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Abstract
In this study, we analyze the capability of several state of the art machine learning methods to predict whether patients
diagnosed with CoVid-19 (CoronaVirus disease 2019) will need different levels of hospital care assistance (regular hospital
admission or intensive care unit admission), during the course of their illness, using only demographic and clinical data. For
this research, a data set of 10,454 patients from 14 hospitals in Galicia (Spain) was used. Each patient is characterized by
833 variables, two of which are age and gender and the other are records of diseases or conditions in their medical history.
In addition, for each patient, his/her history of hospital or intensive care unit (ICU) admissions due to CoVid-19 is available.
This clinical history will serve to label each patient and thus being able to assess the predictions of the model. Our aim is to
identify which model delivers the best accuracies for both hospital and ICU admissions only using demographic variables
and some structured clinical data, as well as identifying which of those are more relevant in both cases. The results obtained
in the experimental study show that the best models are those based on oversampling as a preprocessing phase to balance
the distribution of classes. Using these models and all the available features, we achieved an area under the curve (AUC) of
76.1% and 80.4% for predicting the need of hospital and ICU admissions, respectively. Furthermore, feature selection and
oversampling techniques were applied and it has been experimentally verified that the relevant variables for the classification
are age and gender, since only using these two features the performance of the models is not degraded for the two mentioned
prediction problems.
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1 Introduction

Coronavirus disease 2019 (CoVid-19), caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
has become an unprecedented public health crisis, being
declared by the World Health Organization as a pandemic in
March 2020. The so-called first wave killed almost 700,000
people before the summer of this year. Since then, there have
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been other waves that appear to be even worse in the number
of people affected and, in some cases, even in the number
of deaths. The clinical symptoms of patients infected with
CoVid-19 include, among others, fever, cough, shortness
of breath, myalgia, fatigue, decrease of leukomonocyte
and abnormal chest computed tomography imaging. The
process of treatment and cure of the disease can be carried
out by the patient at home or at some point it may require
admission to the hospital or even to the intensive care
unit (ICU). Because of this, the Health Systems of many
countries in the world have reached the point of collapse
due to the increasing and simultaneously demand for ICUs.
For this reason national governments are trying to apply
restrictive policies so as to avoid new collapses of the
hospitals. Therefore, it has become urgent to identify and
predict those cases that could progress to critical due to
the high mortality rate of the latter. In order to make
these predictions, Artificial Intelligence models can be
used. Among them, Machine Learning (ML) algorithms

/ Published online: 10 September 2021

Applied Intelligence (2022) 52:6413–6431

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02743-2&domain=pdf
http://orcid.org/0000-0003-4203-8720
mailto: oscar.fontenla@udc.es


are specially useful as nowadays we are able to generate
and collect an impressive amount of data, that can be later
used for further analysis. This is especially important in the
field of Medicine, in which several Artificial Intelligence
models have been used to automatize time-consuming and
subjective manual tasks performed by practitioners. In
particular, machine learning techniques have been widely
and successfully applied to medical diagnosis for decades
[11, 17].

In this research, we analyzed the capability of automatic
classification systems from the field of machine learning
to identify, based on data from patients diagnosed with
CoVid-19, those cases that will require either hospital or
intensive care admission at some point in their illness. Our
aim is to find out which ML method and variables are
the best predictors for both modes of hospital admissions.
Up to our knowledge, this is the first work that addresses
these two important issues at a time using only clinical and
demographic data. The development of these models can
be a very useful tool for planning future needs in hospital
management based on the cases detected.

2 Related work

Since the very beginning of the CoVid-19 outbreak,
machine learning researchers have made a huge effort
to search for new algorithms to support in tackle this
pandemic. Lalmuanawma et al. [19] reviewed the latest
advances of machine learning to improve treatment,
medication, screening, prediction, forecasting, contact
tracing, and drug/vaccine development process for the
CoVid-19 pandemic. Tseng et al. [32] made a survey
summarizing several different applications of computational
intelligence techniques for confronting different problems
within the CoVid-19 pandemia, namely: (i) tracking and
predicting virus propagation, such as in Cassaro et al.,
Kucharski et al. and Salgotra et al. [10, 18, 30] (ii)
characterization of the virus infections, as in the works
by Oh et al. and Roy et al. [25, 29] (iii) design of
adequate treatments as in Ren et al. [27], (iv) development
of precaution mechanisms, approached in the works by
Niazkar et al. and Salgotra et al. [24, 30] and finally, (v)
public health policy making, using genetic algorithms [38],
or fuzzy logic [36].

