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1  |  INTRODUC TION

Charles Darwin wrote in The Variation of Animals and Plants under 
Domestication that pigeons with diverse phenotypes are derived 

from the domestication and artificial selection of rock pigeons 
(Darwin, 1868). Modern genomic technology has verified this and 
provided evidence of origins in the Middle East (Shapiro et al., 
2013). Archeological evidence suggests that humans exploited rock 
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Abstract
To meet human needs, domestic pigeons (Columba livia) with various phenotypes have 
been bred to provide genetic material for our research on artificial selection and local 
environmental adaptation. Seven pigeon breeds were resequenced and can be divided 
into commercial varieties (Euro-pigeon, Shiqi, Shen King, Taishen, and Silver King), or-
namental varieties (High Fliers), and local varieties (Tarim pigeon). Phylogenetic analy-
sis based on population resequencing showed that one group contained local breeds 
and ornamental pigeons from China, whereas all commercial varieties were clustered 
together. It is revealed that the traditional Chinese ornamental pigeon is a branch of 
Tarim pigeon. Runs of homozygosity (ROH) and linkage disequilibrium (LD) analyses 
revealed significant differences in the genetic diversity of the three types of pigeons. 
Genome sweep analysis revealed that the selected genes of commercial breeds were 
related to body size, reproduction, and plumage color. The genomic imprinting genes 
left by the ornamental pigeon breeds were mostly related to special human facial fea-
tures and muscular dystrophy. The Tarim pigeon has evolved genes related to chemi-
cal ion transport, photoreceptors, oxidative stress, organ development, and olfaction 
in order to adapt to local environmental stress. This research provides a molecular 
basis for pigeon genetic resource evaluation and genetic improvement and suggests 
that the understanding of adaptive evolution should integrate the effects of various 
natural environmental characteristics.
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pigeons as food for >67 thousand years (Blasco et al., 2014). Human-
mediated selection can accelerate changes in animal morphological 
characteristics (Sendell-Price et al., 2020), especially important eco-
nomic traits (Ghoreishifar et al., 2020). Given the human need for 
food, showing, communication, and competition, breeders or pigeon 
enthusiasts have bred >350 pigeon breeds (Price, 2002). According 
to the classification of pigeons, breeds can be divided into four cat-
egories, including production, ornamental, competition, and exper-
imental. The diversity of pigeon breeds offers an animal model for 
the study of genetics (George et al., 2020; Stringham et al., 2012), 
domestication (Shapiro et al., 2013), neurology (Belekhova et al., 
2009; Cnotka et al., 2008; Rehk et al., 2007), and behavior (Sasaki 
et al., 2018). Additionally, there have been advances in understand-
ing of the evolution, development, and genetics of intraspecific vari-
ations (Domyan & Shapiro, 2016a). Research associated with pigeon 
genetics generally has two main subfields: 1) analysis of the genetic 
mechanism of quality traits, especially the crest (Shapiro et al., 2013; 
Vickrey et al., 2015), foot feather (Boer et al., 2019; Domyan et al., 
2016b), and plumage color (Domyan et al., 2014; Vickrey et al., 
2018) and 2) analysis of quantitative traits, including determination 
of which homing ability in racing pigeons is a complex trait related 
to endurance, speed, survivability, and positioning ability, as well as 
navigational experience (Julia et al., 2017). Moreover, genes involved 
in the positively selected formation of neuromuscular junctions and 
the central nervous system in carrier pigeons have been identified 
(Caspermeyer, 2018; Gazda et al., 2018; Shao et al., 2020).

