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Abstract An important computational goal of the visual system is ‘representational untangling’

(RU): representing increasingly complex features of visual scenes in an easily decodable format. RU

is typically assumed to be achieved in high-level visual cortices via several stages of cortical

processing. Here we show, using a canonical population coding model, that RU of low-level

orientation information is already performed at the first cortical stage of visual processing, but not

before that, by a fundamental cellular-level property: the thresholded firing rate nonlinearity of

simple cells in the primary visual cortex (V1). We identified specific, experimentally measurable

parameters that determined the optimal firing threshold for RU and found that the thresholds of V1

simple cells extracted from in vivo recordings in awake behaving mice were near optimal. These

results suggest that information re-formatting, rather than maximisation, may already be a relevant

computational goal for the early visual system.

DOI: https://doi.org/10.7554/eLife.43625.001

Introduction
The visual cortex relies on a series of hierarchically organised processing stages to construct increas-

ingly complex representations of the visual environment (Orban, 2008; Tafazoli et al., 2017;

Ungerleider and Haxby, 1994). An important goal of this processing hierarchy in the ventral visual

stream is to represent information about stimuli in a format that facilitates behaviourally relevant

tasks, such as object recognition, identification, or classification. This reformatting of information has

been called ‘representational untangling’ (RU; DiCarlo and Cox, 2007; Bengio et al., 2013) and it is

often formalised via the concept of linear decodability. Linear decoding measures the extent to

which a particular stimulus feature (such as the identity of an object) is explicitly encoded in a repre-

sentation such that it can be accurately estimated based on a simple weighted sum of the activation

of representational units (Bishop, 2006). For example, classification boundaries for different objects

appear highly non-linear and ‘tangled’ in the space of pixel intensities, or the space of retinal or pri-

mary visual cortical (V1) activities, thus preventing efficient linear decoding of object identity infor-

mation. In contrast, in inferior temporal cortex (IT), these boundaries become untangled, making

object identity information linearly decodable (DiCarlo et al., 2012). Critically, linear decodability of

a stimulus feature does not only require that neural responses are modulated by this feature, but
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also that at the same time they remain tolerant to, that is depend only weakly or trivially on other,

‘nuisance’ stimulus features that can also change across stimuli. For example, while neural responses

across the whole visual system, from the retina and V1 to IT, will change when different objects are

presented, the activation of select IT cells shows tolerance to changes in ’nuisance’ parameters, such

as illumination, location or scale (Brincat and Connor, 2004; DiCarlo and Cox, 2007; Ito et al.,

1995; Logothetis et al., 1994; Tanaka, 1996; Vogels and Biederman, 2002).

The neural mechanisms underlying RU are largely unknown, with most previous work focussing on

RU of object category information in IT, and how the cascaded nonlinear input-output transforma-

tions of the early stages of the visual hierarchy contribute to it (Hung et al., 2005; Pagan et al.,

2013; Yamins and DiCarlo, 2016). In contrast, we study an elementary form of RU that is already

taking place at the first stage of visual cortical processing, in V1, and uses a simple and ubiquitous

property of single neurons: the firing rate nonlinearity (FRNL), that is the nonlinear transformation

between a cell’s membrane potential and its instantaneous firing rate. In V1, there is broad agree-

ment that an image feature that is explicitly represented is local orientation. Indeed, several studies

investigated linear decodability of stimulus orientation directly from V1 firing rates (or spike counts)

as a function of tuning curve properties (Ecker et al., 2011; Seriès et al., 2004; Seung and Sompo-

linsky, 1993; Shamir and Sompolinsky, 2006), noise correlations (Berens et al., 2012; Moreno-

Bote et al., 2014), or the internal dynamics of V1 (Gutnisky et al., 2017). However, previous work

did not examine membrane potential responses, and was thus not suitable for studying the specific

contribution of the FRNL to linear decodability. Moreover, these studies only considered at most a

single nuisance parameter (contrast), thus requiring only minimal RU to be carried out in neural

responses.

In order to study the contribution of the FRNL to RU in V1, we directly compared the linear

decodability of stimulus orientation from membrane potentials and firing rates, and considered

some of the most prevalent nuisance parameters of visual stimuli: contrast (an elementary aspect of

illumination), phase (location), and spatial period (scale). We found that nuisance parameters made

the linear decodability of orientation information non-trivial: once this richer set of nuisance parame-

ters was considered, membrane potential responses of a population of orientation-selective cells

remained highly tangled, and linearly undecodable. However, despite the obvious loss of total infor-

mation caused by the rectifying aspect of the FRNL, which is due to all membrane potential values

below the firing threshold being mapped to zero firing rate, the format of information in firing rates

was more amenable to the linear decoding of orientation. This trade-off between total information

and linear decodability resulted in a clear optimum for the value of the firing threshold. In particular,

the optimal firing threshold depended on a few key experimentally measurable parameters, and we

confirmed in in vivo intracellular recordings that mouse V1 simple cells had their thresholds near the

optimal value. These results suggest that RU may be a universal principle of organisation throughout

the visual system, and it involves cellular as well as circuit-level mechanisms.

Results
In order to study the RU of information about stimulus orientation in V1 responses, we adapted a

canonical population coding model (Jones and Palmer, 1987) (Figure 1). We chose this model as it

had the minimal complexity necessary for systematically studying the effects of specific single-neuron

(e.g. FRNL threshold, membrane potential variability) and network parameters (e.g. population size,

noise correlations) on the encoding of stimulus orientation in the face of other (nuisance) stimulus

features affecting neural responses. More specifically, the membrane potential response of each

model neuron was determined by the linear response of the neuron-specific oriented Gabor filter to

the stimulus. These Gabor filters approximated the receptive field properties of simple cells, result-

ing in response characteristics that were modulated by the orientation, frequency, and phase of a

static, full field sinusoidal grating stimulus (Dayan and Abbott, 2005). To model the in vivo variabil-

ity of V1 membrane potential responses in awake animals (Haider et al., 2013), these membrane

potentials were then subject to additive Gaussian noise independently sampled in time windows

whose length (20 ms) was approximately matched to the decay time of the autocorrelation function

of simple cells (Azouz and Gray, 1999). The firing rate of each cell was obtained using a rectifying

nonlinearity that has been shown to capture the FRNL of simple cells (Carandini and Ferster, 2000;

Dorn and Ringach, 2003; Priebe and Ferster, 2008). RU was quantified by the performance of a
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linear decoder which decoded stimulus orientation from membrane potentials or firing rates in the

face of noise and variability in other (nuisance) parameters of the stimulus: phase, contrast, and spa-

tial frequency (Figure 1, blue).

We studied RU as a function of parameters describing the stimulus distribution as well as parame-

ters describing the neural population. As the complete parameter space of the model (including the

detailed stimulus filter of every neuron) was vast, it was unfeasible to explore it fully. Thus, we

focussed on a few key characteristics of our model neurons (Figure 1, red): the mean membrane

potential (uDC) and depth of modulation (uAC), which were defined based on the membrane potential

response to a drifting full-field grating at 100% contrast, preferred orientation and preferred spatial

period; noise variability (s), which determined the magnitude of the noise injected into membrane

potentials; and the threshold (uth) and exponent (k) of the single neuron FRNL. At the population

level, we studied the effects of population size (N); decoding resolution (K), defined as the number

of different orientation categories to be decoded; and the magnitude of noise correlations (�) with a

given structure, that is the correlation between the membrane potential noise of different cells in

the population.

The effect of response rectification on representational untangling
The effects of noise and nuisance parameters on linear decodability can be understood by consider-

ing the binary discrimination of two orientations in a pair of neurons responding to stimuli with vari-

able orientation (to be decoded) and phase (to which the decoder is required to be invariant)

(Figure 2). This binary classification task (discrimination) generalises for multiclass cases that can be

regarded as combinations of pairwise comparisons. In the model, filter responses depend both on

the orientation and phase of the stimulus: at any particular orientation, variability in phase induces a

manifold of responses (Figure 2A, coloured ellipses). Membrane potential responses are derived
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+
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Figure 1. Model schematic. Left: sine wave grating stimulus used as input to the model population. The stimulus is parametrised by orientation (#) and

nuisance parameters phase (’), spatial period (l), and contrast (c). Middle: simple cell membrane potential (MP) responses (grey boxes) are obtained

using localised, oriented Gabor filters and temporally correlated additive noise (Gaussian, with standard deviation s). The mean response varies

sinusoidally (with amplitude uAC) around the baseline (uDC) as the phase of the grating stimulus is changing. The stochastic component of the MP

response of each neuron is variable in time (black line) and across trials (gray lines). Firing rate is obtained by transforming the MP through a threshold-

power-law firing rate nonlinearity (FRNL), characterised by threshold uth and exponent k. Right: linear decoding of orientation from the population

response of N simple cells yields the estimated orientation (#̂).

DOI: https://doi.org/10.7554/eLife.43625.002

Gáspár et al. eLife 2019;8:e43625. DOI: https://doi.org/10.7554/eLife.43625 3 of 30

Research article Neuroscience

https://doi.org/10.7554/eLife.43625.002
https://doi.org/10.7554/eLife.43625


from filter responses but are contaminated by noise (Figure 2A, coloured dots), which introduces

uncertainty even when phase is fixed and known. Nevertheless, as long as the phase of the stimulus

is fixed (and the noise is not overwhelmingly large), all membrane potential values scatter around

the same value for each orientation, creating well separated sets of joint responses so that orienta-

tion remains linearly decodable (Figure 2B, green line shows optimal classification boundary). How-

ever, variability in phase introduces a substantial amount of additional variability in responses along

the corresponding manifolds which intersect multiple times. This causes the sets of membrane

potential responses to become strongly overlapping (Figure 2C, coloured dots) and the optimal

decision boundary to become highly nonlinear (‘entangled’, Figure 2C, green line), such that no lin-

ear decision boundary can approximate it efficiently. Thus, even the representation of orientation

Figure 2. Effect of phase variability on the linear separability of the responses of a pair of simple cells. (A) Filter responses of a pair of model simple

cells to gratings with various orientations (different colours) and phases (position along ellipses). Circles mark a pair of example stimulus phases at two

different orientations. (B) Stochastic membrane potential responses of the pair of cells (dots) at the reference pair of stimulus orientations and phases

(gray circles with black contour). Gray lines show average responses at other phases and orientations for reference. The optimal decision boundary

(green line) constructed for membrane potential responses is a straight line and it is thus achievable by a linear decoder. (C) Membrane potential

responses (coloured dots) to stimuli with the same pair of orientations as in B but for variable stimulus phase (gray ellipses with black contour). Phase

variability abolishes the linear separability of responses given to different orientations: the decision boundary of the optimal decoder (green line) is

highly nonlinear. (D) Filter responses as in A but truncated due to the threshold linear transformation of the FRNL. (E–F) Same as B-C, but for firing rate

responses. Note that the decision boundary of the optimal decoder of firing rate responses (F, green line) can be well approximated by a linear

decoder (F, dark green line).