Our proposal belongs to the type (ii) characterization
of the virus infections, in which we aim at risk-profiling
and prediction of the evolution of the patients, specifically
we are interested in hospitalization and ICU transfer
predictions. Regarding this task, a few works can be
found in the literature. Some of these are related with a
general prediction of ICU and hospitalization loads, but
without referring to specific patients, as for example is the

case of Ritter et al. [28], in which a probabilistic model
is applied to 3 different regions in Europe (Lombardia,
Madrid and Berlin). More recently, broader studies such
as the one in Bergman et al. [3] over the Sweden
population (including health and CoVid patients), had tried
to predict risk factors for CoVid diagnosis, hospitalization-
ICU and non-ICU, and mortality. In this study the authors
have found that older age, male sex, and comorbidity
in general are risk factors for COVID-19 hospitalization
and, with the exception of male sex, risk factors for
COVID-19 diagnosis without hospitalization. Regarding the
identification of ICU/hospitalization for each patient, in
the work by Prytherch et al. [26], a modified version of
the Early Warning Score (EWS) was used over a small
data set consisting of 36 consecutive PCR-positive CoVid-
19 patients admitted to the medical wards of a hospital,
concluding that median EWS was significantly higher in a
time-dependent manner in the ICU group than in the non-
ICU group. However simple, the tool might help clinicians
in the triage in the emergency services of the hospital,
detecting in advance CoVid-19 patients who will require
ICU admission. Even so, the study is quite limited as the
number of patients is low, and only one center has been
considered. In the work by Zhao et al. [39], a study of the
features that could predict ICU admission and mortality for
641 hospitalized CoVid-19 confirmed patients was carried
out, identifying 5 variables for the ICU case by using
Logistic regression, but the study is restricted to only one
big hospital. In Yitao et al. [37] the study is centered
on finding the best predictors for clinical deterioration in
patients admitted to the hospital with a confirmed diagnosis
of pneumonia caused by COVID-19. The study was carried
out in a center in China with a small sample of 257 patients.

Another set of studies have employed Deep Learning to
analyze images for COVID-19 diagnosis and patient triage,
using chest-X Ray images [25], or lung ultrasound images
[29], but as it is has been extremely difficult to collect large
set of well-curated images for training neural networks, the
results although encouraging are quite restricted.

Regarding the prediction of hospitalization and ICU
transfer, there are few papers available analyzing slightly
more than a thousand of patients. In the work by Nemati
et al. [23], the authors have applied several statistical and
machine-learning models to predict the patient discharge
time from the hospital, using a data set of 1,182 patients,
and found out that sex and age are most accurate discharge-
time predictors, although again the small size of the data
set prevent them for generalization. Cheng et al. [8] have
specifically dealt with the prediction of discharge time and
ICU transfer in already hospitalized CoVid-19 patients.
This latter study used a data set of 1,987 patients already
admitted to one specific hospital, employing a Random
Forest to predict the need for ICU transfer. Although the
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obtained results are similar to our proposal, we introduce
some improvements: our data set is considerably larger; we
use a feature selection algorithm to identify the relevant
features (instead of using all available features for each
patient), and we have studied a complete geographical
area with 4 different hospital areas, including several
referral and small hospitals. Besides, we have aimed also
at studying different machine learning techniques with
different representative feature subsets. Finally, in the
work presented by Schwab et al. [31] they developed
and evaluated clinical predictive models for CoVid-19
that estimate the likelihood of a positive SARS-CoV-2
test in patients presenting at hospitals, also providing the
likelihood of hospital and ICU admission in patients who
are SARS-CoV-2 positive. They evaluated the developed
clinical predictive models in a retrospective evaluation using
a cohort of 5,644 hospital patients in only one hospital
in São Paulo, Brazil. In that study, in addition to patient
demographic and clinical data, blood test data is also used,
which requires an additional cost of blood testing that is not
widely available to the entire population.

Concerning CoVid-19 forecasting, several ML
approaches have been proposed. Mehta et al. [21] develop
county-level prediction around near future disease move-
ment for CoVid-19 occurrences using publicly available
data. The model predictions showed a sensitivity over
71% and specificity over 94% for models built using data
from March 14 to 31, 2020. It was found that population,
population density, percentage of people aged > 70 years,
and prevalence of comorbidities play an important role in
predicting CoVid-19 occurrences. Also, they observed a
positive association at the county level between urbanicity
and vulnerability to CoVid-19. Watson et al. [34] embed a
Bayesian time series model and a random forest algorithm
within an epidemiological compartmental model which
predicts deaths using COVID-19 data and population-level
characteristics in U.S. states. The model was evaluated
by training it on progressively longer periods of the pan-
demic and computing its predictive accuracy over 21-day
forecasts. The accuracy of this CoVid-19 model offer reli-
able predictions and uncertainty estimates for the current
trajectory of the pandemic in the U.S.. Chowell and Luo
[9] propose and assess the performance of two ensemble
modeling schemes with different parametric bootstrap-
ping procedures for trajectory forecasting and uncertainty
quantification. The performance of the methods are demon-
strated using a diversity of epidemic datasets, including
CoVid-19. The ensemble method that randomly selects a
model from the set of individual models for each time point
of the trajectory of the epidemic frequently outcompeted
the individual models achieving not only better coverage
rate of the 95% prediction interval but also improved mean
interval scores across a diversity of the epidemic datasets.

