have focused on

estimating the literature-based functional coherence of gene
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groups. In 2002, Raychaudhuri [10] developed the neighbor

divergence per gene (NDPG) method, which uses natural language

processing (NLP) to extract gene information from the biomedical

literature. NPDG estimates functional cohesion by comparing the

difference between the empirical and theoretical distributions of

coherence scores using Kullback-Leibler divergence [11]. This

method was evaluated using 2,796 GO gene sets from yeast,

mouse, fly and worm. High sensitivity was obtained with each of

these organisms except worm. As pointed out by Zheng and Lu

(2007a), statistical significance calculated by NPDG may be

problematic since the divergence of Kullback-Leibler is not

normally distributed. They proposed that by association of

literature-derived protein information with biological concepts in

GO, the degree of functional similarity among protein groups can

be evaluated more accurately [12]. By estimating the mean and

variance of the coherence score from random groups of proteins,

they calculated the p-value of the observed coherence score based

on the asymptotically normal distribution function. Later,

Chagoyen et al. used the pair-wise similarities of functional

annotations from GO to calculate the coherence score of a protein

set. The significance assessment of the coherence score was

performed by measuring the functional relatedness of a given

protein set compared with another set drawn from a reference set

[13]. The latter methods have limitations imposed by GO, which

has a limited range of functional categories and is human curated.

Previously, we developed a method which utilized Latent

Semantic Indexing (LSI), a variant of the vector space model of

information retrieval, to determine the conceptual relationships

between genes from information in MEDLINE titles and abstracts

[14]. This method was shown to be robust in identifying both

explicit and implicit gene relationships. In the present study, we

developed a new method to calculate the functional coherence of

gene sets using LSI-derived similarities among the genes. Using a

Fisher’s exact test, we calculate the significance of functional

connectivity derived from literature in a given gene set compared

to that expected by chance. We conducted a large-scale evaluation

of our method against the functional gene groups in GO and

demonstrated the application of the method to microarray

expression data. Importantly, we developed a unique web tool

that can calculate the literature cohesion of gene sets in real time,

which will enable researchers to compare feature selection

methodologies and to hone down large gene sets into more

manageable sizes for further investigation.

Methods

Gene-document collection
Each gene document was constructed by concatenation of all

titles and abstracts of the Medline citations cross-referenced in the

mouse, rat and human Entrez Gene entries as of 2007. Gene

information was downloaded from the National Center for

Biotechnology and Information site (ftp://ftp.ncbi.nlm.nih.gov/

gene/DATA). PubMed IDs (PMIDs) corresponding to homolo-

gous genes were combined. Orthology data were downloaded

from Mouse Genome Informatics site. To reduce false positives,

PMIDs referring to more than 10 genes were removed as these

citations usually described genomic experiments and contained no

functional information. After filtering, there were 17,451 human

and 21,903 mouse genes in our gene document collection

(Table 1). A few genes had many abstracts, with the maximum

number reaching 2,923. The average number of abstracts for each

gene was 23.6 for human and 19.5 for mouse.

Generation of the similarity matrix
The method to calculate gene-gene similarity scores using LSI

was described by our group previously [14,15] and is summarized

briefly here. A term-by-gene matrix was created for mouse and

human genes where the entries of the matrix were the weighted

frequencies of terms across the entire collection. A reduced rank

term-by-gene matrix was generated by computing the singular value

decomposition (SVD) as described previously [15]. Genes were then

represented as vectors in the reduced rank matrix and the similarity

between genes was calculated by the cosine of the vector angles. The

higher the cosine score, the higher the association between the two

gene vectors. A cosine score of 1.0 means that the two genes have

exactly the same abstracts in our collection. This is very rare,

occurring in ,0.003% of all gene pairs in the collection. For this

study, 300 factors were used to calculate the gene-by-gene similarity

scores because it was shown to be an optimal number of dimensions

for large document collections [16]. The similarity matrices on the

GCAT website will be updated on an annual basis.