DOI: https://doi.org/10.7554/eLife.43625.003
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information by orientation-tuned cells can become highly entangled in the presence of nuisance

parameters.

Nonlinear transformations of variables can render even complex representations linearly decod-

able – an insight that underlies many pattern recognition algorithms (Bishop, 2006). Specifically, in

our case, we focus on the rectifying aspect of the firing rate nonlinearity of neurons. This rectification

effectively ‘removes’ a large part of the membrane potential response space thus letting the

decoder operate only on the quadrant of super-threshold responses (Figure 2D). While this drastic

removal of a large fraction of responses can clearly lead to severe total information loss

(Barak et al., 2013), responses in the remaining quadrant may also become more linearly separable.

This is because the density of manifold intersections generally decreases towards higher membrane

potential values. In other words, the rectification only allows strongly responding cells to contribute

to decoding, and the resulting sparsification of the representation will generally render it more line-

arly separable (Barak et al., 2013). This explains why the optimal decision boundary for firing rates

remains well approximated by a line (Figure 2E), even with variability in stimulus phase (Figure 2F,

the decision boundary of the optimal decoder is shown in light green while that of the best linear

decoder in dark green). Thus, there is a trade-off for RU between total information loss and sparsifi-

cation controlled by the firing threshold, and this trade-off becomes particularly acute in the face of

nuisance parameter variations.

Orientation decoding from a population under phase variability
In order to study the trade-off between total information loss and sparsification quantitatively, we

parametrically varied the firing threshold in a population of N ¼ 500 neurons, each characterised by

identical firing thresholds and noise but random receptive field parameters (Figure 3—figure sup-

plement 1A). To simplify our analysis, we assumed a rectified linear FRNL (see below for FRNLs with

exponents greater than one). At each threshold level, we compared the performance of two

decoders: a linear decoder, and an optimal Bayesian decoder (see Materials and methods). The lin-

ear decoder was trained and tested on different subsets of data differing in the

membrane potential noise added to the linear filter responses of model neurons. The training data

set was sufficiently large that asymptotic test performance was achieved, therefore the performance

of the linear decoder was limited solely by the properties of the stimuli and not by the amount of

data. The optimal decoder was constructed with perfect knowledge of the process generating neural

responses and thus did not need to be separately trained. As it used the optimal decision bound-

aries, the performance of the Bayesian decoder represented a theoretical upper bound on the per-

formance of any decoder, and could also be used to quantify the total information content of

responses (Materials and methods; Panzeri et al., 1999). Each decoder was tested with the phase of

the stimulus kept fixed (Figure 3A, black: linear decoder, gray: optimal decoder) or being varied

(Figure 3A, dark blue: linear decoder, light blue: optimal decoder).

The performance of the optimal decoder simply decreased monotonically as the threshold was

increased (Figure 3A, gray and light blue). This was expected because the thresholding effect of the

FRNL loses information in the subthreshold range (as in this range all membrane potential values are

mapped to the same zero firing rate) while the super-threshold part of the FRNL (even if it is nonlin-

ear) represents a one-to-one mapping which does not change information content. This means that

the net effect of the FRNL can only be information loss, with higher thresholds leading to larger

information loss (Figure 3—figure supplement 2B). Therefore, as long as the functional objective of

V1 was the maximisation of total orientation information transmitted to downstream areas (the so-

called ’infomax’ principle; Linsker, 1988; Bell and Sejnowski, 1997), one would expect to see low

values of the firing threshold, clipping the membrane potential distribution as little as possible

(Figure 3A, green shaded area).

In contrast to the simple monotonic decrease in total information, linear decoding performance

showed a more complex, non-monotonic dependence on the firing threshold. At the lowest values

of the threshold, all membrane potential responses were super-threshold (Figure 3A, green histo-

gram shows the distribution of membrane potential responses across all stimuli), and so decoding

from firing rates was essentially equivalent to decoding from membrane potentials. Thus, as

expected (Figure 2), linear decoding with variable stimulus phase was at chance (10%) at this

extreme, that is it was unable to extract any information about orientation from the membrane

potential responses of the population (Figure 3B, left blue bar). Correspondingly, the coefficients of
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the linear decoder did not bear any systematic relationship with the preferred orientations of neu-

rons and the decoded orientations (Figure 3—figure supplement 1B). The failure of linear decoding

was due to membrane potential responses fully reverting for stimuli with anti-preferred phases. This

meant that depending on stimulus phase, responses for the preferred orientation of a cell could be

well above or below responses to non-preferred orientations, thus violating the monotonic relation-

ship that linear decoding requires between responses and the match of stimulus orientation to the

preferred orientation of cells. For fixed stimulus phase, linear decodability was well above chance

(~87%) even at low threshold values (Figure 3B, left black bar). Note that, unlike the case suggested

in Figure 2, it did not reach the performance of the optimal decoder because we allowed orienta-

tion itself to vary within each K ¼ 10 discrete decoded orientation categories, making the optimal

decision boundaries slightly nonlinear even at a fixed stimulus phase.

At extremely high values of the firing threshold, membrane potential responses always remained

sub-threshold, keeping firing rates zero at all times. Thus, all decoders performed at chance due to

this total loss of information. Between the two extremes, as the threshold increased, there was a

trade-off between two opposing effects: the total information in responses decreased, as shown by

the monotonically decreasing performance of the optimal decoder (Figure 3A, gray and light blue;

see also above), while responses became increasingly sparser (see Materials and methods,

Figure 3A, red), increasing the linear decodability of the remaining information (see Figure 2F). As
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Figure 3. Effect of phase variability on decoding performance. Orientation decoding from firing rates (FR) was performed for grating stimuli with fixed

(black and grey) or unknown phase (dark and light blue) using an optimal (lighter colours) or linear decoder (darker colours). (A) Decoding performance

as a function of the FRNL threshold (solid lines). Black dotted line shows chance performance. Green shaded area shows the distribution of membrane

potentials for reference. Red line shows sparseness of responses as a function of the FRNL threshold. Inset shows the performance of the linear

decoder against the performance predicted by the normalised optimal decoder (the combined effect of total information and sparseness) at different

values of the FRNL threshold under variable phase (blue dots). Note that decoding from firing rates with FRNL threshold values below the membrane

potential distribution is equivalent to decoding from membrane potentials. (B) Performance of the linear decoder using firing rates (FR) obtained with

the optimal FRNL thresholds (diamonds on A) and membrane potentials (MP). Horizontal lines show the performance of the optimal decoder at the

corresponding FRNL threshold values. (C) Performance of linear decoder with fixed (black bars) and unknown phase (blue bars) for a neuron population

with pixel-like receptive fields. As no optimal threshold existed with this population, the firing rate decoder was evaluated at the optimal FRNL

threshold of the Gabor population. (D) Same as panel C but for a population with center-surround receptive fields.

DOI: https://doi.org/10.7554/eLife.43625.004

The following figure supplements are available for figure 3:

Figure supplement 1. Properties of the model neuron population.

DOI: https://doi.org/10.7554/eLife.43625.005

Figure supplement 2. Alternative measures for the characterisation of decoding performance.

DOI: https://doi.org/10.7554/eLife.43625.006

Figure supplement 3. Linear decoding performance with variable phase for narrow and wide field of view.

DOI: https://doi.org/10.7554/eLife.43625.007

Gáspár et al. eLife 2019;8:e43625. DOI: https://doi.org/10.7554/eLife.43625 6 of 30

Research article Neuroscience

https://doi.org/10.7554/eLife.43625.004
https://doi.org/10.7554/eLife.43625.005
https://doi.org/10.7554/eLife.43625.006
https://doi.org/10.7554/eLife.43625.007
https://doi.org/10.7554/eLife.43625


a result of this trade-off, linear decoding had a pronounced peak with an optimum at intermediate

firing thresholds values, around Vm ¼ �57 mV in this case (Figure 3A, dark blue diamond;

Figure 3B right blue bar), that is ~3 mV above the average membrane potential (Figure 3A). This

optimal firing threshold was largely independent of the precise measure used to quantify perfor-

mance, whether it was simply the fraction of correct responses used here and in the following, a sta-

tistically more appropriate probabilistic fraction correct measure, or a measure that also depended

on the magnitude of the (circular) error between true and decoded orientation (Figure 3—figure

supplement 2A). The success of linear decoding at the optimal threshold was also reflected in the

patterns of decoding coefficients: as expected, they scaled with the difference between a neuron’s

preferred orientation and the decoded orientation (Figure 3—figure supplement 1C). To assess the

extent to which the FRNL threshold threshold was effective in helping RU using local image patches

instead of grating stimuli covering a large portion of the visual field, we also performed the same

analysis with a 500-neuron population resembling a V1 hypercolumn, with receptive fields covering

only a 3˚ circle, produced results similar to those obtained with full-field stimuli. (Figure 3—figure

supplement 3).

In order to see how much the trade-off between total information loss and population sparseness

could account for linear decodability, we computed the correlation between the actual performance

of the linear decoder and the performance that could be predicted based on scaling the perfor-

mance of the optimal decoder (FCopt, indicative of total information, see above) by population

sparseness: (FCopt - chance) � sparseness + chance. We found a strong correlation across different

values of the firing threshold between the actual and predicted performance of the linear decoder

(r ¼ 0:98, Figure 3A, inset). For fixed stimulus phase, decision boundaries were generally more lin-

ear, thus the reduction of overall information dominated, which resulted in only a smaller peak in

performance at around the same threshold value (Figure 3A, black diamond; Figure 3B right black

bar).

Representational untangling of orientation is specific to V1
To show that the RU of orientation information is specific to V1 and does not occur at earlier stages

of visual processing, we performed simulations with two other model neuron populations in which

selectivities of individual neurons resembled that of neurons in the retina and the lateral geniculate

nucleus (LGN). For this we used neurons that were sensitive to a single pixel in the stimulus (as a sim-

ple model of photoreceptor activations in the retina; Figure 3C, inset) or neurons characterised by

center-surround receptive fields (modelling retinal ganglion and LGN cells; Figure 3D inset). For a

fair comparison with our V1 population, we used the same number of cells, with the same set of

receptive field locations, and the same amount of overall signal and noise variability in their mem-

brane potentials.

While linear decodability was similarly high as from V1 responses without phase nuisance

(Figure 3C–D, black bars; cf. Figure 3B, black bars), it was markedly different once phase nuisance

was introduced (Figure 3C–D, blue bars; cf. Figure 3B, blue bars). Not only was orientation linearly

undecodable from the membrane potentials of our model retinal and LGN populations (Figure 3C–

D, MP blue bars) but, in contrast to the V1 population, it also remained undecodable from their fir-

ing rates, even with the best possible choice of the firing threshold (Figure 3C–D, FR blue bars; see

Appendix 1 for an intuition).