Finally, in Ahmed et al. [1] proposed an ensemble of feed-
forward neural networks to forecast CoVid-19 outbreak in
Iraq. This study highlights some key questions about this
pandemic using data analytics. Forecasting were achieved
with accuracy of 87.6% for daily infections, 82.4% for
daily recovered cases, and 84.3% for daily deaths.

3 Problems to be addressed and data set

Using data from the medical history of patients, this work
develops an automatic method to address the following two
classification problems, which could be of interest as an aid
to decision-making in planning medical resources:

1. Will a patient diagnosed with CoVid-19 need to be
hospitalized at some point in the disease process? This
would allow us to determine the possibility that a
incipiently diagnosed patient may need to be admitted
to a hospital in the future.

2. Will a patient diagnosed with CoVid-19 need to be
admitted to the ICU at some point in the disease
process? This would allow us to determine the
possibility that an incipiently diagnosed patient will
potentially need intensive care attention in the future.

To carry out this research study, we have used a data
set containing 10,454 patients diagnosed with CoVid-19
in Galicia. Located in the northwestern of Spain, with
29.575 km2, it is the 5th region in terms of population with
2.698.764 inhabitants. It has a density of 91 inhabitants
per km2, very similar to the population density of Spain.
The admitted patients for the study are from 14 hospitals
throughout the region. Each patient is characterized by
833 variables, like age and gender, together with another
831 variables representing the patient’s medical history.
The latter are binary variables describing whether or not
the patient has had any type of medical condition, such
as hypertension, asthma or diabetes. Figure 1 shows the
distribution of patients in 5 age ranges grouped by sex.
These data were collected from March to May, 2020,
although, for each patient, the history of hospital or
intensive care unit (ICU) admissions due to CoVid-19 is
available from December 23, 2019 until May 9, 2020.

To address the two classification problems, each patient
in the data set was labeled analyzing the admission history
in both hospital or ICU. For the first case, all patients who
were hospitalized at some point (room or ICU) were labeled
with a class 1 and the rest with a class 0. Performing this
labeling, 3,024 patients were labeled as class 1, representing
28.9% of the total, and 7,430 as class 0, which represents
71.1% of the total. For the second case, all patients who
at any time were admitted to the intensive care unit were
labeled with a class 1, and the rest with a class 0. In this
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Fig. 1 Age distribution of the
10,454 patients according to
gender

case, only 300 patients belonged to the class 1, representing
2.9% of the total, with 10,154 patients belonging to the class
0, which represents 97.1% of the total. As can be seen, the
sample data set is highly unbalanced.

4Machine learning pipeline
for the classification of CoVid-19 patients

To deal with the two classification problems mentioned in
the previous section, a machine learning pipeline (Fig. 2)
was developed consisting of three stages:

– Feature selection.
– Over-sampling.
– Supervised classification.

4.1 Feature selectionmethods

Feature selection is a preprocessing step aimed to determine
the features (or variables) which are relevant for a correct
classification of the data (in this case to decide if patients
will be hospitalized or admitted to the ICU) and discard
those features that are irrelevant or redundant [13]. For
this study the Correlation-based Feature Selection (CFS)
method [15] was employed. It is a multivariate filter that
chooses subsets of attributes uncorrelated among them but
showing a high correlation with the class. This feature
selection method returns a subset of features, so there is no
need to establish a threshold on the feature relevance.

The goal of this stage in the pipeline is to reduce the input
dimension (833 variables) by eliminating those variables
potentially less relevant to the classification problem. This

Fig. 2 Developed machine
learning pipeline
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could help when classifying to obtain a more robust model
with better generalization power.

Data transformation techniques for feature extraction
were discarded since, in this type of medical problems,
we consider it very important to provide feedback and
explanation to the physicians about the factors that are
related to patient non-ICU and ICU admission and therefore
it is mandatory to keep the original meaning of the features.

4.2 Oversamplingmethods

One problem with the data set that is being handled in
this research is that it has a significant imbalance between
classes, i.e., the classes are not represented equally. This
is especially pronounced in the case of patients who will
require intensive care, since the negative class (class 0) is
much more represented: 97.1% of the data. This situation is
problematic for most of the machine learning methods, as
they have a bias towards classes which have higher number
of instances. They tend to only predict the majority class
data as the features of the minority class are treated as noise
in the data and thus are often ignored. As a result, on those
situations there is a high probability of misclassification of
the minority class as compared to the majority class. To
overcome this problem, one of the most common techniques
to apply is oversampling. Oversampling is used to adjust
the class distribution of a data set and the goal is to balance
classes in the training data before providing the data as input
to the machine learning algorithm (data preprocessing).
Oversampling involves introducing a bias to select or
produce more samples from one class (the minority one)
than from another, in order to compensate for an imbalance
that is already present in the data. The most naive strategy is
to generate new samples by duplicating some of the original
samples of the minority class (randomly sampling with
replacement). However, there are others, more sophisticated
and generally better performing methods, that generate new
samples by interpolation. In this research we have used the
following two:

– SMOTE (Synthetic Minority Over-sampling Tech-
nique) [7] is an oversampling approach in which the
minority class is over-sampled by creating “synthetic”
examples. These synthetic examples cause classifiers
to create larger and less specific decision regions. This
approach can improve the accuracy of classifiers for a
minority class.

