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Abstract

The rapid accumulation of sequenced plant genomes in the past decade has out-

paced the still difficult problem of genome-wide protein-coding gene annotation. A

substantial fraction of protein-coding genes in all plant genomes are poorly anno-

tated or unannotated and remain functionally uncharacterized. We identified unan-

notated proteins in three model organisms representing distinct branches of the

green lineage (Viridiplantae): Arabidopsis thaliana (eudicot), Setaria viridis (monocot),

and Chlamydomonas reinhardtii (Chlorophyte alga). Using similarity searching, we

identified a subset of unannotated proteins that were conserved between these

species and defined them as Deep Green proteins. Bioinformatic, genomic, and struc-

tural predictions were performed to begin classifying Deep Green genes and pro-

teins. Compared to whole proteomes for each species, the Deep Green set was

enriched for proteins with predicted chloroplast targeting signals predictive of photo-

synthetic or plastid functions, a result that was consistent with enrichment for day-

light phase diurnal expression patterning. Structural predictions using AlphaFold and

comparisons to known structures showed that a significant proportion of Deep

Green proteins may possess novel folds. Though only available for three organisms,

the Deep Green genes and proteins provide a starting resource of high-value targets

for further investigation of potentially new protein structures and functions con-

served across the green lineage.
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1 | INTRODUCTION

The genome sequencing revolution of the past two decades has

removed a major barrier to identifying and describing the genetic

toolkits used by green lineage organisms. The number of sequenced

plant genomes is growing rapidly, but the resources for comprehen-

sive, experimental structural and functional protein annotation are lag-

ging (Ellens et al., 2017). Homology-based annotations are a simple

means of predicting protein function in the absence of any other func-

tional data. In homology-based annotations, new sequences are

searched for similarity to proteins in other species, some of which

may already have known functions that may be assigned to the newly

predicted protein “by proxy.” It is generally assumed that conserva-

tion at the sequence level implies conservation of function, though

this correlation is imperfect (Blaby-Hass & de Crecy-Lagard, 2011).

New sequences can also be searched for the presence of conserved

domains using sensitive Hidden Markov Models (HMM) and/or multi-

ple sequence alignments (Soding, 2005). The Protein ANalysis

THrough Evolutionary Relationships (PANTHER), Protein Families

(Pfam), InterPro, and Clusters of Orthologous Groups of proteins

(COG) and the eukaryote-specific version EuKaryotic Orthologous

Groups (KOG) are powerful classification tools that leverage growing

sets of data to improve annotation based on sequence similarity

(Blum et al., 2020; Bolger et al., 2017; El-Gebali et al., 2018; Finn

et al., 2016; Koonin et al., 2004; Mi et al., 2012, 2016; Tatusov

et al., 2003). The above approaches will identify functions and/or

structural domains for around half of all proteins in newly sequenced

plant genomes, with some variation dependent on genome size and

complexity as well as taxonomic position (Hanson et al., 2010). Even

the well-annotated genomes from budding yeast and humans still con-

tain approximately 30% unannotated proteins, and 30–40% of these

unannotated proteins (�10% total) are likely to have an uncharacter-

ized catalytic function (Ellens et al., 2017). Likewise, every genome

contains predicted proteins that are unannotated because they either

have no similarity to characterized proteins or have limited informa-

tion available beyond the possible presence or absence of domains.

Unannotated proteins have typically accounted for approximately 40–

60% in plants and algal genomes (Berardini et al., 2015; Blaby-Haas &

Merchant, 2019; Niehaus et al., 2015) with functional assignments

slowly increasing. The potential for the discovery of new structures,

catalytic activities, and biological functions among unknown proteins

is enormous, but these proteins also represent a huge challenge due

to their overwhelming numbers (Fox et al., 2008; Hanson et al., 2010).

Functional annotation of plant proteins lags behind that of ani-

mals, fungi, and prokaryotes though this situation is improving with

dedicated portals and tool development on platforms such as Phyto-

zome, PLAZA, and Gramene (Goodstein et al., 2012; Proost

et al., 2015; Tello-Ruiz et al., 2018; Van Bel et al., 2022). Currently,

approximately 12% of predicted proteins have an experimentally

determined structure or structural data derived from related proteins

in the Protein Data Bank (PDB) for Arabidopsis thaliana, compared to

more than 25% in Saccharomyces cerevisiae and more than 30% in

Homo sapiens (Callaway, 2022).

One approach for prioritizing unknown/unannotated genes and

proteins for further functional characterization is to demand sequence

conservation across one or more taxa (aka phylogenomics). While this

does not directly help with annotation, it ensures that information

obtained about that gene or associated protein from one species will

be impactful as it can likely be applied across species. Phylogenomics

approaches have been used successfully to obtain new biological

information in multiple contexts. For example, the GreenCut proteins

were defined based on conservation in multiple photosynthetic spe-

cies, but not in non-photosynthetic eukaryotes (Karpowicz

et al., 2011; Merchant et al., 2007). Indeed, many of the original

unknowns in the GreenCut list were found to have key functions in

photosynthetic processes (Arthur et al., 2019; Wakao et al., 2021).