Decoding with multiple nuisance features
Simple cells in V1 show mixed selectivity to a number of stimulus features beside orientation and

phase. Thus, we extended our analyses to include two more nuisance features, spatial frequency (or

its inverse, spatial period) and contrast, that are among the two strongest modulators of V1

responses (Hubel and Wiesel, 1968) and, in addition, they are analogous to size and illumination,

which are in turn among the most commonly considered nuisance features for high-level RU

(Brincat and Connor, 2004; Ito et al., 1995; Vogels and Biederman, 2002). We tested linear

decoding performance with all eight possible combinations of these nuisance features varying or

being fixed. When varied, each feature was sampled from a probability density that was chosen to

reflect the main characteristics of natural stimulus statistics (Figure 4A, Materials and methods).
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When fixing a nuisance feature, we chose a value that was near the mean of the natural distribution

(Figure 4A, ticks on the x-axis).

Overall, the pattern of results was similar to that obtained with variability in phase only (Figure 4,

black and blue for no variability in nuisance features, and variability in phase only, respectively,

repeated from Figure 3A,B): more nuisance variability decreased performance (Figure 4C), and the

trade-off between total information and sparseness resulted in a peak in performance at intermedi-

ate threshold levels (Figure 4B, coloured lines). Interestingly, we found the most often studied nui-

sance parameter to cause the least amount of representational entanglement: variability in contrast

affected linear decodability of membrane potentials the least (Figure 4C, red) because the response

manifolds corresponding to changes in contrast were radial lines (as membrane potential responses

simply scaled with contrast) which all intersected only at one point and thus created little additional

ambiguity (not shown). Importantly, while there was a slight variation in the optimal firing threshold

values that allowed maximal decoding performance (Figure 4B, coloured ticks), this variation was

relatively small across the eight combinations of nuisance features we tested and remained largely

unchanged when the receptive field parameters of the neurons were perturbed (Figure 4—figure

supplement 1).

To test the robustness of these results to variations in stimulus statistics, we also varied the distri-

butions of spatial frequency and contrast (Figure 5A–B). (We left the uniform phase distribution

unchanged as it is unlikely that any realistic stimulus manipulation would lead to particular phases to

be overrepresented.) By using the original parameter distributions (Figure 4A) to construct training

stimuli for the decoder and different parameter distributions to test performance, this analysis pro-

vided a test of how well the optimal thresholds generalised across different stimulus distributions.

We found that the firing thresholds that were optimal for the original stimulus distributions remained

near optimal with these changed distributions: there was no discernible loss of performance com-

pared to a decoder which was trained with the modified stimulus distributions (Figure 5C–D, bars

vs. horizontal lines).

While it is orientation coding that is most often associated with simple cell activity in V1, all other

stimulus parameters to which simple cells show selectivity can be regarded as targets for decoding.

Thus, to further test the robustness of our findings, we also studied the linear decodability of the

spatial period or contrast of stimuli, while letting all other (nuisance) stimulus parameters (including

orientation) vary (see Materials and methods). We found that the linear decodability of both stimulus

parameters had a similar firing threshold-dependence as that of orientation, with a distinct peak per-

formance close to the optimal threshold for orientation decoding (Figure 4—figure supplement 2;

cf. Figure 4, grey).

Parameter-dependence of the optimal firing threshold
We noted that for most model settings we studied so far (identity and distribution of fixed vs. vari-

able nuisance stimulus features) there was a clear optimum for the firing threshold which remained

roughly constant across all conditions (Figure 4). In contrast, simple scaling arguments predicted

(Materials and methods) that performance should fundamentally depend on specific combinations of

single cell parameters (see Figure 2B). In particular, it should depend on how much of the noise vari-

ability (s) versus signal variability (controlled by the depth of modulation, uAC) in membrane poten-

tials is ’removed’ (i.e. mapped to zero firing rate) by the thresholding of the FRNL. In turn, the

optimal threshold (uoptth ) should shift with the mean membrane potential (uDC), and scale when noise

and signal variance are jointly scaled. We tested these predictions by varying either the depth of

modulation (Figure 6A, � symbols) or the noise variance of membrane potentials (Figure 6A, + sym-

bols) and confirmed that in all these cases the appropriately normalised optimal threshold,

u
opt
th � uDC

� �

=uAC, showed the same, approximately linear, relationship with the noise-to-signal

ratio, s=uAC (Figure 6A).

To further test the robustness of this result, we systematically varied a number of other model

parameters: the number of neurons in the population (N, Figure 6B), the number of orientation cate-

gories to be decoded (K, Figure 6C), the magnitude of noise correlations in the population (�,

Figure 6D), the super-threshold shape (exponent) of the FRNL of neurons (k, Figure 6E). Wherever

possible, we varied these parameters around experimentally found values. For example, average

noise correlations measured in spike counts in awake V1 are typically reported to be less than 0.1
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(Ecker et al., 2011) which imply average membrane potential correlations (which we are modelling

here) in the range of 0.06– 0.15 (Bányai et al., 2017) (Figure 6D). The average exponent of the

suprathreshold part of the FRNL of V1 simple cells was found to be ~1.2 (Carandini, 2004)

(Figure 6E). For other parameters, those controlling the size of the population (Figure 6B), and the

resolution of the estimation task (Figure 6C), experimentally validated data was not available and so

we varied them several-fold to ensure our results remained robust to them. In all cases, we measured
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Figure 4. Effect of nuisance parameter variability on decoding performance. Nuisance parameters were varied

individually (blue: phase; green: spatial period; red: contrast) or in combination (mixture colours). (A) Parameter

distributions used for varying nuisance parameters: uniform for stimulus phase (left), lognormal for spatial period

(middle), and beta distribution for contrast (right). Ticks on x-axes show parameter values used when the

corresponding parameter was fixed. (B) Linear decoding performance as a function of the FRNL threshold for

different combinations of variable nuisance parameters (colours, see legend for details: ‘v’ denotes variable, ‘.’

denotes fixed parameter). Coloured ticks on x-axis show optimal thresholds for the corresponding combinations of

variable nuisance parameters (i.e. the locations of peaks on the corresponding performance curves). Note that

even when all nuisance parameters are variable, a linear decoder performs above chance around the optimal

threshold. (C) Linear decoding performance for firing rates obtained with optimal FRNL threshold values under

different nuisance parameter uncertainties (bars, colours as in B) and for membrane potentials (white lines). Note

that the only nuisance parameter that shows membrane potential decoding performance considerably above

chance is contrast (red). Simulations without nuisance parameter variability (black) and with only phase variability

(blue) are replotted from Figure 3A.

DOI: https://doi.org/10.7554/eLife.43625.008

The following figure supplements are available for figure 4:

Figure supplement 1. Variance in decoding performance as a result of variations in receptive field parameters of

model neurons.

DOI: https://doi.org/10.7554/eLife.43625.009

Figure supplement 2. Orientation, spatial period, and contrast decoding from firing rate responses.

DOI: https://doi.org/10.7554/eLife.43625.010
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linear decoding performance while varying phase as the nuisance stimulus feature (as in Figure 4B,

blue).

We found that a clear optimum existed for the firing threshold in all cases (Figure 6—figure sup-

plement 1). Although peak performance could depend strongly on some model parameters (Fig-

ure 6—figure supplement 1), the value of the optimal threshold at which it was achieved was

largely independent of these parameters (Figure 6). Specifically, as expected, peak performance

increased with the number of cells in the population (Figure 6—figure supplement 1A) and

decreased with the number of orientation categories to be decoded (Figure 6—figure supplement

1B), but, the scaling of the optimal threshold with the noise-to-signal ratio remained invariant to

either parameter (Figure 6B–C). Both peak performance (Figure 6—figure supplement 1C) and the

optimal threshold (Figure 6D) were only weakly affected by increasing correlations among the

responses of the neurons (either uniformly across the population, or such that they had a specific

‘information limiting’ structure; Figure 6—figure supplement 2, see also Moreno-Bote et al. (2014)

and the Appendix 1). The only other parameter that had a substantial effect on the optimal thresh-

old (but not on peak performance, Figure 6—figure supplement 1D) was the exponent of the FRNL

(Figure 6E).
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Figure 5. Robustness of the optimal FRNL threshold to changes in nuisance parameter statistics. (A) Distributions

of spatial period. Grey-shaded distribution is the reference distribution used in other figures where spatial period

was a nuisance parameter. (B) Performance of the linear decoder under different period distributions (colours as in

A) with the ‘default’ FRNL threshold which was optimised to the reference spatial period distribution (bars). As an

upper bound, performance with the FRNL threshold re-optimised for each spatial period distribution is also shown

(horizontal lines). Note that bars reach horizontal lines in all cases, indicating that performance with the default

FRNL threshold is indistinguishable from that achieved with the re-optimised FRNL threshold. (C–D) Same as (A–B)

but for changes in the distribution of stimulus contrast.

DOI: https://doi.org/10.7554/eLife.43625.011
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V1 simple cells have near optimal firing thresholds
The finding that the optimal firing threshold depended on only a handful, mostly directly measurable

parameters of cellular responses allowed us to test experimentally whether the FRNL of simple cells

supports RU in V1. For this, we studied the example of linear decoding of orientation with phase as

a nuisance parameter. First, we estimated the mean, the modulation depth (both in mV) and the

noise variance (in mV2) of membrane potential responses, as well as the threshold of the FRNL (in

mV) from intracellular recordings of V1 simple cells in awake mice viewing drifting full-field sinusoidal

grating stimuli (i.e. with phase changing systematically; Materials and methods, Figure 7A–B, Fig-

ure 7—figure supplement 1). We then constructed model neuron populations with matching mem-

brane potential response properties (using the experimentally measured mean, modulation depth

and noise variance parameters) and for each model population computed the optimal threshold.