– ADASYN [14] uses a weighted distribution for
different minority class examples according to their
level of difficulty in learning, where more synthetic
data is generated for minority class examples that are
harder to learn compared to those minority examples
that are easier to learn. As a result, it improves learning

with respect to the data distributions in two ways: (1)
reducing the bias introduced by the class imbalance,
and (2) adaptively shifting the classification decision
boundary towards difficult examples.

The two methods have been configured as follows: the
desired ratio of the number of samples in the minority
class over the number of samples in the majority class
after resampling was set to 1; and the number of nearest
neighbours used to construct synthetic samples was set to 5.

4.3 Supervised classificationmethods

To carry out the classification task using supervised
learning, different alternatives were tested to determine
which would be the best from a performance point of
view. To do this, the following classification methods were
used, starting from basic models with linear discriminatory
capacity to more complex ones with non-linear behavior:

– Logistic Regression (LR), is part of a category of
statistical models called generalized linear models. The
goal of logistic regression is to correctly predict the
category of outcome for individual cases using the
most parsimonious model. To accomplish this goal, a
model is created that includes all predictor variables
that are useful in predicting the response variable.
Logistic regression finds a “best fitting” equation using
a maximum likelihood method, which maximizes the
probability of getting the observed results given the
fitted regression coefficients [22].

– Multinomial Logistic Regression (MLR), is a simple
extension of binary logistic regression. Like binary
logistic regression, multinomial logistic regression
uses maximum likelihood estimation to evaluate the
probability of categorical membership.

– K Nearest Neighbor (KNN), is a supervised classifi-
cation technique that classifies examples based on the
ones that are most similar to them. The idea is to mem-
orize the training set and then to predict the label of any
new instance on the basis of the labels of its k closest
neighbors in the training set. The rationale behind such
a method is based on the assumption that the features
that are used to describe the domain points are relevant
to their labelings in a way that makes close-by points
likely to have the same label [2].

– Support Vector Machine (SVM), is a supervised
classification technique that works by nonlinearly
projecting the training data in the input space to
a feature space of higher (infinite) dimension by
the use of a kernel function. This can potentially
result in a linearly separable data set that can be
easily discriminated by a linear classifier. In many
instances, classification in high dimension feature
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spaces results in overfitting in the input space; however,
in SVMs, overfitting is controlled through the principle
of structural risk minimization [33]. The empirical
risk of misclassification is minimized by maximizing
the margin between the data points and the decision
boundary [20]. SVM was used with lineal and nonlineal
kernels (Radial Basis Function, RBF).

– AdaBoost (Adaptive Boosting), is a meta-estimator that
begins by fitting a classifier on the original data set and
then fits additional copies of the classifier on the same
data set but where the weights of incorrectly classified
instances are adjusted such that subsequent classifiers
focus more on difficult cases [12]. The base classifier
used in this work was a Decision Tree.

– Bagging, is an ensemble meta-estimator that fits base
classifiers each on random subsets of the original
data set, drawn with replacement, and then aggregates
their individual predictions (either by voting or by
averaging) to form a final prediction. It can typically
be used as a way to reduce the variance of a black-
box estimator, by introducing randomization into its
construction procedure and then making an ensemble
out of it [5]. In this case, the base classifier used was a
SVM.

– Random Forest (RF), is a meta estimator that fits a
number of decision tree classifiers on various sub-
samples of the data set and uses averaging to improve
the predictive accuracy and control overfitting [6].

– Multilayer Perceptron (MLP), is one of the most
commonly used artificial neural network classification
models [4].

– Deep Network, is a custom made residual network [16],
composed of a series of multiple blocks and a final
linear classifier. The block architecture is described in
Fig. 3. The output size is controlled by a N parameter.
Its value is decreased by half in the next block.

For hyperparameter optimization a grid search algorithm
was applied, which is simply an exhaustive searching
through a manually specified subset of the hyperparameter
space of the learning algorithms. This grid search has been
guided by cross-validation on the training set. Appendix A

shows the hyperparameter range used for finding the
best hyperparameter combination of each classification
algorithm. It also includes the best tunning option for
each of the algorithms in terms of the F1-score for the
Hospitalization and ICU cases.

5 Results

First, we will define some basic components of the metrics
that we will use to evaluate classification models (notice that
the data set contains only people diagnosed with CoVid-19):

– True positives (TP): number of people who have been
hospitalized (or admitted to the ICU) and the method
did predict that it would be necessary.