The criteria used to define GreenCut proteins provided a strong filter,

but it may have also excluded proteins with faster divergence times.

Here we took a similar but less stringent approach to create the

Deep Green list of unannotated green lineage proteins. The Deep

Green list is based on identification and curation of conserved

unknown proteins in three green lineage (Viridiplantae) model organ-

isms; A. thaliana, Chlamydomonas reinhardtii, and Setaria viridis, and is

significantly expanded compared with the GreenCut protein list. We

report the curation and preliminary characterization of Deep Green

proteins and genes using different informatics tools and published

data sets. These analyses revealed additional similarities among Deep

Green proteins in diurnal expression patterning and in predicted local-

ization. Finally, structural predictions indicated that many of the Deep

Green proteins may have novel tertiary folds.

2 | RESULTS AND DISCUSSION

Our objective was to identify and begin characterizing a set of poorly

annotated or unannotated conserved green lineage proteins using

genetically tractable reference species; A. thaliana (Arabidopsis),

S. viridis (Setaria), and C. reinhardtii (Chlamydomonas). Arabidopsis has

the best studied and well-annotated genome of any angiosperm spe-

cies (Berardini et al., 2015), while Setaria (green foxtail millet) is an

emerging model C4 grass and bioenergy feedstock model that has a

small stature, short generation time, and is genetically tractable (Hu

et al., 2018; Huang et al., 2016; Pant et al., 2016; Zhu et al., 2017).

Together, Arabidopsis and Setaria represent two major branches of

angiosperms, eudicots, and monocots, respectively. The unicellular

green alga Chlamydomonas is a well-established model for investigat-

ing cellular processes in photosynthetic eukaryotes due to its fast

growth rates, haploid genome, low levels of gene duplication (see

below), and availability of high-throughput genetics and genomics

tools (Sasso et al., 2018).

2.1 | Identification of conserved protein families

To reduce search complexity for unknown proteins, we developed a

down-selection strategy (Figure 1a). The first step involved grouping
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the predicted proteins in each species into families with highly similar

sequences (>30% sequence identity, >50% overlap), while at the same

time merging annotations among family members (Tables S1–S3). This

paralog grouping reduced sequence search space from 27,654,

38,334, and 17,741 predicted primary proteins to 13,058, 19,951, and

14,076 in Arabidopsis, Setaria, and Chlamydomonas, respectively

(Figure 1b), and ensured that unannotated members of a paralog fam-

ily were not included when one of their family members was already

annotated. The h3-cd-hit algorithm, which was used for grouping into

families with one or more members, also selected a lead protein in

each multi-protein cluster, which served as a representative for simi-

larity searching between proteomes of the three focal species

(Tables S4–S6).

The next step was identifying protein families that were shared

between the species. Using the basic local alignment search tool for

protein (BLASTP) among lead proteins from each species, the top

high-scoring segment pair (hsp) was identified, and those that passed

a similarity threshold (e-value cutoff threshold of 10�3; >40% of the

sequence length aligned [qcovs] for at least one of the two proteins)

were used to further group proteins into superfamilies shared across

two or more of the focal species (Table S7). Two-way comparisons of

protein family sizes also revealed the relative compactness of the

Chlamydomonas protein family sizes, which are typically single copies

compared with land plant families that often have multiple paralogs

(Figure 2). We compared our inter-specific homolog search process to

results obtained from INPARANOID (Remm et al., 2001) and Ortho-

Finder (Emms & Kelly, 2019) (Figure S1). Our method showed compa-

rable results, though there were instances where either method did

not group the same proteins with the same orthologous groups or

did not identify an ortholog (Tables S8–S10). Orthofinder is one of

the most sensitive methods for identifying ortho groups and included

85 conserved unknown proteins missing from our Deep Green list. An

additional eight conserved unknown proteins were found by INPARA-

NOID but not Orthofinder. Of these 93 proteins not included in our

list, 23 were false positives as they are in families with members that

have known functions and 62 were rejected due to short coverage

length (qcovs) for the region of similarity (<40% for one of the 2 genes

being compared). The remaining eight were not missed by our method

but rather had different best homologs with higher match scores

(Table S10). Conversely, our custom method identified many matches

that were missed by OrthoFinder or INPARANOID (Figure S1). Overall

the three methods were largely in agreement and the differences

among them represented less than 10% of the total families.