Given our results on the parameter dependence of the optimal threshold (Figure 6), in order to

compare experimentally measured and optimal threshold values, we expressed both in normalised

units (subtracting the mean membrane potential and dividing by modulation depth) and plotted

them as functions of the noise-to-signal ratio (the standard deviation of noise divided by modulation

depth). As our data did not allow the reliable estimation of the precise value of the exponent of the

FRNL (Figure 7B), we expressed our predictions for each value of the noise-to-signal ratio as the set

of normalised threshold values that would result in at least 90% peak performance at any value of

the exponent within the range of exponents (between 1 and 2) that earlier reports considered realis-

tic (Carandini, 2004) (Figure 7—figure supplements 2–3). We found that the firing thresholds

determined experimentally were in this near-optimal robust performance regime in all cases despite

large differences in individual parameters across the cells we recorded (Figure 7C; blue circles). Ran-

domly swapping parameters across cells revealed that the incidence of measured thresholds in the

robust performance regime was significant (Figure 7C inset, black dots; permutation test, p=0.01),
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Figure 6. Dependence of the optimal threshold on model parameters. (A) Dependence of the normalised optimal threshold (y-axis) on the noise-to-

signal ratio (x-axis). The normalised optimal threshold is the deviation of the optimal threshold from the baseline membrane potential, normalised by

the magnitude of membrane potential noise: u
opt
th � uDC

� �

=uAC (see text for details). Noise-to-signal ratio is the ratio between the magnitude of noise

and the strength of the signal: s=uAC. Note the same linear dependence irrespective of whether signal strength (�) or noise magnitude is varied (+). (B–

E) Same as (A) for different population sizes (B), decoder resolutions (C), correlation strengths (D) and exponents of the FRNL nonlinearity (E). Asterisks

mark the default values of the parameters used in other figures. Scaling of the optimal threshold with noise-to-signal ratio is largely independent from

changes in these network and cellular parameters except for the exponent of the FRNL nonlinearity which substantially changes the noise-dependence

of the optimal threshold.

DOI: https://doi.org/10.7554/eLife.43625.012

The following figure supplements are available for figure 6:

Figure supplement 1. Parameter-dependence of optimal FRNL threshold.

DOI: https://doi.org/10.7554/eLife.43625.013

Figure supplement 2. Effect of information-limiting correlations on decoding performance.

DOI: https://doi.org/10.7554/eLife.43625.014
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Figure 7. Comparison of optimal firing thresholds derived from the model and firing thresholds of V1 simple cells. (A) Intracellularly recorded

‘generator’ membrane potential trace of a V1 simple cell (black) with spikes clipped off (see Materials and methods). Orange vertical lines show spike

times, orange horizontal line shows estimated firing threshold (uth). Red marks show response baseline (uDC), signal variance (uAC), and noise magnitude

(s) estimated from the generator potential responses to multiple cycles of the moving grating stimulus. (B) Illustration of estimating the FRNL from

electrophysiological data. The firing rate of a cell as a function of the membrane potential (top panel, black line, gray shaded area shows s.e.m.) is

obtained as the normalised ratio of the probability distributions of the generator potential at spike times and at all times (bottom panel, orange and

gray histograms, respectively). A threshold-power-law function was fitted to the firing rate function and the threshold linear fit was used to estimate the

firing threshold (vertical orange line). Threshold-power-law fits with different levels of the FRNL exponent (red traces, k1 ¼ 1, k2 ¼ 2) were largely

consistent with the firing rate estimated from the data. (C) Normalised thresholds of four V1 simple cells as a function of the noise-to-signal ratio of

their membrane potential responses (blue circles). Normalised thresholds and noise-to-signal ratios were computed from the original cellular

parameters (panels A-B) as in Figure 6. Shaded area shows robust decodability regime of RU (range of normalised thresholds within which > 90% of

maximal linear decoding performance is achieved across all k values between 1 and 2, cf. Figure 6E, Figure 7—figure supplement 2). Inset: same as

main panel but black dots correspond to normalised threshold values and noise-to-signal ratios obtained by shuffling the experimentally measured

parameters across recorded neurons (uDC = �46.8, –42.4, –47.3, –36.9 mV; uAC = 7.15, 9.1, 4.48, 7.83 mV; s = 1.7, 2.83, 2.39, 3.21; and uth = �44.9, –

38.6, –44.9, –35.1 mV). (D) Same as panel (C) but recorded data is compared with the prediction of maximal information transmission on the normalised

threshold.

DOI: https://doi.org/10.7554/eLife.43625.015

The following figure supplements are available for figure 7:

Figure supplement 1. Spike fitting.

DOI: https://doi.org/10.7554/eLife.43625.016

Figure supplement 2. Dependence of the optimal threshold on the level of membrane potential noise.

Figure 7 continued on next page
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suggesting that the near-optimal thresholds we found in the actual cells required specific co-tuning

of these parameters.

These analyses also offered a way to directly compare our hypothesis that V1 is optimised for RU

to the classical infomax hypothesis that V1 is optimised for total information transmission. Recall that

infomax predicts that the optimal firing threshold is as low as possible. In principle, this optimum is

well below the average membrane potential, which appears to be in contradiction with our experi-

mental data that showed firing thresholds clearly above the average membrane potential

(Figure 7C, normalised thresholds are all above 0). However, we also found that total information

remained at ceiling for substantially higher values of the firing thresholds (Figure 3, optimal

decoder), raising the possibility that infomax may also be able to account for our data. Thus, we fol-

lowed the same approach as for RU, and rather than concentrating on the unique optimal threshold,

which was difficult to define without knowing the precise value of the FRNL exponent, we identified

the robust performance regime as the set of normalised threshold values that would result in at least

90% maximal total information at each value of the noise-to-signal ratio, and across the whole

regime of realistic FRNL exponents (Figure 7D, grey region). Only 3 out of 4 of our recorded cells

were in this regime (Figure 7D, blue circles), and given the breadth of the robust performance

regime extending to infinitely low thresholds, this was not significant by using the same permutation

test as in the case of RU (p=0.54). Thus, in contrast to RU, the specificity of the infomax hypothesis

was too limited to be able to convincingly account for the data.

The effect of population heterogeneity
The results above were obtained assuming a homogeneous population of neurons which only dif-

fered in their receptive field locations, preferred orientations and phases, but had otherwise identical

parameters. As population heterogeneity can have an important influence on neural coding

(Ecker et al., 2011; Shamir and Sompolinsky, 2006), we also studied heterogeneous populations.

In particular, we were wondering whether our finding of near-optimal thresholds in individual cells

(Figure 7) would be representative even if those cells were part of a heterogeneous population.

Therefore, we constructed a population in which noise variance (s2) and FRNL exponent (k) were var-

ied across cells in experimentally found ranges (Carandini, 2004). The FRNL threshold of each indi-

vidual cell was then set to a value that would have been optimal in a homogeneous population in

which all cells had the same parameters (s2 and k) as that single cell. (That is, we only optimised

thresholds ‘locally’ for each neuron, rather than attempting to find the globally optimal combination

of thresholds for the population of cells). We then randomly varied the thresholds of all cells around

their respective locally optimal values and asked whether there were parameter combinations which

yielded better performance. We found that modifying the thresholds generally resulted in deterio-

rating performance, such that decoding performance was highest near the original locally optimal

thresholds (Figure 8). Thus, the thresholds found to be optimal based on the assumption of a homo-

geneous population still provided high performance in more realistic, heterogeneous populations.

This result also suggests that overall (‘global’) optimality of population decoding performance might

be achieved by some optimization rule acting locally on the firing threshold of each neuron sepa-

rately, without needing information about the cellular parameters of other neurons, which would be

difficult to obtain by biologically plausible mechanisms.

We also studied the effect of additional forms of heterogeneity in individual receptive field prop-

erties (size, non-circularity or inclination, preferred spatial frequency) by adjusting these parameters

to approximately match those found in experiments (Jones and Palmer, 1987) and found that this

also had only a small influence on performance, or the optimal threshold (data not shown).

Figure 7 continued

DOI: https://doi.org/10.7554/eLife.43625.017

Figure supplement 3. Robust decodability of population responses.

DOI: https://doi.org/10.7554/eLife.43625.018
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Discussion
We have shown that the firing rate nonlinearity (FRNL) of V1 simple cells contributes to the represen-

tational untangling (RU) of orientation and other low-level visual information. While decoding perfor-

mance is traditionally considered to be limited by the ‘noise’ variability in neural responses

(Berens et al., 2012; Chen et al., 2006), our focus on RU warranted that we explicitly took into

account another, oft-neglected source of response variability: that due to variability in nuisance

parameters of the stimulus, such as phase, contrast, and spatial period. We have quantified RU by

the linear decodability of membrane potentials or firing rates, and found that despite the obvious

(and substantial) information loss entailed by the FRNL, sparsification of responses made the format

of information in firing rates more amenable to linear decoding. Our analyses suggested this effect

to be specific to V1 as it did not arise in model populations of retinal or LGN cells with non-oriented

receptive fields. We also found that the value of the FRNL threshold that struck the optimal balance

between sparsifying responses and preserving information was robust to variations in the identity of

decoded and nuisance features, and in fact most other model parameters, and depended only on a

few, experimentally well-defined local (as opposed to population-wide) quantities characterising the
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Figure 8. Representational untangling in a heterogeneous population. Orientation decoding performance from a

population (N = 500) of neurons with heterogeneous properties as a function of the magnitude of deviation

(Euclidean distance) from the optimal firing thresholds determined based on the assumption of a homogeneous

population. Both the exponent of the FRNL and the level of membrane potential noise were chosen from a set of

five possible values (1, 1.2, 1.4, 1.6, 1.8, and 2, 2.5, 3, 3.5, 4 mV, respectively), yielding 25 different parameter

combinations. Thus, twenty neurons with different receptive fields were assigned to each parameter combination.

For each of the 25 parameter combinations, the optimal firing threshold was established by simulating a

homogeneous population with those parameters. In the heterogeneous population, the threshold for each cell

was set to the value optimised for the corresponding homogeneous population. Decoding performance was

measured after perturbing these thresholds (black dots). Grey line shows decoding performance with the

unperturbed thresholds, black line is a quadratic fit to the perturbed performance levels.

DOI: https://doi.org/10.7554/eLife.43625.019
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responses of individual cells. An analysis of intracellular recordings of mouse V1 simple cells showed

that the thresholds of these cells were near optimal for RU despite substantial variability in their cel-

lular parameters. In comparison, an alternative computational objective that is often considered to

be relevant for V1, information maximisation, was unable to specifically account for these data.

These results suggest that the FRNL of V1 simple cells may be specifically adapted to support the

RU of orientation information.

Visual processing in ecologically relevant regimes
Although the evolutionary objective of the visual system is to maximise performance on natural

images, we used highly simplified, full-field sinusoidal gratings as stimuli (but note that natural image

statistics were taken into account in the choice of the distribution of nuisance parameters;

Figure 5A). Our choice for artificial stimuli was motivated by a number of factors. First, it allowed

our results to be directly compared to a large swathe of the theoretical and experimental literature

that used the same stimuli (Ecker et al., 2011; Seung and Sompolinsky, 1993; Shamir and Sompo-

linsky, 2006; Berens et al., 2012; Gutnisky et al., 2017). Second, it also allowed us to show that

nuisance parameters, rather than the traditionally studied factors of single-neuron variability or noise

correlations, are the main bottleneck for decoding (and that this bottleneck is at least partially allevi-

ated by the firing rate nonlinearity) even for the same simple stimuli that previous studies have used,

without considering the whole complexity of natural images. Third, more complex stimuli will recruit

mechanisms based on lateral and feed-back connections (eg. those responsible for extra-classical

receptive field effects) that the network architecture we used here cannot capture. However, our

main results remained essentially unchanged when we considered a ‘hypercolumnar’ population rep-

resenting local rather than global orientation (ie. such that all cells had their receptive fields in the

same location; Figure 3—figure supplement 3). Importantly, inasmuch as our model represents an

appropriate approximation of at least such a hypercolumnar population, the content of natural

images outside this (classical) receptive field location will not affect the decoding of the content at

this location, and thus these results should generalise to natural stimuli.