– False positives (FP): number of people who have not
been hospitalized (or admitted to the ICU) but the
method did identify that it would be necessary.

– True negatives (TN): number of people who have not
been hospitalized (or admitted to the ICU) and the
method predicted that it would not be necessary.

– False negatives (FN): number of people who have been
hospitalized (or admitted to the ICU) and the method
predicted that it would not be necessary.

The performance of the machine learning methods was
evaluated using a 10-fold cross-validation and the following
metrics were obtained from the test sets:

– Accuracy: is the number of correct global assessments,
defined as the ratio (TP+TN)/(TP+TN+FP+FN).

– Sensitivity: ratio of the positive cases (those who
require hospitalization or admission to the ICU)
correctly identified divided by the total number of
positive cases, defined as TP/(TP+FN).

– Specificity: ratio of the negative cases (those who does
not require hospitalization or admission to the ICU)
correctly identified divided by the total number of
negative cases, defined as TN/(TN+FP).

– Area under the curve (AUC) of the receiver operating
characteristic (ROC). A ROC curve is a graphical
representation of sensitivity versus 1-specificity for a

Fig. 3 Deep Network residual
block architecture
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binary classifier system as the discrimination threshold
is varied. The AUC area has a value between 0.5 and 1,
where 1 represents a perfect diagnostic value and 0.5 is
a test without diagnostic discriminatory capacity.

– Precision: ratio of the positive cases (those who require
hospitalization or admission to the ICU) correctly
identified divided by the total number of positive cases
identified by the system, defined as TP/(TP+FP).

– F1-score: is a measure of a test’s accuracy. It is
calculated as the harmonic mean of precision and
sensitivity, defined as 2*TP/(2TP+FP+FN).

In order to verify whether the differences observed
between the models in the 10-fold cross-validation were
statistically significant, we applied the Kruskal-Wallis
statistical test. It is a non-parametric version of ANOVA
and tests the null hypothesis that the population median
of all of the groups are equal. When the null hypothesis
was rejected, we performed post-hoc comparisons between
methods, using the Tukey’s honestly significant difference
(HSD) as the multiple comparison test. In all cases we used
a significance level of 0.05.

The following sections show the comparative results in
each scenario (hospitalization and ICU) taking into account
the following input variable configurations:

– Training the classifiers with all the variables (833): Age,
Gender and the 831 binary variables of the patient’s
medical history.

– Training the classifiers using only the main variables
automatically selected by the feature selection method.

– Training with feature selection and oversampling.

5.1 Problem 1: Classification of hospitalization
for CoVid-19 patients

5.1.1 Classifiers trained with the original data set (833
variables)

Figure 4 shows the results of the mean value of the error
evaluation metrics for the classification methods using all
the variables. Although all the models obtain high values
in accuracy and specificity, the values are substantially
reduced in the case of sensitivity or precision. Thus,
machine learning methods tend to classify all the examples
in the majority class, that is, they tend to decide no
hospitalization even when the patient should have been
hospitalized. Due to this, throughout the work, we have
decided to adopt as a criterion to determine which is the best
model, to select the one that presents the highest F1-score
as it is a good metric to balance sensitivity and precision.
Therefore, analyzing the F1-score, it can be seen that the
best model is the Deep Network. Applying the Kruskal-
Wallis test, the p-value (4.3 × 10−15) confirms that the

Fig. 4 Hospitalization case. Results of the classifiers using all the
variables (833)

differences between the methods are statistically significant.
In addition, applying the Tukey’s test we verified that
Deep Network has significant differences with the rest of
the methods. The results of this test, comparing only the
best method (Deep Network) to the others, are included in
Table 4 of Appendix B.

In addition, Fig. 5 contains the mean training time, using
a logarithmic scale, for the methods in each step of the 10-
fold. Clearly the most computationally expensive model is
linear SVMs, which require several hours to train only one
of the 10-fold steps.

5.1.2 Classifiers trained with the most relevant features

When the feature selection method was applied, 12 relevant
variables were obtained for this classification problem.
These variables are:

– Age.
– Gender.
– Non-insulin dependent diabetes mellitus.

Fig. 5 Hospitalization case. Training time of the classifiers using all
the variables (833)
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Fig. 6 Hospitalization case.
Results of the classifiers using
top-12 relevant variables

– Benign prostatic hypertrophy.
– Other diagnostic procedures.
– Hydrocele.
– Viral pneumonia.
– Therapeutic advice / therapeutic listening.
– Urgent / frequent urination.
– Abnormal white blood cells.
– Other disorders of lipid metabolism.
– Heart failure.

Figure 6 shows the results of the mean value of the error
evaluation metrics for the classification methods using the
selected features. For reference, two dashed vertical lines
are included that contain the best AUC and F1-score values
obtained in the previous experiment (with all variables). As
can be seen, in none of the cases is possible to surpass the
best model obtained with all the variables.