2.2 | Identification of unannotated/unknown
proteins

For each protein family, Phytozome annotations were collected,

merged, and used to identify unannotated or poorly annotated fami-

lies (Figure 1a). We defined poorly or unannotated proteins in these

species as those without any annotation in the Phytozome database

(Goodstein et al., 2012), and those with only limited annotation

(Tables S4–S6). If a family in one species was well annotated or char-

acterized, its conserved counterparts in the other two species were

also considered annotated and removed from consideration. There

was some subjectivity regarding proteins with existing but limited

annotation, andwe focused our efforts on those where the domain

F I GU R E 1 (a) Deep Green down-
selection flowchart, (b) number of proteins in
each species at each of the down-selection
steps, (c) Venn diagram showing overlaps
between conserved proteins, which define the
Deep Green set.
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F I GU R E 2 Comparison of protein family sizes in (a) Arabidopsis and Setaria, (b) Chlamydomonas and Setaria, and (c) Chlamydomonas and
Arabidopsis. Insets show in greater detail families containing 25 or fewer proteins or those containing greater than 300 members. Axes indicate
the number of proteins in a family and color scale denotes the number of families at each position in the graph. For example, the darkest point in
each graph (1:1) represents >1,000 protein families with a single family member in each of the two species.
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was small and the region of similarity extended beyond that small

domain. If the definition line (defline) was blank or contained the

terms “unknown,” “undefined,” “uncharacterized,” “hypothetical,”
“domain of unknown function,” “expressed protein,”
“transmembrane,” “function unknown,” “predicted protein” and

“conserved in plant or green lineage,” “anykrin,” “fbox,” “tetra- or

penta- tricopeptide,” the family was retained. We also incorporated

proteins from previously compiled lists of unannotated Arabidopsis

proteins (Cheng et al., 2017) (https://conf.phoenixbioinformatics.org/

pages/viewpage.action?pageId=22807120).

The conserved unknown proteins within each list were further

curated by manual inspection of annotations and by searching for the

protein or gene IDs in publications. If a protein had been functionally

characterized (e.g., published mutant phenotype) it was removed from

the list. Manual searching for ambiguous or poor-quality annotations

among the lists of annotated clusters (e.g., Arabidopsis clusters 7,885

and 9,084, which were only annotated as “plant/protein”) was also

done to enable the inclusion of proteins that did not fit the defined

criteria above. In parallel, we updated the GreenCut2 protein list with

new gene IDs based on the Chlamydomonas v5.5 genome assembly

and by removing those in the list that had been characterized since

publication (Arthur et al., 2019; Karpowicz et al., 2011). The remaining

204 uncharacterized GreenCut2 proteins were merged into the final

list of unannotated proteins. This final manual curation led to 3,521,

9,610, and 5,188 uncharacterized or poorly characterized families in

Arabidopsis, Setaria, and Chlamydomonas, respectively (Figure 1b).

Finally, we sorted the unknown protein lists to identify overlaps

between each of the species (Figure 1c, Tables S4–S6). Criteria for

inclusion in the Deep Green list was the presence of a homolog in

Chlamydomonas, as well as in at least one of the two land plant spe-

cies. As expected, most of the list members had homologs in both

plant species since the latter two diverged from each other much

F I GU R E 3 Predicted protein localization
for (a) Arabidopsis, (b) Setaria, and
(c) Chlamydomonas. Predictions for
Arabidopsis and Setaria were done using
WoLFPSORT. Predictions for
Chlamydomonas were done using Predalgo,
which was trained on Chlamydomonas.
Numbers in parentheses for the unknown
and Deep Green protein sets are the
expected number using Fisher’s Exact Test
(background size 13,058, 19,952, and 14,076
for the 3 species, respectively) based on the
total number of proteins and their predicted
localization. Significant enrichment or
depletion (*FDR corrected p-value < .05) is
indicated. Cellular localization abbreviations:
chlo, chloroplast; cyto, cytosol; extr,
extracellular; mito, mitochondria; nucl,
nucleus; plam, plasma membrane; vacu,
vacuole.
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more recently than their common ancestor with Chlamydomonas, and

any missing proteins were likely due to gene loss in one of the two

land plants. The larger group of unknown proteins shared just

between Arabidopsis and Setaria is also of interest but was not fur-

ther characterized here.

2.3 | Characterization of unknown and Deep
Green proteins

We interrogated the Deep Green list in several ways to provide pre-

liminary information on potential functions. Predicted subcellular tar-

geting for each Deep Green protein was compared with that of the

entire predicted proteome for each species using Wolf P-Sort (Horton

et al., 2007) for plant proteins and Predalgo (Tardif et al., 2012) for

Chlamydomonas. Deep Green proteins in all three species were pre-

dicted to be strongly enriched for chloroplast targeting, and the plant

members of this set were also depleted for nuclear targeting

(Figure 3). Importantly, the strong chloroplast localization enrichment

for predicted proteins in each species was not seen in the set of all

unknown proteins where there was just a slight enrichment. These

findings suggest that there are a significant number of conserved pro-

teins with chloroplast functions that have yet to be characterized.

Deep Green and unknown proteins were also significantly enriched in

proteins predicted to contain one or more transmembrane domain(s)

as compared to all predicted protein families (Figure S2).