In general, the performance of any (but the optimal) decoder depends on the amount of data

used to train it. Indeed, we often need to make decisions based on only a few training examples –

something that biological learning systems excel at (Lake et al., 2015). However, in contrast to high-

level cognitive tasks requiring flexible decision making, it is reasonable to expect that the decoding

of low-level visual features in an early visual area, such as V1, has been optimised on evolutionary

time scales and would thus not be limited by the amount of data experienced over the lifetime of an

individual. Therefore, in all cases, we trained our linear decoders with sufficient amounts of data so

that to achieve asymptotic performance. This meant that we mostly tested generalisation perfor-

mance only for new instances of membrane potential noise, not for new stimuli (but see Figure 5 for

generalisation to new distributions of stimuli.) Nevertheless, this approach also allowed us to demon-

strate that even in the limit of infinite training data, nuisance parameters represent a fundamental

challenge for RU that can be mitigated by the appropriate firing rate nonlinearity.

Decoding from firing rates versus spike counts
In previous work, decoding was often performed from spike counts rather than firing rates

(Berens et al., 2012; Pitkow and Meister, 2012; Seung and Sompolinsky, 1993; Shamir, 2014;

but see Abbott and Dayan, 1999; Ecker et al., 2011; Shamir and Sompolinsky, 2006). The trans-

formation between the two entails further information loss due to the discrete nature of spike counts

and potential additional (Poisson) stochasticity in them, with the magnitude of this information loss

depending on the time window used for counting spikes. However, in the limit of large time win-

dows or large populations, variability in firing rates due to nuisance parameter variability dominates

over the effects of spiking variability. While the relevant time window for decoding may depend on

the ecological situation and the specific task an animal is facing, the size of the population is likely

large enough to allow the effective averaging out of spiking variability. Importantly, we have also

shown that population size only scales overall performance but does not affect the value for the opti-

mal threshold (Figure 6—figure supplement 1). Moreover, the Gaussian variability in membrane

potentials with deterministic conversion to firing rates we assumed, combined with a deterministic

spike generation process, has been shown to result in spike count variability that is
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phenomenologically similar to classical Poisson spike count models (Carandini, 2004) and in fact

matches experimentally observed stimulus (orientation and contrast) dependent changes in spike

count (co-)variability better (Bányai et al., 2017). Thus, we expect our results to generalise to spike

count decoding from large experimentally recorded populations.

Noise correlations
We found an increase, albeit relatively small, in decoding performance with an increase in noise cor-

relations (Figure 6D, showing results for uniform noise correlations – similar results, not shown, were

obtained with other correlation structures). Although this may at first seem counterintuitive (correla-

tions imply redundancy), it is well known that the effects of noise correlations depend on their rela-

tion to the tuning of cells (Averbeck et al., 2006; Lin et al., 2015) and they generally increase linear

Fisher information for the particular (tuning-independent) pattern of correlations we studied

(Abbott and Dayan, 1999). As expected, information limiting correlations decreased the perfor-

mance of both the optimal Bayesian decoder and of the linear decoder, such that the efficiency of

the linear decoder relative to the optimal decoder became higher – that is the resulting code was

relatively more linearly decodable. While other patterns of correlations may result in a decrease of

performance, noise correlations in V1 tend to be small overall (Ecker et al., 2011). Moreover, as we

argued above, effective noise correlations will be dominated by correlations induced by nuisance

parameter variability in the settings we studied, and so the effects of ‘standard’ noise correlations

are likely to be diminishing.

Complex cells in V1
Orientation selectivity is a central feature of V1 neurons (Hubel and Wiesel, 1968). We argued that

the mixed selectivity of neurons affects the linear decodability of stimulus information adversely: if

neurons are selective to additional stimulus features then variations in these will likely cause repre-

sentational entanglement. Stimulus phase is particularly prone to causing representational entangle-

ment of orientation information if neuronal responses are jointly modulated by both phase and

orientation. Importantly, the level of phase selectivity greatly varies across neurons (Niell and

Stryker, 2008; Skottun et al., 1991). For a neuron that is sensitive to orientation but not to phase,

a so-called complex cell, variability in stimulus phase is not detrimental and decodability remains

intact. It is unclear if the FRNL-based mechanism of RU contributes to the emergence of such com-

plex cells, but there is a suggestive correspondence between the canonical model of complex cells

and the architecture we studied. According to the canonical model of complex cell responses, these

responses are brought about by a specific pooling of simple cell responses. Intriguingly, the mathe-

matical form of this pooling is essentially isomorphic to the linear decoder we studied here: it takes

a linear combination of the non-linearly (typically quadratically) transformed responses of a number

of simple cells differing in their preferred phases (Hubel and Wiesel, 1968) and potentially other

receptive field properties (Rust et al., 2005). This suggests that the same principles that we found

determine the optimal firing threshold of simple cells for an abstract linear decoder may also deter-

mine the optimal firing threshold of simple cells for the efficient operation of complex cells. Further-

more, our simulations show similar detrimental effects for nuisance parameters other than phase,

including spatial period. For these other nuisance parameters, complex cell properties have limited

capacity to prevent the detrimental effect of entanglement. We argue that the FRNL provides a sur-

prisingly effective solution for the more general problem of decoding under nuisance parameter

uncertainty.

The computational role of the FRNL
We have shown that the FRNL has an important computational role in RU. Previous work implicated

the FRNL of V1 cells in achieving contrast-invariant orientation tuning curves in V1 simple cells

(Finn et al., 2007). This effect can also be understood as a spacial case of a mechanism promoting

RU: contrast-invariant tuning curves contribute to more efficient contrast-invariant decoding of firing

rates by ensuring that firing rates are simply scaled by contrast and so decision boundaries for orien-

tation decoding (Figure 2) remain radial and thus linear when contrast varies (Ma et al., 2006). How-

ever, contrast is but one of several nuisance parameters whose variability makes RU of orientation

information challenging in V1, and as we have shown, other nuisance parameters (phase and spatial
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period) have even more dramatic effects (Figure 4). Our results thus extend previous work by plac-

ing contrast invariant tuning curves in the wider context of RU and showing that the FRNL of simple

cells plays a general role in keeping orientation information linearly decodable in the face of variabil-

ity in a number of nuisance parameters.

The FRNL has been shown to contribute to performing linear classification on arbitrary mappings

of a set of variables (Barak et al., 2013). In such tasks, no single input feature alone can be used for

solving the task by linear read-out. Thus, mixed selectivity (i.e. the property that neuronal responses

depend on multiple stimulus attributes, Asaad et al., 1998; Churchland and Shenoy, 2007;

Warden and Miller, 2010) was shown to be advantageous and even necessary (e.g. in higher-order

association cortices during tasks requiring cognitive flexibility, Rigotti et al., 2013). In contrast, in

the standard task of orientation decoding in V1 considered here, an ‘orderly’ input-output mapping

is required, in which one input feature needs to be mapped to the output monotonically. For this

task, the mixed selectivity of neurons is less of a blessing: if neurons had pure selectivities for orien-

tation such that their responses did not depend on any other stimulus parameters then variation in

nuisance parameters would not lead to representational entanglement. Moreover, earlier work on

the effects of response sparsification on linear decodability studied a network of abstract binary neu-

rons (Barak et al., 2013) and thus could not relate sparseness to a biophysically well-defined firing

threshold as we did. Our results generalise the utility of the FRNL, showing that it pertains even to

an elementary sensory decoding task.

Given that the main direct effect of the FRNL is the sparsification of neural responses (Figure 3A,

red), one might then intuitively reason that setting the FRNL threshold to very high values to achieve

ultra-sparse codes could increase linearly separability even more. In this limit, each image would be

coded as a one-hot population response vector. Although one-hot population coding achieved by

ultra-sparse codes has appealing theoretical properties, it fundamentally relies on assuming no

noise, and requires an exponential number of neurons (in the number of nuisance parameters). In

fact, in the (unrealistic) limit of no noise, the question of an optimal threshold even becomes some-

what moot as essentially all thresholds above a minimum will perform equally well (essentially per-

fectly) – as the broadening of the robust performance regime towards low values of the noise-to-

signal ratio in Figure 7C (and Figure 7—figure supplement 3) also suggests. Moreover, we expect

ultra sparse coding to be particularly sensitive to contrast as a nuisance parameter (as the correct

threshold for achieving a one-hot code will critically depend on the overall scaling of responses

which in turn depends monotonically on contrast, such that selecting a single optimal threshold is

impossible). Importantly, the conditions for ultra-sparse codes are also unlikely to be met in real V1,

for example the experimentally measured levels of noise-to-signal ratio in our V1 data were well

above 0 (Figure 7). Indeed, at these realistic noise levels, we found that increasing the number of

neurons in the population did not favour higher thresholds which could have potentially led to such

ultra sparse codes (Figure 6B).

The FRNL-induced increase in sparseness has also been shown to contribute to increasing mutual

information between visual stimuli and the responses of retinal ganglion cells (Pitkow and Meister,

2012), such that there was an optimum for the FRNL threshold at intermediate values. Although our

results may superficially suggest a similar interpretation, they are in fact orthogonal. It is important

to note that, in our case, the performance of the optimal decoder (the analogue of mutual informa-

tion measured by Pitkow and Meister, 2012) was a monotonically decreasing function of the FRNL

threshold, without an optimum at intermediate values. The difference is due to the fact that

Pitkow and Meister (2012) modeled the effects of the FRNL threshold in a regime in which spiking

noise dominated. Specifically, they studied small populations of neurons (N � 8) and kept the aver-

age firing rate of neurons constant (by adjusting their peak firing rate) as the FRNL threshold was

varied. This meant that a decrease in the threshold in their setting led to sustained firing with low

spike counts, which were associated with high relative variability, thus diminishing information in the

low threshold regime. In contrast, we considered a large population of neurons in which spiking

noise is less relevant (and thus decoding performance does not depend on the overall scaling of fir-

ing rates) and instead the effects of nuisance parameters dominate (see above). Indeed, in line with

our results, Pitkow and Meister (2012) also found that increasing population size shifted the value

of the FRNL threshold at which total (mutual) information was maximised towards smaller values,

such that the dominant effect was now a decrease in total information for higher thresholds. Thus,

the optimal intermediate value for the FRNL threshold we found emerged for a fundamentally
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different reason: because we measured linearly decodable information rather than total information,

which is brought about by a trade-off between total information and sparseness. Taken together,

these results suggest that the FRNL threshold may play an important role in neural computations at

different stages of sensory processing via different mechanisms: by maximising total information

transmission in the retina, and by achieving RU in the visual cortex.