As can be seen in the list of selected variables, the
feature selection method places in the same category generic
variables (such as Therapeutic advice / therapeutic listening)
together with variables that have been shown to have certain
impact on the evolution of COVID, such as Heart failure.
This fact made us wonder to which extent the information
on patients collected in a registry as large as 833 variables
is relevant in itself for this problem. For this reason, an
additional experiment was carried out, using only the two
most relevant variables according to the feature selection
method applied: Age and Gender. These two variables were
selected in all the folds of the cross-validation procedure
of the CFS method. Figure 7 contains the results for this
case. The results obtained are very similar to those obtained
with the 12 most relevant variables, so clearly these two
variables are the ones that contain the most discriminatory
information.

Fig. 7 Hospitalization case.
Results of the classifiers using
only Age and Gender variables
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Fig. 8 Hospitalization case. Training time of the classifiers using
top-12 relevant variables

Figures 8 and 9 contain the mean training time for the
methods in each step of the 10-fold. In this case, the most
computationally expensive models are SVMs, Bagging and
Deep Network although, having fewer input variables,
computing time is reduced by an order of magnitude with
respect to the experiment with all variables.

5.1.3 Classifiers trained with oversampling

The last experiment consists of the incorporation of
oversampling to alleviate the imbalance of the classes.
Figure 10 contains the results of the mean value of the
error evaluation metrics for the classification methods using
SMOTE and ADASYN in three scenarios: with all the
variables, using only age and gender, and using the top-
12 features. The dashed vertical lines which are included,
contain the best AUC and F1-score values obtained in the
previous experiments. In all cases, except in the case of
of the Deep Network, the F1-score results are improved
significantly, since an improvement of around 10% is

Fig. 9 Hospitalization. Training time of the classifiers using using
only Age and Gender variables

obtained compared to the results without oversampling. In
this case the best result was obtained by the Random Forest
using SMOTE and the top-12 features, with a value of
76.17% in AUC and 54.12% in F1-score, although applying
the statistical test the differences are not significant with any
of the other methods except with KNN.

5.2 Problem 2: Classification of the need of ICU
for CoVid-19 patients

The second issue analyzed tries to determine the possibility
that a patient recently diagnosed will potentially need
intensive care in the future. It is important to recall that
in this case, classes are much more unbalanced (2.9% vs.
97.1%) than in the previous one.

5.2.1 Classifiers trained with the original data set (833
variables)

Figure 11 shows the results for the classifiers using all
the 833 variables. Machine learning methods clearly tend
again to classify all the examples as the majority class,
that is, deciding that the patient will not potentially need
intensive care in the future. Notice that if the values of any
metric is zero, the corresponding bar does not appear in
the figure. In this case, the Deep Network obtains the best
results both in AUC and in F1-score. Applying the Kruskal-
Wallis test, the p-value (3.5 × 10−9) confirms that the
differences between the methods are statistically significant.
However, applying the Tukey’s test, the differences of the
Deep Network is not statistically significant compared to
the AdaBoost. The results of this test, comparing only the
best method (Deep Network) to the others, are included in
Table 5 of Appendix B.

In addition, Fig. 12 contains the mean training time for
the methods in each step of the 10-fold. Again, the most
computationally expensive model is the linear SVM, which
require several hours to train each model.

5.2.2 Classifiers trained with the most relevant features

Applying the feature selection method, 20 relevant medical
history variables were selected for the ICU case. These
variables are the following:

– Age.
– Gender.
– Dependence.
– Cardiac ischemia with angina.
– Obesity.
– Unspecified liver diseases.
– Non-insulin dependent diabetes mellitus.
– Prostate signs / symptoms.
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(a) SMOTE with all the variables (b) ADASYN with all the variables

(c) SMOTE using Age and Gender (d) ADASYN using only Age and Gender

(e) SMOTE using only the top-12 features (f) ADASYN using the top-12 features

Fig. 10 Hospitalization case. Results of the classifiers using oversampling

– Benign prostatic hypertrophy.
– Cholecystitis / cholelithiasis.
– Abdominal hernias.
– Other unspecified therapeutic / minor surgical proce-

dures.
– Heart pressure.
– Problems with the health system.

– Clarification/discussion about reason for consulta-
tion/demand.

– Physical medicine / rehabilitation.
– Medication/application/prescription/renewal/injectables.
– Administrative procedure.
– Genital herpes, in women.
– Female genital pain.
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Fig. 11 ICU case. Results of the
classifiers using all the variables
(833)

Figure 13 shows the results only using these relevant
variables. Again, the two dashed vertical lines contain the
best AUC and F1-score obtained in the previous experiment
(with all variables). In this case, again the Deep Network is
the one that obtains the best results. Applying the Kruskal-
Wallis test, the p-value (9.04 × 10−11) confirms that the
differences between the methods are statistically significant.
Besides, using the Tukey’s test we verified that the Deep
Network has significant differences with the rest of the
methods, except with the AdaBoost and KNN. The results
of this test, comparing only the best method (Deep Network)
to the others, are included in Table 6 of Appendix B.