We next performed co-expression analysis for Chlamydomonas

Deep Green genes using published transcriptome data sets. An

important resource was a previously described high-resolution diurnal

data set for synchronized Chlamydomonas cultures (Zones

et al., 2015). In that study, around 80% of genes with detectable

expression (�12,000) showed strong periodic diurnal or cell-

cycle-controlled expression patterns (Figure 4a). Genes coding for

the Deep Green proteins showed higher overall average expression

levels compared with all expressed genes of 3.63 versus 1.91

log2RPKM, respectively (Figure 4b). We also investigated the distri-

bution and enrichment of Deep Green genes in 18 diurnal clustered

and unclustered expression groups and found them to be significantly

over-represented in clusters 2, 4, 6, and 7, which all have peak

expression in the light phase when most of the chloroplast or

photosynthesis-related genes are also expressed (Figure 4c,

Figure S3). Deep Green genes were also significantly over-

represented in the non-differentially expressed cluster

(i.e., constitutively expressed genes) and are under-represented in the

non-expressed group (FPKM<1 at all time points). Finally, Deep

Green genes were also significantly under-represented in the dark

phase clusters 13 and 15, which are enriched for cell motility and

protein post-translation modification, respectively. These results,

combined with the enrichment for Deep Green proteins targeted to

the chloroplast (Figure 3), suggest that approximately 60% of Deep

Green genes may have important fundamental roles in chloroplast

function or biogenesis.

F I G U R E 4 Relative expression levels
and diurnal expression patterning of Deep
Green genes. (a) Expression heatmap of
differentially expressed genes in diurnally
synchronized cultures as described
previously (Zones et al., 2015, reproduced
with permission from the authors).
(b) Average transcript abundance of Deep
Green genes in the diurnal transcriptome
compared to all genes (p-value = 3.0 e-37).

(c) Enrichment of Deep Green genes in
18 diurnal expression clusters shown in
panel A with peak expression times shown
in the same order. Non-differentially
expressed (NDG), and unexpressed (UEG)
groups in the diurnal transcriptome are on
the right side. Significant enrichment or
depletion determined by Fisher’s Exact Test
(background size 17,737) is indicated (*FDR
corrected p-value < .05).
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F I GU R E 5 Deep Green genes are significantly enriched for heat-inducible genes in Chlamydomonas. (a) Differentially expressed Deep Green
genes during and after heat treatments (35 �C or 40 �C) described in Zhang et al. (2022). Deep Green genes with a log2(foldchange) ≥ 1 and an
FDR corrected p-value < .05 at a minimum of one-time point during heat treatment of 35 �C or 40 �C or during recovery were identified as heat-
inducible genes (HIGs) or recovery inducible genes (RIGs), respectively. (b) Heatmaps of differentially expressed Deep Green gens during and after
heat treatments. Color bars represent log2(foldchange) of transcripts as compared to the preheat time point, with red colors for up-regulation and
blue colors for down-regulation, white color for no differential expression. The black solid line separates the 35 �C and 40 �C treatments. The
black dashed lines indicate the end of 24 h heat treatments. Time points indicate the length of time at the respective temperature starting from
0 hours (h) when the sample had reached the target (35 �C or 40 �C) or recovery (25 �C) temperature. Each horizontal row represents a Deep
Green gene. (c–f) Deep Green genes were significantly enriched for HIGs during (c, d) and RIGs after (e, f) heat treatments (Fisher’s Exact Test,
background size 15,541, *p-value < .05). Exp, expected overlapping numbers based on random chances. (e, f) C. reinhardtii Deep Green genes
were significantly enriched for RIGs after 40 �C heat treatment, (Fisher’s Exact Test, background size 15,541, *p-value < .05). Exp, expected
overlapping numbers based on random chances.
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We also examined the expression of Chlamydomonas Deep Green

genes in a set of data that identified genes upregulated during and

recovery from heat stress (Zhang et al., 2022). Deep Green genes were

identified in transcriptome data of wild-type Chlamydomonas cells in

response to 24 h high-temperature treatments of 35 �C or 40 �C fol-

lowed by recovery at 25 �C (Figure 5). Of the Deep Green genes pre-

sent in the RNA-seq dataset, 130 (29%) and 284 (62%) were

significantly up-regulated during heat treatments (heat-induced genes,

HIGs) and recovery phase (recovery-induced genes, RIGs), respectively

(Figure 5a). Among them, 83 (18%) were significantly up-regulated

during both heat treatment and recovery while only 47 (10%) were

up-regulated during heat treatments but not during the recovery

phase. For the Deep Green genes that were represented in the HIGs

and RIGs, expression was much stronger in the 40 �C treatment than

in the 35 �C treatment suggesting a connection between heat stress

response and Deep Green gene function (Figure 5b). In the 40 �C heat

stress experiment, more than 50% of the heat-inducible Deep Green

genes changed their expression immediately in the first 2 or 4 h.