Gene Ontology information
The Gene Ontology data file (version 5.7.2) was downloaded

from http://www.geneontology.org/GO.downloads.ontology.

shtml. The gene-to-GO category association was based on the

annotation provided by Ensembl Version 42 (http://www.

ensembl.org). We focused on the GO categories that contained

5 to 1000 genes, which resulted in a total of 6681 GO categories

across the human and mouse collections.

Gene-set cohesion analysis tool
The GCAT software was implemented using a Dell X-series

server with quad-core 1.6 GHz Pentium Xeon processors and

8 GB of RAM. Python, MySQL, R and rpy (http://rpy.

sourceforge.net/) were utilized to create the web front end and

back end. Cytoscape (http://www.cytoscape.org/) was used to

create and visualize the gene network graphs. The Scriptaculous

(http://script.aculo.us/) and prototype.js javascript libraries were

used to create limited visual effects within the web browser. The

data for individual genes was obtained from the NCBI ftp site.

Results

Overview of LPv algorithm
The workflow for the literature-derived p-value (LPv) procedure

is shown in Figure 1. The method aims to determine the significance

of the functional cohesion for a given gene set compared to the

Table 1. Summary of mouse and human gene document collections.

# of genes Abstracts range Median # of abstracts Mean # of abstracts # of genes with 1 abstract

Mouse 21903 1,2923 3 19.5 6436

Human 17451 1,2923 5 23.6 4343

doi:10.1371/journal.pone.0018851.t001

Gene-Set Cohesion Analysis Using PubMed Abstracts
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cohesion of a randomly selected gene set. For testing the significance

of cohesion, we compared the observed number of gene

relationships above a cosine threshold of 0.6 in the LSI model.

This cut-off threshold was chosen based on examination of 1,000

random gene sets (containing between 50–400 genes each) from the

gene-by-gene LSI similarity matrix constructed in 2007. The

distributions of the similarity scores, which ranged from 0 to 1 for

the various sampled gene sets, are shown in Figure 2. We found that

approximately 5% (ranging from 5% to 5.8%) of the similarity

scores were above a cosine value of 0.6. Therefore, gene sets which

have many cosine scores above 0.6 would be considered functionally

cohesive. The significance of the functional cohesion was measured

by a Fisher’s exact test.

Evaluation of LPv accuracy
The GO database contains greater than 22,000 functional

classifications (GO terms) in three major categories: biological

process, cellular component and molecular function. Genes are

assigned to GO terms by human experts based on published

experimental results. We assumed that genes assigned to each GO

term share similar functions and treated them as gold standard to

evaluate the robustness of the LPv methodology. We calculated

LPv for 6,681 mouse and human GO terms that contained

between 5 and 1,000 genes (Table 2). The average number of

genes linked to each GO term for all three broad GO categories

ranged from 49 to 66. The proportion of gene sets in each GO

category which showed an LPv ,0.05 is shown in Table 2. Our

method achieved 91.3% and 91.6% accuracy for GO terms in

molecular function for mouse and human collections, respectively.

Figure 1. Work flow for Gene-set Cohesion Analysis. A gene-by-gene similarity matrix was constructed for .20,000 mammalian genes using
LSI on Medline abstracts cross-referenced in Entrez Gene (2007). The cosine similarity threshold was calculated empirically from 1000 randomly
selected gene sets so that only the top 5th percentile of edges (PE), i.e., gene relationships, were considered for the analysis. Fisher’s exact test was
performed to determine if the number of gene relationships above the threshold in a given dataset is significantly different from that which is
expected by chance. This method was evaluated by calculating the literature p-value for .6000 gene sets associated with GO terms and applied to
analysis of a microarray dataset.
doi:10.1371/journal.pone.0018851.g001

Figure 2. Distribution of cosine similarity scores for randomly
selected gene sets ranging from 50 to 400 genes. The cosine
value 0.6 (arrow) represents approximately 5% of the total number of
cosine scores in the collection.
doi:10.1371/journal.pone.0018851.g002
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In addition, 90.6% (mouse) and 89.9% (human) of the gene sets in

cellular component were found to be significantly cohesive.