In addition, Fig. 14 shows the results using only age and
gender variables. As can be seen in this case, the results
are generally substantially worse than using the selected

Fig. 12 ICU case. Training time of the classifiers using all the
variables (833)

variables, since although in some cases the AUC value is
improved or the accuracy is very high, it is at the cost of
having a precision equal to zero.

Figures 15 and 16 contain the mean training times for
these two last experiments.

5.2.3 Classifiers trained with oversampling

The last experiment includes oversampling to alleviate the
imbalance of the classes. Figure 17 contains the results
of the mean value of the error evaluation metrics for the
classification methods using SMOTE and ADASYN in
three scenarios: with all the variables, using only age and
gender, and using the top-20 features. The dashed vertical
lines show the best AUC and F1-score values obtained in

Fig. 13 ICU case. Results of the classifiers using top-20 relevant
variables
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Fig. 14 ICU case. Results of the classifiers using only Age and Gender
variables

the previous experiments. In most of the cases, the F1-score
results are improved by just over 3% compared to the results
obtained without oversampling. In this case the best result
was obtained by the Deep Network using SMOTE and only
age and gender variables, with a value of 79.27% in AUC
and 12.92% in F1-score. Nevertheless, the statistical test
shows that the differences are not significant with any of the
other methods except with LR, MLR and Linear SVM.

In this case, it has been found experimentally that
using oversampling the variables of the medical history
do not provide additional information for the automatic
classification of CoVid-19 patients and only age and gender
seem to be the determining factors, a founding concordant
with the results obtained also by previous authors, as in the
work by Nemati et al. [23], in which both variables were the
most accurate predictors for 6 different algorithms.

Fig. 15 ICU case. Training time of the classifiers using top-20 relevant
variables

Fig. 16 ICU case. Training time of the classifiers using using only Age
and Gender variables

6 Conclusions

In this work, we analyzed the capability of several state
of the art machine learning methods to predict whether
patients diagnosed with CoVid-19 will need hospital or
intensive care assistance during the course of their illness.
Unlike the work by Cheng et al. [8] that have used a
smaller data set from only one hospital, a data set of 10,454
patients from several hospitals in Galicia was used. Each
patient was characterized by 833 variables representing
the patient’s medical history besides their age and gender.
Using all available features, these approaches achieved
AUC values of 76,11% and 80.43% for predicting the need
of hospital and ICU admissions, respectively. Although the
AUC value is better in the case of the ICU, observing the
F1-score values it can be seen that it is at the cost of a
greater imbalance between sensitivity and precision. Over
the different approaches tested, those using oversampling
as a preprocessing phase offered the best results in general.
The use of feature selection and oversampling allows to
increase the best F1-scores from 53.84 % and 12.71% to
54.12% and 12.91%, respectively, for the two classification
problems. In addition, it allows all models to improve their
F1-score values significantly.

Comparing the results with the ones by Schwab et al.
[31], they obtain better AUC than the ones presented in
this research, but at the cost of requiring a complete blood
analysis of each patient, which has the disadvantage of the
economic cost required for it to be applicable to decision-
making that affects a large population. In this work, we
only use information already available by the health system:
demographic and clinical data of each patient. The findings
of our study are similar also to the results of the work
described in Nemati et al. [23]. In this latter, 1,182 patients
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from a curated data set publicly available, with data mostly
extracted from national health reports and online resources,
released mainly by state/local health officials and hospitals
of different countries (available in Xu et al. [35]), were
examined using different statistical and machine learning
methods. Their analysis concluded that a boosting model

was the best predictor for discharging time of patients, and
that the best results were obtained using only age and gender
as model features.

In view of the experimental results obtained on the data
set of patients diagnosed with CoVid-19, the following
conclusions are obtained:

Fig. 17 ICU case. Results of the classifiers using oversampling
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– If oversampling is not used, the best method is the Deep
Network, with statistically significant differences with
respect to the other models.

– Using oversampling, better results are obtained and, in
this case, most of the models have a similar behavior
between them. In this situation the Deep Network is no
longer the best model.

– Of all the variables analyzed, to predict whether a
patient diagnosed with CoVid-19 will need hospital
or ICU care, the most relevant variables are age and
gender.

– The rest of the variables recorded in the patient’s
medical history in the available data apparently do not
provide additional information that is decisive to allow
a better discrimination of the sample than that achieved
using only age and gender.

As already mentioned, the data available for this study
come from several hospitals in a wide region of Spain and
constitute a considerable registry of patients and variables
that describe their clinical history. The fact that, using all
this data, we have obtained similar good results using only
age and gender leads us to draw two conclusions. First,
to improve the prediction, it will be necessary to expand
the clinical history to include more specific variables in
relation to COVID-19, such as results of laboratory tests or

X-rays. However, this information is not always available
for the entire population of a country and acquiring it would
imply significant additional costs for the health system. A
second conclusion is that the developed system will allow
governments and health managers to forecast the status of
CoVid-19 patients by simply using the demographic data of
their region, almost always available, without entailing any
additional expense. Besides, health managers could predict
the demand for hospital and ICU beds based on various
hypothetical scenarios regarding the incidence of infections
in the population, for instance, to answer questions such as:
Which will be the demand for ICUs or hospital beds in my
region if a certain percentage of the entire population was
infected?