Finally, we looked at enrichment of Deep Green genes among HIGs

and RIGs from the 35 �C and 40 �C experiments and found significant

over-representation for HIGs from both the 35 �C and 40 �C high-

temperature treatments (Figure 5c,d), which suggests conservation of

temperature responsive genes in the green lineage. In contrast, Deep

Green genes were enriched for RIGs after 40 �C but not 35 �C heat

treatments (Figure 5e,f), suggesting some Deep Green genes may have

potential functions in recovery from acute heat stress.

As a more general test of co-expression, we examined the distri-

butions of Deep Green genes in ChlamyNET, a web-based tool to

explore gene co-expression networks based on published transcrip-

tome data (Romero-Campero et al., 2016). ChlamyNET has 9 major

co-expression clusters among 9,171 Chlamydomonas genes and cap-

tures co-expression relationships established under 25 different

growth conditions. Among all 464 Chlamydomonas Deep Green

genes, 240 are also represented in ChlamyNet. Deep Green genes

were significantly enriched in clusters containing proteins associated

with protein assembly and degradation and translation and lipid

metabolism in the co-expression network (Figure 6). Both of these

ChlamyNet clusters with over-representation of Deep Green genes

were themselves over-represented for light phase or light–dark transi-

tion phase genes as previously defined (Matt & Umen, 2018; Zones

et al., 2015) (Figure S4). Taken together, our results suggest conserved

but unexplored functions for many Chlamydomonas Deep Green pro-

teins in photosynthetic biology and stress responses.

We also performed enrichment testing of Deep Green genes from

Arabidopsis by making use of published transcriptome data from a

study on responses to combinations of stresses (Rasmussen

et al., 2013). Under the combined stress conditions, which included

salt, cold, heat, high light, and flg22 peptide treatment (a stimulator of

pathogen responses), nine significant co-expression modules were

defined. Arabidopsis Deep Green genes were enriched in module

2 (p-value = .027), which shows association with both single abiotic

stresses and combined abiotic stresses. To examine the diurnal

expression pattern of Arabidopsis Deep Green genes, we interrogated

a microarray data set (Blasing et al., 2005) since we could not find a

publicly available Arabidopsis diurnal data set from an RNA-seq exper-

iment. The microarray data had a much smaller dynamic detection

range than a typical transcriptome study, and thus there were fewer

DEGs in Arabidopsis than in the Chlamydomonas diurnal data. We

grouped all the DEGs (2342) into 12 clusters based on gene expres-

sion patterns. The low number of DEGs in each Arabidopsis cluster

limited the statistical power of finding enrichment among the Deep

Green subset of genes, but we noted that cluster 2, which peaked

during the light phase, had the strongest enrichment of Deep Green

genes (p-value = .068) (Figure S5).

2.4 | Structural properties of Deep Green proteins

Tertiary structures for each Deep Green protein were predicted using

AlphaFold v2.1 (Jumper et al., 2021) and are available as the Deep

Green protein set (https://data.nrel.gov/submissions/216; DOI: 10.

7799/1970473) (Figure 7). Predicted structures for all proteins in the

larger unannotated/unknown protein set for each organism were also

deposited. Deep Green proteins and proteins in the unknown sets

with predicted local-distance difference test (pLDDT) confidence

score higher than 50 (1,338 from among the three species in the Deep

F I G U R E 6 Distribution of Deep
Green genes in the ChlamyNet
cluster network. Two-dimensional

graph showing gene expression
clusters that are color-coded, with
each point representing a gene in
ChlamyNet whose subcluster
enrichment profile is shown in the
color key. Deep Green genes are
circled, and the two large subclusters
with enriched representation of Deep
Green genes are demarcated by
shaded ovals.
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Green protein set and 2,568, 6,764, 3,221 in the unknown sets for

Arabidopsis, Setaria, and Chlamydomonas, respectively) were selected

to perform structural matching in the Protein Data Bank (PDB) using

Foldseek (van Kempen et al., 2022) (Tables S11, S12). Foldseek cre-

ates a template modeling (TM) score between 0 and 1 that reflects

structural differences between an input query protein and its best

structural match in PDB. TM scores below .5 indicate significantly dif-

ferent structures while those close to 1 are near perfect matches. The

TM score distribution between the predicted tertiary structures and

extant protein models in the PDB showed 777 out of 1,338 (58.1%)

Deep Green proteins from all three species (268 out of 455 for

Arabidopsis, 220 out of 381 for Setaria, and 289 out of 502 for

Chlamydomonas) to have TM scores less than .5, a common threshold

for protein structural comparison, and therefore are likely to have

structures with novel folds (Xu & Zhang, 2010) (Figure 8a). In addition,

9 selected Deep Green proteins having potentially novel folds showed

high structural similarity among the three interspecific homologs

(Table 1, Figure 8b). Among the larger functionally unannotated

protein set in each organism, 1,304, 3,118, and 2,425 proteins in

Arabidopsis, Setaria, and Chlamydomonas, respectively had a TM-

score < .5 suggesting novel folds. Finally, approximately 60% of the

Arabidopsis proteome currently has either experimentally determined

structures or structures through association with related proteins in

the PDB (12%), with the remaining majority (48%) having been pre-

dicted using AlphaFold (https://alphafold.ebi.ac.uk/)(Callaway, 2022).