However, the biological process category had the lowest

percentage (about 75%) of groups which were found to be

cohesive by our method. These results are consistent with those

reported by Raychauduri et al. [17], who used NDPG to evaluate

the functional coherence of the gene sets in each GO category.

Examination of the LPv distributions of the three main GO

categories (Figure 3) revealed that the biological process category

had many more outliers than the other two GO categories. One

possible explanation for the outlier groups may be that some

biological processes contain genes that are associated with many

different pathways in the literature, resulting in a low cosine score

with other genes. We found that the average number of abstracts

for GO terms with LPv.0.05 was 146.8 compared to 80.1 for GO

terms with LPv,0.05. Indeed, there is a positive correlation

between the LPv and number of abstracts in a gene set (Figure 4A).

In general, the smaller the LPv (high 2Log (LPv) in the figure),

fewer the number of abstracts were associated with the gene set. In

addition, we examined the correlation between the number of

abstracts and the top 10 cosine values (neighbors) for a given gene

(Figure 4B). We found that the higher the number of abstracts

associated with a gene, the lower the overall average cosine value

of its top 10 gene neighbors.

Table 3 lists the number of abstracts and the average cosine

score for the top most well-studied genes in our collection. As

expected, these well-studied genes appeared in the biological

process category more frequently than in the other two GO

categories. For example, Tnf appeared in 280 GO terms in

biological process (15% of the total biological process terms), but in

only 22 (2.4%) and 11 (2.9%) in molecular function and cellular

component, respectively. This could be one of the reasons that we

observed fewer biological process terms with significant LPvs (false

negatives) than with molecular function and cellular component

terms.

Evaluation of LPv sensitivity
To investigate the sensitivity of LPv methodology, we examined

50 manually selected genes related to three functional categories:

development, Alzheimer disease (AD) and cancer [14]. The LPv

for this 50-gene set was 0.00777, suggesting that the genes in this

set were functionally cohesive. The network graph for the 50-gene

set indicated that there were three sub-clusters containing the

genes associated with the three functional categories (Figure 5).

Interestingly, the three subsets within the 50-gene collection

produced LPv of 9.561027, 7.161028 and 0.282 for development,

AD and cancer, respectively.

The genes in both the development and Alzheimer disease

groups were highly connected, whereas the genes in the cancer

group were mostly disconnected, causing the LPv of the cancer

gene set to be insignificant. The average number of abstracts

associated with each group was 229, 243, and 439 for

development, AD and Cancer, respectively. These results indicate

that the LPv method can tolerate bias created by well-studied

genes in even small subsets of genes, since inclusion of Trp53 (and

others) in the cancer field still produced a significant LPv for the

50-gene set.

Gene-set cohesion analysis tool (GCAT)
A major goal of this study was to produce an automated and

robust method to evaluate the functional coherence of (or

literature support for) gene lists derived from genomic studies.

Thus, we developed a web tool called Gene-set Cohesion Analysis

Tool (GCAT) to enable calculation of LPv on the fly (http://binf1.

memphis.edu/gcat). Users need to simply select the organism

(human or mouse), the microarray platform (currently limited to

Affymetrix), and input the list of genes by typing or pasting either

gene symbols or Entrez Gene IDs. GCAT displays the LPv along

Table 2. Performance of LPv methodology on gene sets in
GO categories.