Appendix A

This appendix contains all the combination of hyperparame-
ters used for each model in the grid search. Also, it includes
the best hyperparameter tunning for each model in the Hos-
pitalization and ICU cases. For the different models, the C
parameter (LR, MLR, SVM Linear, SVM RBF), number of
neighbors (knn), number of trees and their depth (AdaBoost,
Bagging, RF) and number of neurons are reported.

Table 1 Hyperparameter optimization

Classifier Parameter = Values

DeepNetwork # neurons per block, layers per block = 4
LR C = [0.001, 0.01, 0.1, 1, 10, 100, 1000],

Optimiz. alg. = Stochastic Gradient Descent, Regularization = L2
MLR C = [0.001, 0.01, 0.1, 1, 10, 100, 1000], Optimiz. alg. = Newton conjugate gradient

Regularization = L2
Knn # neighbors = [3, 5, 7, 9, ..., 23], Euclidean distance, Uniform weights
SVM lin. C = [0.001, 0.01, 0.1, 1, 10, 100, 1000], gamma = 1/(# features)*var(X)
SVM RBF C = [0.001, 0.01, 0.1, 1, 10, 100, 1000], gamma = 1/(# features)*var(X)
AdaBoost Decision Tree classifier, max. depth = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],

# trees = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
Bagging SVM RBF classifier, C = [0.001, 0.01, 0.1, 1, 10, 100, 1000],

# classifiers = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
gamma = 1/(# features)*var(X)

RF max depth = [1, 2, 3, 4, 5, 6,7, 8, 9, 10],
# trees = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

MLP hidden layers = 2, neurons = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
activation = relu, solver = adam, alpha = 0.0001,
learning rate = constant, max iter = 1000
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Appendix B

This appendix contains the results of the multiple com-
parison test (Tukey’s honestly significant difference)

Table 4 Hospitalization case: results of the statistical test using 833
variables.

Best classifier Other classifiers Meandif lower upper Reject

DeepNetwork Knn −0.0976 -0.145 −0.0503 True

DeepNetwork Linear SVM -0.2703 −0.3176 −0.2229 True

DeepNetwork LogisticReg -0.1836 −0.2309 −0.1363 True

DeepNetwork MLP -0.1621 −0.2094 −0.1147 True

DeepNetwork Multinomial Log Reg −0.1798 −0.2271 −0.1324 True

DeepNetwork Nonlinear SVM −0.2653 −0.3126 −0.218 True

DeepNetwork Random Forest −0.4595 −0.5069 −0.4122 True

DeepNetwork AdaBoost 0.1267 0.0794 0.1741 True

DeepNetwork Bagging 0.2534 0.2061 0.3008 True

Table 5 ICU case: results of the statistical test using 833 variables.

Best classifier Other classifiers Meandif lower upper Reject

DeepNetwork Knn −0.0962 −0.1472 −0.0452 True

DeepNetwork Linear SVM −0.0891 −0.1402 −0.0381 True

DeepNetwork LogisticReg −0.1207 −0.1717 −0.0696 True

DeepNetwork MLP −0.0696 −0.1207 −0.0186 True

DeepNetwork Multinomial Log Reg −0.079 −0.13 −0.028 True

DeepNetwork Nonlinear SVM −0.1271 −0.1782 −0.0761 True

DeepNetwork Random Forest −0.1271 −0.1782 −0.0761 True

DeepNetwork AdaBoost 0.0445 −0.0065 0.0956 False

DeepNetwork Bagging 0.1205 0.0694 0.1715 True

Table 6 ICU case: results of the statistical test using the 20-top
relevant features.

Best classifier Other classifiers Meandif lower upper Reject

DeepNetwork Knn −0.0309 −0.0799 0.0181 False

DeepNetwork Linear SVM −0.1272 −0.1762 −0.0783 True

DeepNetwork LogisticReg −0.1206 −0.1696 −0.0716 True

DeepNetwork MLP −0.092 −0.141 −0.043 True

DeepNetwork Multinomial Log Reg −0.0937 −0.1427 −0.0447 True

DeepNetwork Nonlinear SVM −0.1272 −0.1762 −0.0783 True

DeepNetwork Random Forest −0.1006 −0.1495 −0.0516 True

DeepNetwork AdaBoost 0.0409 −0.0081 0.0899 False

DeepNetwork Bagging 0.1206 0.0716 0.1696 True

performed in each experiment. The last column in
each table (Reject) indicates whether the statistical
test has rejected the null hypothesis for each pair of
classifiers.
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