To better understand the structural complexity of the Deep

Green protein set, two measurements describing order versus disor-

der were used. IUPred3 predicts the likelihood of individual residues

being in a structured region based on thermodynamic properties of

each residue (Erdos et al., 2021) (Figure 9a). An alternative predictor

for disorder is the percentage of alanine (A), glycine (G), and proline

(P) (%AGP) in each region of a protein (Cock et al., 2009) (Figure 9b).

The distribution of the percentage of disorder values for the Deep

Green proteins in each of the three organisms indicates that the

Deep Green proteins have higher representation at lower percentage

disorder values and lower representation at higher percentage disor-

der values compared to all proteins suggesting they are overall more

ordered than average (Figure 9a). The %AGP for the Deep Green pro-

teins also reflected less disorder than that for the set of all predicted

(Figure 9b). We also note, as previously observed (Basile et al., 2017),

a correlation between GC content in each of the three genomes and

the overall amount of proteome structural disorder predicted from %

AGP since the three AGP codons are represented by GC-rich triplets.

Chlamydomonas has the greatest amount of disorder in its predicted

proteome and the highest genomic GC content (66%), while Arabidop-

sis has the lowest predicted disorder and the lowest GC content

(36%) with Setaria in between (46% GC). Nonetheless, within each

species, the Deep Green proteins were predicted to be more struc-

tured than average proteins.

3 | SUMMARY AND PERSPECTIVES

The goal of this study was to identify conserved unknown proteins in

genetically tractable green lineage representatives to enable follow on

studies aimed at assigning function to the large fraction of proteins

currently uncharacterized. As a first step in this direction, stable

structures for the Deep Green proteins were predicted, and, excitingly,

many did not have significant matches in the PDB, meaning that they

likely represent new families of structural folds, which were partly

validated by the observed agreement found between predicted

structures of Deep Green orthologs in the three species from which

they were selected. Using only three species may miss some proteins

conserved across the greater green lineage, however, the conservation

of Deep Green proteins implies that they may encode important

agronomic traits. For example, 4 Setaria loci (Sevir.1G224300,

Sevir.5G282600, Sevir.5G335650, Sevir.9G583700) identified as

being linked to temperature and precipitation extremes (Mamidi

et al., 2020) and 107 Setaria genes whose expression changed in

response to aphid infection (Dangol et al., 2022) were part of our

Setaria Deep Green protein set and are excellent candidates for

F I GU R E 7 Average local-distance difference test (pLDDT) scores
for Deep Green protein structures predicted using AlphaFold v2.1 for
(a) Arabidopsis, (b) Setaria, and (c) Chlamydomonas. Scores >90 (blue
dashed line) are considered to be highly accurate. Scores between
90 and 70 (red dashed line) are considered to indicate a generally
correct backbone structure. Scores between 70 and 50 are
considered to be low confidence.
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further functional characterization. The inclusion of the alga Chlamy-

domonas provided a strong filter for identifying deeply conserved pro-

teins and against proteins that arose more recently in angiosperms or

that evolved rapidly, and thus associated many unknown proteins with

multiple paralogs from plants that had a single copy or low copy num-

ber paralogs in Chlamydomonas (Figure 2). Our search not only cap-

tured previously identified GreenCut2 proteins but expanded the list

of unknowns to 464 genes (2.3-fold of the unknowns in GreenCut2).

F I G UR E 8 Identifying Deep
Green proteins with novel structural
folds. (a) TM-scoreP distributions are
shown for the best match in the
protein data Bank (PDB) for each
predicted Deep Green protein
structure, with data for each species
identified in the legend. A TM-scoreP

below .5 is considered a new fold.
(b) Top and bottom boxes show
structural predictions for two
separate Deep Green protein families
with novel structures. Ribbon
diagrams show secondary structures.
Best TM-scores for PDB matches are
shown by TM-scoreP and matches
between Deep Green homologs are
shown by TM-scoreH compared to
the Arabidopsis structure.

T AB L E 1 TM-scoreH for interspecific Deep Green protein structures having a potentially novel fold. Arabidopsis versus Setaria (Ara-Set),
Arabidopsis versus Chlamydomonas (Ara-Chl), and Setaria versus Chlamydomonas (Set-Chl).