Materials and methods

Population model of MP responses
The default population model for encoding stimuli consisted of N = 500 simple cells whose mem-

brane potential responses were established by calculating circular Gabor filter responses plus Gauss-

ian noise (Figure 1B). Each circular Gabor filter (indexed by n) is described by six parameters: the

coordinates of the center of the filter measured from the line of sight (xn,yn), the spatial period of the

plane wave component of the Gabor filter (l), the orientation of the sinusoidal component

(�n 2 0; 180�½ Þ), the phase offset of the sinusoidal component relative to the center of the filter

(’n 2 0; 360�½ Þ), standard deviation of the circular Gaussian envelope (d). All angles are measured in

degrees, retinal distances (coordinates, spatial period, envelope width) are measured in degrees of

visual angle. Numerical values of the above filter parameters were chosen according to Table 1. In

the default model, spatial period and envelope width were identical across the population and iden-

tical parameters were defined to be approximately equal to the empirical average from Jones and

Palmer (1987). Filter locations were uniformly sampled in the whole visual field (90 degrees), which

ensured that not only local stimulus effects were considered. Preferred orientations and phases of

Gabor filter were uniformly sampled from the entire range of possible values (Figure 3—figure sup-

plement 1A). Code used for simulation is available on GitHub

(Gáspár, 2019; copy archived at https://github.com/elifesciences-publications/representational_

untangling).

In order to limit simulation time and eliminate discretisation noise, analytical filter responses are

calculated in response to sine wave stimuli. A strictly finite size realistic receptive field requires trun-

cation of the receptive field but such a truncation would prevent the analytical calculation of filter

responses, therefore only the standard exponentially decaying Gaussian envelope of the Gabor-filter

is supposed to keep the filter localised. Filter response of a circular Gabor filter with infinite domain

to an infinite sine wave stimulus when spatial period of the filter and the stimulus are supposed to

be identical is given by:

uDCþ uAC cos  þ’�fð Þexp � 2pd
l

� �2
1� cos ��#ð Þð Þ

h i

þ

uAC cos  þ’�fð Þexp � 2pd
l

� �2
1þ cos ��#ð Þð Þ

h i (1)

Here response is shifted and scaled such that the predefined value uDC matches the phase aver-

aged DC component and uAC matches the amplitude of the phase modulated AC component at the

preferred orientation at 100% contrast level (for derivations in the case of unequal spatial periods

see the Appendix 1). In the above expression l is the common spatial periods; #: grating stimulus

orientation; f: stimulus phase relative to the line of sight;

 ¼ 2p sin #ð Þx� cos #ð Þy½ �=l (2)

a phase term belonging to the filter location. A similar expression can be obtained for more general

settings of a grating stimulus (not shown). Deviation of the above analytical response from the

response of a truncated Gabor filter (to a local stimulus) is not substantial. Subscript indices of filter

parameters, identifying a particular filter of the population are not shown for clarity.

Parameters of the Gabor filters determine the mean response characteristics of a model neuron:

the mean membrane potential was assumed to be equal to the linear filter response to a stimulus.

As a consequence, mean responses of individual neurons to oriented grating stimuli can be charac-

terised by a tuning curve with peak response corresponding to the preferred orientation of the neu-

ron. The response of a neuron was the sum of the mean response and a Gaussian noise. The noise,

however, was not necessarily independent: in some experiments (Figure 6D) correlation between
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membrane potential responses was introduced by using multivariate Gaussian noise to determine

the responses of the complete population. Noise was assumed to have no temporal structure

beyond a limited time window, therefore samples were considered to be iid samples in 20 ms time

bins. Amplitude and contrast parameters of stimuli are kept constant throughout the simulations, fil-

ter responses are scaled and shifted to match empirical neural responses, here characterised by

uDC and uAC (Table 1). Noise level was set to be 25% relative to the signal variance (matched to Car-

andini, 2004 example simple cell).

Population models for LGN and retina responses
To study the potential contribution of FRNL to RU at earlier stages of the visual processing hierarchy,

we defined LGN and retina models by altering the filter properties of the encoding population. Ret-

ina receptive fields were approximated by pixel responses, while LGN receptive fields were approxi-

mated by difference of Gaussian filters (DoG, Dayan and Abbott, 2005). In order to be able to use

analytic calculations derived for Gabor filters, we approximated DoG responses as the difference of

two constrained Gabor filters. The sinusoidal component of the Gabor filter was modified such that

the phase relative to the Gabor center (’n) was zero and the spatial period was increased so that

within the Gaussian envelope there was no practical modulation. The sizes of the central ON-region

and peripheral OFF-region were set to 1.5˚ and 4˚, respectively. To be able to contrast retina, LGN

and V1 analyses, filter positions were matched to those of the V1 population and retina/LGN filter

responses were calibrated such that stimulus variance of the model neurons were equal to their cor-

responding neurons in V1.

Mapping of membrane potentials to firing rates
The nonlinear transformation from membrane potential to firing rate is described by the firing rate

nonlinearity (FRNL). A general threshold-power-law function, r uð Þ ¼ F u� uth½ �kþ, is used to simulate

simple cell firing responses that has empirically been found to fit simple cell responses well (Caran-

dini, 2004). In this expression :½ �þ indicates rectification. The specific value of the scaling

factor F does not affect results. The value of the power-law exponent for the simulations

was k ¼ 1 (except Figure 6 and Figure 6—figure supplement 1) and the range of possible physio-

logical values (Carandini, 2004) was explored when fitting membrane potential recordings (Fig-

ure 7). Parameters of the FRNL are assumed to be identical across cells (but see Figure 8). Since

nonlinearity is central to our analysis FRNL threshold was varied in the simulations in order to study

its effect on decoding performance.

Linear decoder
A single-layer decoder was used to perform probabilistic linear decoding of orientation information

from the stimulus. The decoder represented K classes and was performing multinomial logistic

regression by assigning probabilities to the represented classes. Weights, which could take both

positive and negative values, were tuned to be optimal by supervised learning on a set of static

training stimuli (Figure 3—figure supplement 1B,C). In the training data set multiple values of the

decoded parameter belonged to any given class (M# in the case of orientation). Training and testing

was performed on different stimulus sets, and training and testing samples differed in membrane

potential noise. Wherever nuisance parameters were present, parameters of training images were

sampled from the distribution characteristic of the nuisance parameter(s). Parameters of individual

test images were sampled from the same distribution, except for Figure 5 where a different parame-

ter distribution was used for one of the nuisance parameters. Stimulus parameter distributions were

constructed such that these approximated the characteristics of natural images. Fitting of the weight

parameters of the decoder was performed in MATLAB using a custom code that uses the Barzalai-

Borwein method to perform gradient descent (Barzilai and Borwein, 1988; Gáspár, 2019). Training

stimulus parameter space is uniformly covered by a 2D grid in case of phase uncertainty, and the

same grid is used to test the decoder. Mrep (and Mrep0 ) describes the number of repetitions with newly

generated noise to generate the whole training (or testing) stimulus data set (Table 1). For any given

nuisance parameter that is characterised by non-uniform prior (see Figure 4) a distorted multidimen-

sional grid is used to generate the stimulus bank. For spatial period, a lognormal distribution with

parameters � = 0.95, s = 0.55 was used. For contrast, a beta-distribution was fitted to local contrast
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distribution based on a small dataset containing 24-hour time-lapse images, resulting in

parameters a = 2.4, b = 3.6.

The resulting decoder provided class probabilities, and the maximum class probability was used

to indicate the decision. We tested the robustness of our claims by using alternative methods for

Table 1. Parameters of the decoding model under phase uncertainty and their default values are shown or their generator methods

are indicated (first column).

Description of the parameters and methods are expounded (second column). The performance curve of the above described standard

model is shown by the thick blue curve on Figure 3A and Figure 4B and used as a reference simulation on Figures 5 and 6 where

parameters of the model are varied.

Parameters of the encoder Gabor population

N ¼ 500 Number of Gabor cells in the encoder population (with the exception of Figure 6B)

xn; yn ~ uniform over a disk
R ¼ 90

�
coordinates of the center of Gabor filter n measured from the line of sight; randomly chosen from a uniform
distribution over a disk with radius R (with the exception of Figure 3—figure supplement 3)

l ¼ 3
� period of the plane wave component of Gabor filters; identical for all cells (with the exception of Figure 4—figure

supplement 2)

�n
�½ � ¼ 180

� � ðn� 1Þ=N 2 ½0�; 180�Þ preferred orientation of cell n; evenly distributed on the entire range

’n
�½ � 2 ½0�; 360�Þ phase offset of the sinusoidal wave component of the Gabor filter relative to the center; evenly distributed on the

entire range, but the order is randomly permuted to avoid correlation with the preferred orientation (with the
exception of no-nuisance simulations where ’0 ¼ 180)

d ¼ 2
� standard deviation of the circular Gaussian envelope of Gabor filters; identical for all cells

Parameters of the rescaling of filter responses to membrane potential values

uDC ¼ �60 ½mV� mean value of phase modulated filter responses

uAC ¼ 12 ½mV� peak amplitude of maximally modulated filter responses; numeric value is chosen as a typical value (Carandini, 2004)
(but varied on Figure 6A)

Variability and covariability of membrane potential responses

s ¼ � � uAC ¼ 3 ½mV�;� ¼ 25% std of Gaussian membrane potential noise is measured relative to the signal amplitude; identical for all cells (but
varied on Figures 6, 7C and 8)

Sij ¼ �ij � s2 ¼ 0; i 6¼ j off-diagonal elements of the N � N covariance matrix; no correlation structure is assumed (with the exception of
Figure 6)

Firing rate nonlinearity

k ¼ 1 power-law exponent of the FRNL (but varied on Figures 6E, 7C and 8)

uth ½mV� threshold of the FRNL; this is always a running variable in the simulations

F ¼ 16:7½Hz� prefactor of the FRNL of Gabor cells

Parameters of the categorisation task

K ¼ 10 number of discrete orientation categories (varied only on Figure 6C)

Parameters of the stimulus set used for training the decoder

M# ¼ 10 number of bins for stimulus orientation, #, within an orientation category (represents orientation uncertainty)

Mf ¼ 50 number of bins for stimulus phase, f(represents phase uncertainty)

Mrep ¼ 20 number of stimulus repetitions at a given (f; #) with independent noise

M ¼ K �M# �Mf �Mrep ¼ 10
5 total number of stimuli used for training the decoder

ls ¼ 3
� Spatial period of sine wave stimuli; matched to the spatial period of the Gabor filters (but see Figures 4 and 5 and

respective captions)

c ¼ 0:5 contrast of the sine wave stimuli; chosen to be the mean value of the natural distribution used later in Figure 4 or
Figure 6 (but see Figure 5)

#m½deg� 2 ½0; 180Þ orientation of the grating stimulus m (m ¼ 1; . . . ;M), 0 being the horizontal direction

fm½deg� 2 ½0; 360Þ phase of grating stimulus m relative to line of sight; generated such that (#m;fm) pairs come from the
M# �Mf rectangular grid covering uniformly the #–f parameter space

Parameters of the stimulus set used for testing the decoder

Mrep0 ¼ 50 number of stimulus repetitions with given (#;f); other parameters of the testing stimulus bank is the same as the
training parameters above

DOI: https://doi.org/10.7554/eLife.43625.020
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decision. These analyses revealed variations in the measured level of decoding performance but the

optimal threshold was invariant to the choice of performance measure (Figure 3—figure supple-

ment 2A). The efficiency of the decoding is measured by fraction correct.