Moreover, study of adaptive genetic evolution mechanisms in 
relation to extreme or severe environments has increased in recent 
years, including the adaptability of humans and animals to high-
altitude hypoxia (Beall, 2006; X. Liu et al., 2019; Wei et al., 2016), 
severe cold (Fumagalli et al., 2015; Ghoreishifar et al., 2020), strong 
ultraviolet radiation (Bertolini et al., 2018; Flori et al., 2019; L. Yu 
et al., 2016), and hot and dry climates (Kim et al., 2016). FST & θπ ratio 
has been proved to be a very effective method for detecting and 
selecting and eliminating areas, especially when mining functional 
areas closely related to the living environment, it can often get a 
strong selection signal (Ababaikeri et al., 2020; Chen et al., 2016; Liu 
et al., 2020; Qiu et al., 2015). This method identified a large num-
ber of genes related to artificial selection or economic traits in other 
domestic animals (Li et al., 2013, 2014; Zhang et al., ,2018, 2020). 
FST is suitable for the detection of selection signals between two 
populations and can detect the regions where the genome is differ-
entiated (gene frequency). The principle of θπ analysis is based on 
the heterozygosity, and the selected regions tend to decrease in nu-
cleotide polymorphism. That is to say, the genomic region has both 
the differentiation of the genotype frequency and the reduction in 
nucleotide polymorphism, and it is considered that the region has 
been selected. These research strategies allow identification of the 
local environmental adaptability of pigeons and offer new insights 
into adaption to harsh environment and climate.

The Tarim pigeon (i.e., the Yarkant pigeon and the Kashgar pi-
geon) was bred over thousands of years by residents of the Yarkant 
River and Tarim River basins in the western part of the Tarim Basin 

in Xinjiang through natural breeding and domestication of feral pi-
geons (Liang Yayan, 2019). This breed is well-adapted to the extreme 
local climate (Mainuer Slamu, 2017; Tan Rui, 2011), which is a typical 
warm-temperate, continental, arid climate. The main climatic char-
acteristics are dry heat, severe cold, and strong solar radiation, with 
large daily and annual temperature ranges (Abdul Rexiti Aji, 2002). 
Because of the pursuit of economic benefits, modern large-scale 
pigeon breeding enterprises mostly choose commercial pigeon vari-
eties for production, such as King pigeons (Ye et al., 2018) and Euro-
pigeons (Pomianowski et al., 2009), which have the advantages of a 
white carcass, large size, and high fecundity.

Here, we generated the whole-genome sequences of 52 pigeons 
from seven breeds, including one local breed, one high-flying breed, 
and five commercial meat-types, by selective sweep and performing 
combined calculations for the FST and log2(θπ ratio) values. We ob-
served strong selection markers near genes known to be artificially 
selected for plumage color, growth, and development in other ani-
mals. Importantly, we discovered genetic pathways related to local 
environmental adaptability in the Tarim pigeon.

2  |  MATERIAL S AND METHODS

2.1  |  Pigeons

The five commercial meat breeds included seven Euro-pigeons (EU; 
Shanghai Jinhuang Pigeon Industry Co., Ltd.), eight Silver Kings, 
seven Shiqi, eight Shen Kings, and eight Taishen self-distinguishing 
male and female pigeons (WK, SQ, SK, and TS; Shenzhen Tianxiang 
Da Pigeon Co., Ltd). Six high fliers (HF) were from Shanghai Jinhuang 
Pigeon Industry Co., Ltd., and eight Tarim pigeons (TR) were from 
Mushi Township, Shufu County, Kashgar, Xinjiang (Figure 1). 
Pigeons used in this study were approved by the Ethics and Animal 
Welfare Committee of Shanghai Academy of Agricultural Sciences 
(No. SAASPZ0521012). For each pigeon, genomic DNA was ex-
tracted from blood samples using a Tiangen DNA extraction kit, 
and sequencing was performed on an Illumina HiSeq PE150 systems 
(Illumina, Carlsbad, CA, USA).

2.2  |  Alignment against the reference genome

High-quality sequencing data were aligned with the reference genome 
(https://www.ncbi.nlm.nih.gov/genom​e/10719​?genome_assem​
bly_id=39619) using BWA software (parameter: mem-t4-k32-m) (Li 
& Durbin, 2009), and the results were analyzed using SAMTOOLS 
(parameter: rmdup) (Li et al., 2009).