Arabidopsis Setaria Chlamydomonas

TM-scoreH

Ara-Set Ara-Chl Set-Chl

AT2G41770.1 Sevir.3G262100.1.p Cre06.g260650.t1.1 .708 .446 .487

AT1G28140.1 Sevir.9G010200.1.p Cre04.g228450.t1.2 .847 .781 .794

AT1G74440.2 Sevir.6G164500.2.p Cre12.g499650.t1.2 .822 .838 .680

AT3G28720.2 Sevir.4G242300.1.p Cre02.g081650.t1.2 .826 .774 .649

AT5G11960.1 Sevir.5G293000.1.p Cre10.g419700.t1.1 .913 .732 .650

AT1G21370.1 Sevir.7G112400.1.p Cre02.g116000.t1.1 .795 .533 .452

AT1G04190.1 Sevir.3G398100.1.p Cre02.g106850.t1.2 .797 .532 .951

AT2G15240.1 Sevir.2G146900.1.p Cre06.g250350.t1.2 .926 .925 .659

AT3G60810.1 Sevir.9G003500.1.p Cre11.g468750.t1.2 .722 .734 .681
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The Chlamydomonas Deep Green genes are good future targets for

functional genomics studies since there are reverse genetics resources

available including an indexed mutant library (Li et al., 2016) and gene

editing tools (Ferenczi et al., 2017) to enable rapid functional charac-

terization. In summary, the Deep Green gene/protein list that has been

created and characterized here will be an impactful starting point for

applying functional genomics and structural studies that will help shed

light on unexplored areas of biology in photosynthetic eukaryotes.

4 | MATERIALS AND METHODS

4.1 | Datasets

Current protein lists for Arabidopsis, Setaria, and Chlamydomonas

were downloaded from Phytozome 13 (https://phytozome.jgi.doe.gov/

pz/portal.html). The files downloaded and used in our analysis were:

Arabidopsis v447_Araport11: Athaliana_447_Araport11.annota-

tion_info.txt Athaliana_447_Araport11.define.txt.

Athaliana_447_Araport11.protein_primaryTranscriptOnly.fa.

Setaria v2.1: Sviridis_500_v2.1.annotation_info.txt.

Sviridis_500_v2.1.defline.txt.

Sviridis_500_v2.1.protein_primaryTranscriptOnly.fa.

Chlamydomonas v5.6: Creinhardtii_281_v5.6.annotation_info.txt.

Creinhardtii_281_v5.6.defline.txt.

Creinhardtii_281_v5.6.description.txt.

Creinhardtii_281_v5.6.protein_primaryTranscriptOnly.fa.

For the Arabidopsis protein set, Araport11 was chosen over

TAIR10 because it is a comprehensive re-annotation of the Col-0

genome using 113 public RNA-seq data sets and other annotation

contributions from the National Center for Biotechnology Information

(NCBI), Uniprot, and labs conducting Arabidopsis research (https://

www.araport.org/data/araport11). The initial, primary transcript-only

protein lists contained 27,654, 38,334, and 17,741 proteins for

Arabidopsis, Setaria, and Chlamydomonas, respectively.

4.2 | Protein family clustering and ortholog
analysis

To reduce the overall number of proteins and generate a non-

redundant protein set, the three-step hierarchical clustering algorithm

F I GU R E 9 Distributions of
(a) predicted % disorder or (b) % residues
correlated with disorder, alanine, glycine,
and proline (AGP). Each panel shows
distribution of all predicted primary
proteins in the indicated species and the
subset of Deep Green proteins including
the mean % value positioned near the
respective dataset. *p-value < .05.
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Cluster Database at High Identity with Tolerance (cd-hit, h3-version;

http://weizhong-lab.ucsd.edu/webMGA/server/) was used on the

protein list derived from the primary transcript only lists from each

of the three organisms to identify those proteins that cluster

together with ≥30% primary sequence identity to group closely

related protein families with a representative sequence (Huang

et al., 2010). To identify orthologs, proteins in each organism were

searched against each other using BLASTP to identify those proteins

with an e-value cutoff of 10�3 and a qcovs score ≥40% using both

BLOSUM 45 and 62 matrices (Altschul et al., 1990). Orthologs

were further identified using INPARANOID (Remm et al., 2001)

and OrthoFinder (v2.5.5) using the default settings (Emms &

Kelly, 2019).

4.3 | Protein localization prediction

To characterize the functionally unknown protein sets, analyses of the

primary amino acid sequences were performed. Intra- and extra-

cellular localization and signal peptide cleavage sites were predicted

using TargetP 2.0 (Armenteros, Salvatore, et al., 2019), WoLF PSORT

(Horton et al., 2007), and PredAlgo ((Tardif et al., 2012), more accurate

only for C. reinhardtii), transmembrane domains were predicted using

Phobius ((Kall et al., 2007), https://phobius.sbc.su.se/). Enrichment in

cellular localization and transmembrane predictions of the unknown

and Deep Green protein sets were performed using the hypergeo-

metric or Fisher’s exact test.