Optimal decoder
The optimal decoder was constructed by inferring class labels from data by explicitly inverting the

process of the generation of output from the population of neurons. Membrane potential responses

of individual neurons for a grating stimulus with a particular orientation and phase was described by

normal distribution

p unj#;’ð Þ ¼ N un;gn #;’ð Þ;s2
� �

; (3)

where gn #;’ð Þ is the Gabor-filter response and s2 is the level of membrane potential noise. Likeli-

hood of observing a particular firing rate response is

p rnj#;’ð Þ ¼ p0n #;’ð Þd rnð ÞþH rnð Þ�n rnj#;’ð Þ; (4)

where p0n #;’ð Þ is the baseline probability of zero firing rate response, HðÞ is the Heaviside function

and �n rnj#;’ð Þ ¼ p unð j#;’Þ dr=duð Þ�1. Assuming a discrete set of stimulus phases, the posterior proba-

bility of orientation #k is

p #k j rð Þ ¼
X

J

j¼1 n

Y

p rnj#k;’j

� �

p #kð Þp ’j

� �

=p rð Þ: (5)

Priors, p #ð Þ and p ’ð Þ, were chosen to be uniform.

An optimal decoder was derived when ILC was assumed to contribute to the membrane potential

noise. We constructed the decoder by explicitly modelling how ILC is introduced: ILC can be mod-

elled by assuming that the value of the decoded variable (the orientation in our case) is not constant

but changes stochastically. We assumed that the orientation of stimuli, #, are sampled from a normal

distribution around the true value, Q:

p # j Qð Þ ¼N #;Q;s2

#

� �

: (6)

In order to obtain the posterior probability for the true orientation, a marginalisation over the sto-

chastically sampled orientations beyond the marginalisation over phases is required:

p Q jrð Þ ¼
#

X

p Q;# jrð Þ ¼
#

X

p # j rð Þp # j Qð Þ: (7)

Contrast and spatial period decoding
Orientation decoding is a standard measure of stimulus encoding in V1 simple cells but the joint

selectivity to a number of other variables, including contrast and spatial period means that the con-

tribution of FRNL to decoding these variables can also be directly tested. Diversity of the filter prop-

erties of the encoding population is crucial for efficient decoding. When studying orientation

decoding properties of the population we ensured diversity in filter orientation and phases but used

identical spatial period sensitivities across the population. When studying spatial period and contrast

decoding, we constructed a population which represented the spatial period characteristics of the

stimuli by matching the distribution of period of the filters by sampling the spatial periods from the

period distribution of the stimuli. Such an encoding population was used in all of the analyses in Fig-

ure 4—figure supplement 2. Here, after choosing a particular parameter for decoding, all other

stimulus parameters were regarded as nuisance parameters. Classes for the decoded stimuli were

established by partitioning the decoded parameters according to the cumulative distribution of the

stimuli: stimulus classes were defined as the centers of the partitions containing equal probability

mass.

Infomax model
The objective of the infomax model is the optimisation of information transmission with respect to

the decoding variable, which is formulated through the mutual information:
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I #; rð Þ ¼ PK
k¼1

R

dr p #k; rð Þ log p #k ; rð Þ
p #kð Þp rð Þ¼

PK
k¼1

R

dr p r j #kð Þ p #kð Þ log p #k j rð Þ �PK
k¼1

p #kð Þ logp #kð Þ
(8)

where the first term on the right hand side is the conditional entropy of the class label given possible

responses and the second term is the entropy of the category distribution, the index k runs through

the different orientation classes. Note that the conditional probability under the logarithm in the first

term is the posterior of the class label. The second term in Equation 8 does not depend on the

response distribution therefore it is not affected by changes in firing properties of the neurons,

including the firing threshold.

The probabilistic fraction correct (PFC) performance measure,

PFC ¼
Y

M

m¼1

p #mjrð Þ
 !1=M

; (9)

where m runs through the trials of the experiment, is in an intimate relationship with the mutual

information (Equation 8). This can be seen by taking the logarithm of PFC is

logPFC ¼ 1

M

X

M

m¼1

logp #mjrð Þ (10)

which corresponds to a Monte Carlo approximation to the integral in the conditional entropy in

Equation 8 since in individual trials stimuli and population responses to the particular stimulus can

be regarded as samples:

#m ~p #mð Þ
r~p r j#mð Þ: (11)

This indicates that the PFC performance measure is an approximation to exponent of the mutual

information, up to a scaling constant that is determined by the entropy of the stimuli (Figure 3—fig-

ure supplement 2B).

Experimental subjects and surgical procedures
All experimental procedures were approved by the University of California Los Angeles Office for

Protection of Research Subjects and the Chancellor’s Animal Research Committee. 1–12 month old

C57Bl6/J mice underwent implantation of head-bars, surgery recovery, acclimation to the spherical

treadmill and craniotomy over V1 as described in Polack et al. (2013). A 3 mm diameter coverslip

drilled with a 500 mm diameter hole was placed over the dura such that the coverslip fit entirely in

the craniotomy and was flush with the skull surface.. The coverslip was maintained in place using Vet-

bond and dental cement and the recording chamber was filled with cortex buffer containing 135

mM NaCl, 5 mM KCl, 5 mM HEPES, 1.8 mM CaCl2 and 1 mM MgCl2. The head-bar was fixed to a

post and the mouse was placed on the spherical treadmill to recover from anesthesia. All recordings

were performed at least 2 hr after the end of anesthesia.

Electrophysiological recordings
Two-photon guided in-vivo whole-cell recordings were performed as described in Polack et al.

(2013). Long-tapered micropipettes made of borosilicate glass (1.5 mm outer diameter, 0.86 mm

inner diameter, Sutter Instrument) were pulled on Sutter Instruments P-97 pipette puller to a resis-

tance of 3–7 MW, and filled with an internal solution containing 115 mM potassium gluconate, 20

mM KCl, 10 mM HEPES, 10 mM phosphocreatine, 14 mM ATP-Mg, 0.3 mM GTP, and 0.01–0.05 mM

Alexa-594. Whole-cell current-clamp recordings were performed using the bridge mode of an Axo-

clamp 2A amplifier (Molecular Devices), further amplified and low-pass filtered at 5 kHz using a

Warner Instruments amplifier (LPF 202A). Series of current pulses of small intensity (typically �100

pA) were used to balance the bridge and compensate the pipette capacitance. The membrane

potential was not corrected for liquid junction potentials (estimated to be about 10 mV).
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Visual presentation
Visual stimuli were presented as described in Polack et al. (2013). A 40 cm diagonal LCD monitor

was placed in the monocular visual field of the mouse at a distance of 30 cm, contralateral to the cra-

niotomy. Custom-made software developed with Psychtoolbox in MATLAB was used to display drift-

ing sine wave gratings (single orientations at the preferred orientation, temporal frequency = 2 Hz,

spatial frequency = 0.04 cycle per degree, contrast = 100%). The presentation of each orientation

lasted 3 s, which was preceded by the presentation of a gray isoluminant screen for an additional 3

s.

Data processing of intracellular measurements
MP changes of V1 simple cells induced by drifting grating stimulus were fitted with three parame-

ters: MP DC level (uDC), signal variance (uAC), level of noise (s). Further, FRNL threshold was also

extracted from MP recordings for each neuron individually. First, a spike removal algorithm is

applied on the raw MP data to obtain the generator potential (Carandini, 2004) and the time of

action potentials. Our spike removal algorithm used composite analytical fits (Figure 7—figure sup-

plement 1) to accurately subtract spikes from raw MP data. This allowed precise estimation of resid-

ual MP levels at the location of spikes, which was required for FRNL calculation. Since the phase of

periodic membrane potential modulation shows some variance across trials, and there are trials in

which the phasic modulation of the membrane potential is difficult to determine, we performed the

analysis in such a way that individual cycles of the periodic modulation are extracted from the 3-sec

duration of stimulus presentation (6 cycles). The three parameters of the membrane potential

response were calculated individually for these trials from the corresponding data segments. To do

so, multiple cycles from a given trial were overlaid. The DC level (in mV) was established by averag-

ing across cycles and time; AC level (in mV) was established by averaging across the overlaid cycles

and measuring the amplitude of the average modulation; noise level (in mV2) was measured by cal-

culating variance across overlaid cycles.

For the estimation of the parameters of FRNL, the method described by Carandini (2004) was

used (Figure 7B). The trial-averaged generator potential was segmented using 20 msec windows,

and mean membrane potential levels in these bins were used to construct a histogram with 1 mV bin

size. Another histogram was constructed for the number of spikes generated at any given membrane

potential level. To obtain the mean firing rate corresponding to a membrane potential level, spike

counts were normalised with the total duration of membrane potential segments in that bin. A

threshold-linear function was fitted to the above determined FRNL to estimate the FRNL threshold.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.43625.022

1 Intuition for the specificity of representational
untangling of orientation decoding to V1
The reason for the difference between V1 and these upstream areas in the ability of the FRNL

to help linear decodability can be understood through a simple intuition. The main effect of

the FRNL is distinguishing between stimuli based on whether the corresponding neural

responses exceed the firing threshold or not. This is useful for orientation decoding with phase

nuisance when cells can attain different maximal membrane potential values depending on

stimulus orientation even when pooling across all possible stimulus phases. For Gabor filter

receptive fields this is clearly the case: at the preferred orientation of a cell, it will be deeply

modulated by phase, and will attain a high maximal membrane potential value at its preferred

phase, while at the orthogonal orientation it will be unmodulated by stimulus phase and will

thus only attain intermediate values of the membrane potential. If the firing threshold is

between these intermediate and maximal values, the FRNL can contribute to decoding. In

contrast, cells with non-oriented receptive fields, such as those we used to model upstream

areas, will show the same amount of membrane potential modulation at any stimulus

orientation, and thus the attained maximal membrane potentials will not differ between

stimulus orientations. As a result, no firing threshold will be able to distinguish between

different orientations, and linear decoding performance remains at chance, just as we found.