2.3  |  SNP detection and annotation

We used SAMtools to detect population SNPs (Li et al., 2009) and 
a Bayesian model to detect polymorphic sites in the population. 

https://www.ncbi.nlm.nih.gov/genome/10719?genome_assembly_id=39619
https://www.ncbi.nlm.nih.gov/genome/10719?genome_assembly_id=39619
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High-quality SNPs were obtained by filtering and screening as 
follows:

1.	 Q20 quality control (filter SNPs with quality values with a 
sequencing error rate >1%).

2.	 SNP sites separated by at least 5 bp.
3.	 SNP coverage depth ranging from 1-, 3-, or 5-fold the average 

depth.

ANNOVAR software was used to annotate the SNP results 
(Wang et al., 2010).

2.4  |  Analysis of genetic background 
in the population

The distance matrix was calculated using TreeBeST software (v.1.9.2; 
http://trees​oft.sourc​eforge.net/treeb​est.shtml), and phylogenetic 
trees were constructed using the neighbor-joining (NJ) method. The 
bootstrap values were obtained after 1,000 calculations. We used 
EIGENSOFT (v5.0; https://www.hsph.harva​rd.edu/alkes​-price/​
softw​are/) for principal component analysis on an individual scale 
for the 52 pigeons (Patterson et al., 2006). Use PLINK to analyze 

population structure, create PLINK input file—Ped file, and then use 
FRAPPE v1.1 to estimate individual admixture (Tang et al., 2005).

2.5  |  Analyses of regions of homozygosity 
(ROHs) and linkage disequilibrium (LD)

Regions of homozygosity for each pigeon breed were identified 
using PLINK (v.1.07) (Purcell et al., 2007). The parameters of ROH 
analysis are as follows (plink -- file result -- allow extra chr -- ho-
mozyg SNP 100 -- homozyg kb 500 -- homozyg density 50 -- ho-
mozyg gap 1000 -- homozyg window SNP 50 -- homozyg window 
het 2 -- homozyg window missing 5 -- out roh; rm *. Nosex). Based 
on the detected ROHs, the genomic inbreeding coefficient (FROH) of 
pigeons was calculated (McQuillan et al., 2008):

Among them, LROH represents the total length of ROH fragment 
on autosomal, and LAUTO is the total length of autosome.

To evaluate LD decay, the squared correlation (r2) between any 
two loci was calculated using Haploview (v.4.2) (Barrett et al., 2005). 

FROH =

LROH

LAUTO

F I G U R E  1  Phenotype of the seven pigeon breeds and geographical origins of local breeds

http://treesoft.sourceforge.net/treebest.shtml
https://www.hsph.harvard.edu/alkes-price/software/
https://www.hsph.harvard.edu/alkes-price/software/
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LD analysis parameters are as follows (-n –dprime-minMAF 0.05). 
The average r2 value was calculated for pairwise markers in a 500-kb 
window and averaged across the whole genome.

2.6  |  Genome-wide selective-sweep test

FST and θπ have proven effective for detecting selective elimination 
regions, especially when mining functional regions closely related 
to the living environment, when strong selection signals can be ob-
tained. We calculated the genome-wide distribution of FST values 
(Weir & Cockerham, 1984) and θπ ratios among the seven pigeon 
breeds, using a sliding-window approach (40-kb windows with 20-
kb increments). The θπ ratios were log2(θπ ratio) transformed. We 
considered the windows with the top 5% values for the FST and 
log2(θπ ratio) simultaneously as candidate outliers under strong se-
lective sweeps (Li et al., 2013) (Table S1). FST and log2(θπ ratio) joint 
analysis including TR. VS. EU, TR. VS. SQ, and TR. VS. SK revealed 
the genomic region imprint of three commercial white feather pi-
geon breeds. TR. VS. TS was used to analyze the selection of TS, and 
TR. VS. WK was used to reveal the selection of WK. The other six 
varieties were used as controls to detect the selection signal of HF. 
Five commercial meat pigeon breeds were used as control to study 
the adaptive selection of Tarim pigeon. Furthermore, the overlap in-
formation of a selected signal was obtained using the “vennDiagram” 
package in R (https://www.omics​tudio.cn/tool/6).

2.7  |  Candidate gene analysis

We compared FST and log2(θπ ratio) values of the selective genomic 
regions with those at the whole-genome scale for TR pigeons. 
Overlaps of candidate genes were identified in extreme environ-
ments. Gene Ontology (GO) analysis was performed using R pack-
ages (GOseq and topGO), and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis was performed using Kobas software 
(http://kobas.cbi.pku.edu.cn/kobas​3/).