4.4 | Co-expression analysis

Co-expression analyses were performed on Chlamydomonas

Deep Green proteins using two different datasets, as follows:

(1) 18 diurnally expressed clusters and two unclustered groups (non-

differentially expressed and non-expressed clusters) described in

Chlamydomonas (Zones et al., 2015); (2) High-temperature and

recovery inducible genes (HIGs and RIGs, respectively) identified

previously (HIGs and RIGs are defined as transcripts that were

induced for at least one-time point during high temperatures and

recovery, respectively) (Zhang et al., 2022); Deep Green genes that

are present in this RNA-seq datasets were used for the enrichment

analysis. Clustvis heat map clustering (Metsalu & Jaak, 2015) was

performed via correlation distance, completed clustering with tight-

est cluster first for rows and no clustering for columns. Gene co-

expression networks in Chlamydomonas genes are derived from

ChlamyNET (Romero-Campero et al., 2016). Graphical representation

of the ChlamyNet cluster networks was performed using Cytoscape

with an organic layout method (Smoot et al., 2011). This algorithm

consists of a variant of the force-directed layout. Nodes produce

repulsive forces, whereas edges induce attractive forces. Nodes are

then placed such that the sum of these forces is minimized. The

organic layout has the effect of exposing the clustering structure of

a network. In particular, this layout tends to locate tightly connected

nodes with many interactions or hub nodes together in central areas

of the network. The over-representation hypher.test analysis was

performed using the R programming language with a significant level

of .05.

4.5 | Structural predictions

We used AlphaFold v2.1 to predict tertiary structures of the Deep

Green proteins from their amino acid sequences. Five structural

models were generated per protein and the models were ranked

using the predicted local-distance difference test (pLDDT) scores

(Jumper et al., 2021). The model with the highest pLDDT score was

accepted as the most accurate structural prediction. Computations

were carried out on NREL’s Eagle High-Performance Computing

(HPC) cluster. Structural predictions for protein sequences with

more than 1,100 amino acid residues were run on graphics proces-

sing unit (GPU) nodes (with 16 GB Tesla V100 accelerators), while

shorter sequences were run on central processing unit (CPU) nodes

due to memory limitations. Twenty Arabidopsis, 26 Setaria, and

18 Chlamydomonas Deep Green protein sequences were predicted

by SignalP-5.0 to contain signal peptides (Armenteros, Tsirigos,

et al., 2019). For these sequences, the signal peptides were trun-

cated in-silico prior to structure prediction. AlphaFold v2.1 structural

prediction ran successfully on 457 out of 458 Arabidopsis, all

504 Setaria, and 382 out of 384 Chlamydomonas Deep Green pro-

teins. AlphaFold v2.1 runtime errors occurred for the Arabidopsis

protein AT1G21650.3 (1806 aa) and for two Chlamydomonas pro-

teins, Cre04.g216050.t1.1 (3,691 aa after removal of predicted sig-

nal peptide) and Cre07.g314900.t1.1 (732 aa). These structures

could not be predicted due to runtime errors of the HHBlits soft-

ware that AlphaFold v2.1 uses for fast iterative protein sequence

searching by HMM-HMM alignment. AlphaFold v2.1 has been docu-

mented to fold proteins that are at least 16 and at most 2,700

amino acid residues long. To perform structural homology analysis

on the Deep Green proteins, proteins with a predicted tertiary

structure having a confidence score higher than .5 were selected

and FoldSeek (van Kempen et al., 2022) was used to generate

structural alignments with proteins in the Protein Data Bank

(PDB, version on 2021-06-01) using the parameters: --alignment-

type 1 --tmscore-threshold 0 --max-seqs 2000.

4.6 | Protein disorder predictions and analyses

Protein order versus disorder based on overall secondary structure

was quantified using a standalone version of the Intrinsically Unstruc-

tured Prediction (IUPred3) (Erdos et al., 2021) tool that was run on

the NREL high-performance computing (HPC) cluster. In the current

work, the long disorder prediction mode of IUPred3 was used along

with the medium smoothing option that involves the Savitzky–Golay

filter with parameters 19 and 5. IUPred3 returns a score, between

0 and 1, for each amino acid residue in the input protein sequence,
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which represents the probability of the given residue being part of a

disordered region. Residues with scores equal to or exceeding .5 were

considered to be disordered. Next, the percentage disorder (percent-

age of the total number of amino acid residues in a protein that are

disordered) was quantified for each of the lead proteins from the

entire proteomes of Arabidopsis, Setaria, and Chlamydomonas.

The percentage disorder values for the Deep Green proteins, which

constitute a subset of the set of all the lead proteins, were selected

for additional analyses. The percentage of amino residues that are Ala,

Pro, and Gly in each of the lead Arabidopsis, Setaria, and Chlamydo-

monas proteins were estimated as another measure of structural dis-

order using in-house Python code that involved the use of the

Biopython library (Cock et al., 2009). Signal peptides were removed

using SignalP5.0.
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