2 Information-limiting correlations
Imposing a flat correlation structure on the membrane potential responses had a small effect

on peak performance (Figure 6—figure supplement 1C) and on optimal threshold

(Figure 6D). The effect of correlations, however, depends not only on magnitude but also on

its specific structure: Information Limiting Correlation (ILC) (Moreno-Bote et al., 2014) imply

covariations on neuron populations responses that are indistinguishable from those caused by

changes in the decoded stimulus, stimulus orientation in our case and are known to have

detrimental effects on coding. We investigated the effect of ILC by introducing orientation

noise in the stimulus: the orientation of input stimulus was randomly sampled from a five

degree mormal distribution. The ’private’ noise added to the linear filter responses (Figure 1)

was rescaled so that the total variance, the joint effect caused by the variance in stimulus drive

and that of the ’private’ noise, remained the same as in earlier simulations (3 mV). ILC limits

decoding performance by introducing uncertainty about the identity of the stimulus

orientation, which can be seen in decreased Bayesian decoder performance too (Figure 6—

figure supplement 2). Importantly, while ILC also affected linear decoding by reducing overall

performance, the qualitative properties of the firing rate decoder remained intact: the

decoder was characterised by a clear optimal threshold and the location of the optimum was

similar to the independent noise case. Interestingly, the magnitude of decline in linear

decoding performance relative to the performance of the optimal decoder is smaller when

variance is partly caused by ILC than in the case of a network where noise is independent

across neurons (90% vs. 78%, respectively).

3 Analytical calculation of Gabor filter responses to sine
grating stimuli
Gabor filter response (G x; yð Þ) to general sine wave stimulus,

Sðx;yÞ ¼ S0 þ S1 sinðpxþ qyþ rÞ (S1)

is calculated in a coordinate system aligned to the two cardinal axes of the Gabor filter. In this

coordinate system the general form of a Gabor filter is given by
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Gðx;yÞ ¼G0 exp �ax2� by2
� �

cosðuxþ vyþwÞ
(S2)

and the response of the filter is

I ¼
Z

¥

�¥

Z

¥

�¥

Gðx;yÞSðx;yÞdxdy (S3)

The integral is broken down into two terms according to the two terms of Equation S1

I0 ¼ G0 S0

Z

¥

�¥

Z

¥

�¥

e�ax2e�by2 cosðuxþ vyþwÞdxdy

I1 ¼ G0 S1

Z

¥

�¥

Z

¥

�¥

e�ax2e�by2 cosðuxþ vyþwÞ sinðpxþ qyþ rÞdxdy

We introduce ~I0 x; yð Þ and ~I1 x; yð Þ such that I0 ¼ G0 S0~I0 and I1 ¼ G0 S1~I0, where we omitted

the variables x and y for the clarity of the notation. We focus on the calculation of ~I1 since ~I0

can be obtained by substituting of p ¼ q ¼ 0 and r ¼ p=2. Expansion of trigonometric

functions results in sixteen terms, only four of which yield non-zero double integrals:

~I1 ¼ þcosðwÞ sinðrÞ
Z

¥

�¥

dxe�ax2 cosðuxÞcosðpxÞ
Z

¥

�¥

dye�by2 cosðvyÞcosðqyÞ þ

þcosðwÞ sinðrÞ
Z

¥

�¥

dxe�ax2 sinðuxÞsinðpxÞ
Z

¥

�¥

dye�by2 sinðvyÞsinðqyÞ þ

�sinðwÞcosðrÞ
Z

¥

�¥

dxe�ax2 cosðuxÞcosðpxÞ
Z

¥

�¥

dye�by2 sinðvyÞsinðqyÞ þ

�sinðwÞcosðrÞ
Z

¥

�¥

dxe�ax2 sinðuxÞsinðpxÞ
Z

¥

�¥

dye�by2 cosðvyÞcosðqyÞ

Using the addition and subtraction formulae for trigonometric functions,
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~I1 ¼ �cosðwÞsinðrÞ
4

Z

¥

�¥

dxe�ax2 ½cosððu� pÞxÞþ cosððuþ pÞxÞ��

Z

¥

�¥

dye�by2 ½cosððv� qÞyÞþ cosððvþ qÞyÞ� þ

þ cosðwÞsinðrÞ
4

Z

¥

�¥

dxe�ax2 ½cosððu� pÞxÞ� cosððuþ pÞxÞ��

Z

¥

�¥

dye�by2 ½cosððv� qÞyÞ� cosððvþ qÞyÞ� þ

� sinðwÞcosðrÞ
4

Z

¥

�¥

dxe�ax2 ½cosððu� pÞxÞþ cosððuþ pÞxÞ��

Z

¥

�¥

dye�by2 ½cosððv� qÞyÞ� cosððvþ qÞyÞ� þ

� sinðwÞcosðrÞ
4

Z

¥

�¥

dxe�ax2 ½cosððu� pÞxÞ� cosððuþ pÞxÞ��

Z

¥

�¥

dye�by2 ½cosððv� qÞyÞþ cosððvþ qÞyÞ�

(S4)

Using
R

¥

�¥
e�ax2 cosðmxÞ dx ¼

ffiffiffi

p
a

p

e�
m2

4a, all the integrals can be be expressed in a closed form:

~I1 ¼ þ p

4
ffiffiffiffiffi

ab
p cosðwÞsinðrÞ e�

ðu�pÞ2
4a þ e�

ðuþpÞ2
4a

� �

e�
ðv�qÞ2

4b þ e�
ðvþqÞ2

4b

� �

þ

þ p

4
ffiffiffiffiffi

ab
p cosðwÞsinðrÞ e�

ðu�pÞ2
4a � e�

ðuþpÞ2
4a

� �

e�
ðv�qÞ2

4b � e�
ðvþqÞ2

4b

� �

þ

� p

4
ffiffiffiffiffi

ab
p sinðwÞcosðrÞ e�

ðu�pÞ2
4a þ e�

ðuþpÞ2
4a

� �

e�
ðv�qÞ2

4b � e�
ðvþqÞ2

4b

� �

þ

� p

4
ffiffiffiffiffi

ab
p sinðwÞcosðrÞ e�

ðu�pÞ2
4a � e�

ðuþpÞ2
4a

� �

e�
ðv�qÞ2

4b þ e�
ðvþqÞ2

4b

� �

(S5)

After expansion and simplification the above equation results in

~I1 ¼
p

2
ffiffiffiffiffi

ab
p ½ sinðrÞcosðwÞ� sinðwÞcosðrÞ� e�

ðu�pÞ2
4a

�ðv�qÞ2
4b

�

þ

þ½ sinðrÞcosðwÞþ sinðwÞcosðrÞ� e�
ðuþpÞ2

4a
�ðvþqÞ2

4b

�

:

Finally this can be rewritten in a compact form

~I1 ¼
p

2
ffiffiffiffiffi

ab
p sinðr�wÞe�

ðu�pÞ2
4a

�ðv�qÞ2
4b þ sinðrþwÞe�

ðuþpÞ2
4a

�ðvþqÞ2
4b

� �

:

Substituting p ¼ q ¼ 0 and r ¼ p=2, we can obtain a closed form expression for ~I0:

~I0 ¼
p cosðwÞ

ffiffiffiffiffi

ab
p e�

u2

4a
�v2

4b:

Up to this point, for mathematical convenience, sine and cosine waves were parametrised

with the wave vectors ðu; vÞ and ðp; qÞ together with the phases w and r. In general, wave

vectors ðkxjkyÞ can be mapped onto the more commonly used spatial period (l) and

orientation (#) parameters through
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kx ¼
2p

l
sinð#Þ ; ky ¼�2p

l
cosð#Þ:

In the above derivation we assumed the coordinate system to be centred on the centre of

the Gabor filter. Since in a population of Gabor filters this simplifying assumption cannot hold

for most of the filters, we relax the assumptions to have arbitrary centre for the Gabor filter.

Under these conditions, a Gabor filter is characterised by eight parameters: x0, y0, #G, s, �, d,

lG, ’G, where ðx0; y0Þ is the centre of the Gaussian envelope, #G 2 ½0;pÞ is the orientation of its

major axis measured from the horizontal axis of the reference coordinate system, s is the

largest variance of the Gaussian in the direction of the major axes, � defines the ratio of the

minor and major axes, d 2 ½0;pÞ is the relative orientation of the cosine wave component

measured from the major axes, lG is the period of the cosine, and ’G is its phase at the centre

of the Gaussian. This set of parameters can be mapped to our original set of six parameters

(G0, a, b, u, v, w) by

G0 ¼ 1

2p�s2
; a¼ 1

2s2
; b¼ 1

2�2s2
;

u ¼ 2p

lG
sinðdÞ ; v¼�2p

lG
cosðdÞ ; w¼’G

Analogously, ~I1 can be also expressed in this coordinate system, using the parameters

spatial period (lS), orientation (#S), phase (’S), and amplitude (S1). The spatial period and the

amplitude are independent of the coordinate system but orientation (#0) and phase (’0)

undergo a transformation upon change in the coordinate system:

#0 ¼ #S �#G (S6)

r¼’0 ¼ 2p

lS
½ sinð#SÞx0� cosð#SÞy0� þ’S (S7)

Taken together, the Gabor filter response with parameters x0, y0, #G, s, �, d, lG, ’G, to a

sinusoidal grating stimulus, parametrised by S0, S1, lS, #S, ’S, is

I1 ¼
S1

2
sinð’0 þ’S �’GÞe

�2p2s2 sinðdÞ
lG

�sinð#S�#GÞ
lS

� �2

�2p2�2s2 cosðdÞ
lG

�cosð#S�#G Þ
lS

� �2
2

4 þ

þ sinð’0 þ’S þ’GÞe
�2p2s2 sinðdÞ

lG
þsinð#S�#GÞ

lS

� �2

�2p2�2s2 cosðdÞ
lG

þcosð#S�#G Þ
lS

� �2
3

5

I0 ¼ S0 cosð’GÞ exp �2
ps

lG

� �2

ðsin2 d þ �2 cos2 dÞ
" #

where ’0 ¼ 2p sinð#SÞx0 � cosð#SÞy0½ �=lS.

Gáspár et al. eLife 2019;8:e43625. DOI: https://doi.org/10.7554/eLife.43625 30 of 30

Research article Neuroscience

https://doi.org/10.7554/eLife.43625