Mouse # of Go terms Avg # of genes LPv,0.05

biological process 1891 53.9 75.60%

cellular component 384 66.3 90.60%

molecular function 909 48.7 91.30%

Human

biological process 2046 58.7 74.40%

cellular component 424 65.8 89.90%

molecular function 1027 49 91.60%

The number of gene sets associated with GO terms along with the average
number of genes in each major branch is shown for both human and mouse
collections. The proportion of gene sets that contained an LPv,0.05 is
indicated.
doi:10.1371/journal.pone.0018851.t002

Figure 3. Box plot of LPv distributions for gene sets in the three main mouse and human GO categories.
doi:10.1371/journal.pone.0018851.g003
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with a network graph, where genes are represented as nodes and

the edges represent cosine values .0.6. GCAT also provides the

LSI similarity scores, which can be downloaded in tabular form,

between all genes in the input set. In addition, a gene annotation

table is provided, in which the gene IDs are hyperlinked to the

Entrez Gene website and the abstract number associated with

each gene is hyperlinked to PubMed website. Besides, GCAT

displays the common log-entropy terms derived from the gene

abstracts which can provide insights into biological functions of the

gene set.

Application of LPv to microarray data
Microarrays allow researchers to measure thousands of

transcripts simultaneously and to determine genes whose expres-

sion levels are significantly altered by an experimental treatment.

However, the false positive rate (FDR) can be very high for a

number of reasons, including those associated with multiple

hypothesis testing. To reduce false positives, biologist often select

differentially expressed genes (DEGs) using a combination of

arbitrary criteria such as the lowest expression p-value, highest

magnitude of change, and/or a fold change cut off of 2. However,

these selection criteria may not necessarily be biologically relevant

and could result in loss of true positives. We postulate that by using

a literature-based cohesion analysis approach, biologist should be

able to have an objective criterion to evaluate various statistical

feature selection methods and be able to arrive at a biologically

relevant gene set more effectively.

To test the utility of GCAT for microarray analysis, we used a

previously published microarray data set of interferon stimulated

gene expression in mouse embryonic fibroblasts [18]. We found

that among 5,518 genes present on the microarray, 216 genes

were differentially expressed after interferon treatment. As

expected, after multiple testing corrections [19], no significant

DEGs remained. However, manual inspection of the DEGs

revealed that at least a third of the genes were well-known

interferon stimulated genes, suggesting that multiple testing

correction is too stringent in this case. Importantly, 216 interferon

stimulated genes had an LPv,6.0610232, suggesting that they are

highly functionally related in the literature (Table 4). Genes that

were expressed greater than 2-fold had a smaller LPv (2.4610244).

Moreover, genes that were changed greater than 2-fold and had

an expression p-value,0.05 produced the smallest LPv

(1.4610263). In contrast, genes that were changed greater than

2-fold and had an expression p-value.0.05 or genes that were

changed less than 2-fold and had an expression p-value,0.05 did

not show significant literature cohesion. These results demonstrate

the utility of using an objective criteria based on functional

information in the literature to fine tune statistical analysis of high-

throughput experiments.

Next, we explored whether GCAT could be used to compare

the results of different feature extraction methods. We applied our

method to a previously published acute lymphoblastic leukaemia

(ALL) dataset including four different groups [20]. The ALL1

group contained B-cell (n = 95) and T-cell (n = 33) samples. The

ALL2 group contained samples from patients with (n = 24) or

without (n = 101) multidrug resistance. The ALL3 group con-

tained samples from patients that did (n = 65) or did not relapse

(n = 35). Finally, the ALL4 group contained samples from patients

with (n = 26) or without (n = 67) the t(9;22) chromosome

translocation. Similar to Jeffrey et al., we applied three different

methods (Welch’s t-statistics, Empirical Bayes statistics and SAM)

to the four groups [3]. Table 5 lists the LPvs of the top 100 DEGs

generated by each test statistics for each of the four datasets. As

expected, we found that different test statistics generated different

sets of DEGs (Supplementary Figure S1). For the ALL3 dataset, 63

of the top 100 DEGs identified by each test statistic were the same,

indicating that the experiments are likely to be technically and

Figure 4. Relationships between abstract counts, LPv, and
cosine scores. (A) The average number of abstracts for each gene set
in GO was plotted against the 2Log(LPv) for the group. (B) The top 10
cosine scores were averaged for each gene and plotted against the
abstract count for the gene.
doi:10.1371/journal.pone.0018851.g004

Table 3. Genes with greater than 1000 abstracts and the
average cosine scores for their top 10 gene neighbors.

Gene # of abstracts Cosine scores

Trp53 2923 0.5482

Tnf 1971 0.5772

Tgfb1 1208 0.6074

Fas 1130 0.599

Vegfa 1120 0.6478

Apoe 1110 0.594

Ifng 1106 0.6542

Il6 1056 0.6028

Lep 1054 0.6178

doi:10.1371/journal.pone.0018851.t003

Gene-Set Cohesion Analysis Using PubMed Abstracts
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biologically sound. Consistent with this observation, the LPvs for

these DEGs were very small (Table 5). In contrast, only 22 genes

out of the top 100 DEGs produced by each method were common

to either the ALL1 or ALL2 dataset. Interestingly, for each

Figure 5. A network graph representation of literature relationships among 50 manually selected genes (A). Graphs are also displayed
for functional categories: development (B), Alzheimer’s disease (C) and cancer (D) as described previously in [14]. Nodes in the graphs represent
individual genes and the edge threshold is a cosine of 0.6, which represents approximately 5% of all edges in the collection.
doi:10.1371/journal.pone.0018851.g005

Table 4. LPv for different gene lists identified by microarray
analysis.

Gene selections
# of input
genes

# of genes
with abstracts LPv

P,0.05 216 168 6.00E-32

FC.2 164 139 2.42E-44

P,0.05 & FC.2 110 93 1.37E-63

P,0.05 and FC,2 106 75 0.344102

P.0.05 & FC.2 54 46 0.197204

Differentially expressed genes were identified by a combination of fold change
or p-value cutoffs after performing a student t-test between an interferon
treated and control treated cells.
doi:10.1371/journal.pone.0018851.t004

Table 5. LPvs for gene sets identified by different feature
selection methods on four different microarray experiments
(ALL1, ALL2, ALL3, and ALL4; see text for details).

Methods ALL1 ALL2 ALL3 ALL4

Welch 1.10E-02 5.25E-08 3.48E-08 9.00E-02

Bayes 5.47E-12 1.00E+00 2.73E-14 3.00E-03

SAM 6.00E-02 1.00E+00 5.32E-07 3.00E-02

# of common genes 22 22 63 53

doi:10.1371/journal.pone.0018851.t005

Gene-Set Cohesion Analysis Using PubMed Abstracts
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dataset, one test statistic clearly out-performed the others based on

the LPv determination. The Bayes method produced biologically

cohesive gene sets for ALL1, ALL3, ALL4, whereas Welch’s t-test

produced the most cohesive gene set for the ALL2 samples. These

results demonstrate that by ranking the LPvs, feature selection

methods can be evaluated objectively.

Discussion

In a previous study, we developed a novel method to determine

the conceptual relationships between genes directly from Medline

abstracts using LSI [14]. Unlike the concept-based approach of

Schuemie et al which finds protein-protein interactions [21], LSI

defines the similarities of word usage patterns in the gene abstract

documents. Using our approach, genes/proteins can be function-

ally grouped using pairwise distances derived from the literature

based on both explicit and implicit relationships. The implicit

information extracted from biomedical literature has proven to be

very useful for knowledge discovery [22,23], particularly in

genomic applications whereby new gene associations are routinely

unveiled [24].

In the present study, LSI-derived gene-gene similarities were

used to determine a literature cohesion p-value (LPv) for gene sets.

This work is significant because it provides a robust method for

researchers to objectively evaluate the literature support for any

given gene set derived from high-throughput technologies. The

method can assist researchers in choosing appropriate feature

selection methodologies or prioritizing multiple gene lists gener-

ated by different algorithms.

The accuracy and sensitivity of LPv was evaluated using the

gene sets associated with GO terms and a human-curated dataset.

We found that most of the gene sets had statistically significant

literature cohesion, indicating that our method correctly identifies

functional coherence of gene sets. Greater than 90% of the gene

sets in the molecular function and cellular component categories

had significant LPv. In contrast, only 75% of groups in the

biological process category were significant. These results are very

similar to those obtained by Raychaudhuri et al [17], who used the

NDPG method, to assess the coherence of genes associated with

GO terms. Taken together, these results suggest that annotation of

some GO terms may not be accurate and that using literature

cohesion approaches could assist in curation of the GO database.

On the other hand, we found that the lower proportion of

significant groups in the biological process may be due in part to

the fact that many biological processes include very well-studied

genes which have multiple functions. Well-studied genes, having

many abstracts, are likely to be assigned to multiple functions and

pathways. Consequently, we found that well-studied genes

generally had low cosine scores with their top ranked neighbors

(Figure 4B). Therefore, the presence of well-studied genes in the

subset lowers the average cosine value and, consequently, lowers

the proportion of genes in the subset which have a cosine value

above the threshold of 0.6 (necessary for calculation of LPv).

Importantly, we found that Tnf (along with several other well-

studied genes) was assigned to more than 15% of the total number

of gene sets in biological process examined in this study. Thus, the

inclusion of well-studied genes in multiple biological processes

could account for the lack of literature cohesion in some of the GO

gene groups.

Although the presence of well-studied genes can negatively

impact LPv calculation, the method appears to be quite robust.

The LPv of a human-curated set of 50 genes, which included well-

studied genes such as Apoe, App, and Trp53 was statistically

significant (LPv 0.007), whereas a subset of 31 cancer related genes

had LPv of 0.282. This result suggests that cancer is generally well-

studied and that genes involved in cancer are associated with many

pathways and processes. Therefore, some caution is necessary

when interpreting LPv for gene sets which contain a dispropor-

tionate amount of well-studied genes. To provide some feedback to

the users of GCAT, we display the number of abstracts for each

gene and provide a hyperlink to PubMed.

A number of other groups have developed methods to

determine literature-based functional coherence of gene/protein

sets [9,10,12,13,17]. Zheng and Lu used GO annotation to extract

biological topics that were used to construct a protein-topic

association matrix [12]. In their study, the functional coherence

was evaluated via the closeness of the proteins in the network.

Chagoyen et al. (2008) computed the similarity scores between

genes/proteins described as vectors of GO terms [13]. Both of

these methods rely on GO annotation, which may limit the scope

of gene/protein functions. Furthermore, the information in

human-curated indices and databases may not be updated as

quickly as in the biomedical literature, which is utilized by our

method. For instance, GO analysis of the interferon dataset used

in our study identified 2 genes in MHC class II and 8 genes in

GTPase categories. However, using an LSI approach, we

identified at least one MHC II gene (H2-q7) and one GTPase

(Arf3) that was not in GO (data not shown).

Microarray experiments are complex and subject to technical

and biological variability that hinder inference analysis. Conse-

quently, different statistical procedures must be carefully consid-

ered for each microarray experiment. Numerous statistical

methods are available for identifying differentially expressed genes

[3], but each has a different set of assumptions and result in a

different set of DEGs. Relatively few methods are available to help

researchers decide if a particular statistical test is appropriate for

the microarray experiment or if it produces functionally relevant

gene sets [25,26]. We demonstrated the utility of LPv for

evaluating different analytical methods using several published

microarray datasets. With respect to the interferon dataset, we

found that the gene list corresponding to p-value,0.05 and fold

change above 2 exhibited the smallest LPv compared with the

other thresholds examined (Table 4). With respect to the ALL

datasets, we found that empirical Bayes statistics was the most

biologically (functionally) supported method for the ALL1, ALL3

and ALL4 datasets. On the other hand, Welch’s t-test was most

appropriate for the ALL2 dataset. As an extension of this

application, GCAT could easily be used to compare the

performance of different clustering algorithms. Generally, it is

hard to determine the optimal clustering solutions for microarray

experiments. Yona and colleagues proposed using internal and

external indices to determine the best clustering algorithm that

maximizes the correlation of functional links and minimizes the

error rate [27]. However, the statistical significance was not

calculated for determining the most appropriate clustering

algorithms. Our LPv analysis could be used to estimate the

significance of the functional coherence of individual clusters.

Potentially, GCAT could be adapted to rapidly prioritize different

clustering algorithms by utilizing information from the biomedical

literature.

To our knowledge, one other web tool besides GCAT is

available for estimation of statistical significance of protein-protein

networks, called Studying Networks in the Omic World (SNOW)

[28]. The main difference between GCAT and SNOW is that

GCAT uses comprehensive literature to find gene/protein

relationships whereas SNOW defines the interaction based on

five public databases. In addition, SNOW calculates several

parameters of the network derived either from the user or existing
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databases, and the significance of the network is determined via

the Kolmogorov-Smirnov test by comparing with the empirical

distribution of the network parameters.

Another program, called Gene Set Enrichment Analysis

(GSEA), determines enrichment p-values for the biological or

functional categories cataloged in various databases [25,29–32].

Subramanian et al. (2005) used GSEA to assess if genes in

functional groups occurred together near the top of a gene list

obtained from expression data. One drawback of GSEA is that it is

sensitive to the size of the gene set. In addition, GSEA does not

reflect the overall functional relationships among all genes/

proteins in the gene set and does not consider cross-talk between

pathways [33]. Therefore, GSEA cannot be used to evaluate

whether the experimental design or methodology is appropriate.

In contrast, our LPv method can determine the overall functional

coherence of a gene set which may span multiple pathways or

classifications. The functional groups in GSEA are drawn from

different human-curated databases, which can have a number of

limitations such as sparsity, knowledge lag-time, and limited

vocabularies. Moreover, these databases contain only explicitly

linked information, which ignore implied relationships and new

discoveries. Utilization of an LSI approach on biomedical

literature circumvents many of these limitations. For instance, in

the interferon example mentioned above, our LSI approach

identified one additional GTPase along with three GTPase

regulators that were not in GO (data not shown). Similarly, LSI

identified one additional MHC II class protein along with four

regulators of MHC proteins that were not in GO (data not shown).

Including regulators of GTPases or MHC class proteins has

important functional significance and should be included in gene

set analysis and functional cohesion determinations.

Perhaps the biggest statistical challenge that faces microarray

studies is the propensity for a high FDR previously defined as false

discovery rate caused by multiple hypothesis testing. Current FDR

adjustment strategies are dependent on the magnitude of

differentially expressed genes, gene expression variability, and

sample size [34], and they are often too stringent, resulting in a

large number of false negatives. For instance, the application of

various FDR adjustment procedures to the interferon stimulated

gene set resulted in the loss of all true positives (Table 4).

Importantly, the application of LPv showed a very high degree of

functional cohesion (LPv 6.0610232) in the small gene set. The

availability of GCAT will provide an objective measure to evaluate

the appropriateness of various FDR adjustment methods.

Ultimately, it would be very useful to incorporate LSI-derived

literature similarities, perhaps as priors in a Bayesian model, to

adjust the FDR for microarray datasets. Taken together, GCAT

provides a unique tool for genomic researchers to objectively

determine the most appropriate analytical approaches for their

particular experimental system.

Supporting Information

Figure S1 Venn Diagram of differentially expressed
genes (DEGs) generated by three different statistical
tests on four different microarray datasets: ALL1 (A),
ALL2 (B), ALL3 (C) and ALL4 (D).
(TIF)
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