3  |  RESULTS

3.1  |  Genome sequencing and mapping

After filtering the sequencing data, high-quality clean data were 
obtained. The data of 52 samples were statistically analyzed (Table 
S2), including sequencing data output, sequencing error rate, Q20 
content (%), Q30 content (%), and GC content (%). The total amount 
of sequencing data is 491.6 Gb, and the clean data are 490.7 Gb. The 
genome size is 1107989085 bp, the average mapping rate of popula-
tion samples is 97.5%, the average sequencing depth of genome is 
7.85, and the average coverage 1X is 98.4% (Table S3). Finally, a total 
of 5,673,290 SNPs with high quality were obtained (Table S4), and 
26,640 genes were annotated (Table S5).

3.2  |  Population genetics

Neighbor-joining tree analysis supported two of the separate clus-
ters, including Chinese breeds and commercial breeds (Figure 2a). 
PCA results revealed strong clustering of seven pigeon breeds into 
three genetic groups, with HF and TR clustered in a group, EU, SK, 
WK, and SQ clustered together, and TS separated into a single group 
(Figure 2b). ADMIXTURE analysis confirmed that three ancestral 
groups were formed (Figure 2c).

The genomic variations [average ROHs, mean ROH size, and the 
inbreeding coefficient (FROH)] for the seven pigeon groups showed 
congruent patterns. Chinese HF breeds showed an extreme in-
breeding coefficient (FROH) and exhibited the most ROHs (96) and 
the largest ROH size (76,829.6 kb), whereas the greatest genomic 
variations were observed in the TR breed from Kashgar in Xinjiang 
(Figure 3a, Table S6). The TR and SK pigeon breeds showed an over-
all high level of genetic diversity and rapid LD decay, whereas the HF 
breeds, as a Chinese traditional pet pigeon, exhibited lower genetic 
diversity and slower LD decay (Figure 3b).

3.3  |  Selective-sweep signals in commercial 
pigeon breeds

3.3.1  |  Plumage color

Using WK as the control group, 303, 181, and 190  gene regions 
were identified by FST and log2(θπ ratio) analyses in EU, SQ, and SK, 
respectively (Table S7). Furthermore, nine genes were identified by 
overlap analysis, among which EDNRB was associated with white 
plumage color (Figure 4a and b, Table S8). With white pigeons and TR 
pigeons as the control group, a total of 118 overlaps were identified 
in TS pigeons (Table S9), among which genes enriched for the KEGG 
pathway melanogenesis (ID: clv04916) included AHCY, ASIP, WNT6, 
and WNT10A. When compared with the HF pigeons, ASIP was identi-
fied as related to feather color with WK. Other genes related to WK 
plumage color included CREB1 and SLC45A1.

3.3.2  |  Production

Compared with the TR pigeon, 21 genes in the white-feathered meat 
pigeon were identified as related to body size according to overlap 
analysis, including 7 definite named genes (EDNRB, PLPPR5, RBFOX1, 
IGFBP1, TNS3, ADCY8, and LCORL) (Figure 4c and d, Table S10). 
Additionally, LCORL was identified in TS pigeons, whereas TNS3 and 
IGFBP1  genes were identified in WK pigeons. We speculated that 
these three genes are related to body size traits of commercial pigeon 
breeds. Selective signal analysis revealed that RAMP3, KIAA0556, 
VAMP3, and GSG1L play key roles in WK reproduction. Compared with 
the TR pigeons of all commercial meat pigeon breeds, overlap analysis 
identified four genes (Table S11), with RBFOX1 shared between breeds 
and related to human neuronal development (Fogel et al., 2012).

https://www.omicstudio.cn/tool/6
http://kobas.cbi.pku.edu.cn/kobas3/
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3.4  |  Selective-sweep signals in High Fliers

The HF are a highly cultivated breed with a breeding history of 
>300 years in China. Selection signals and overlap analysis revealed 
that 73 gene regions received strong artificial selection or showed 
the lowest genetic diversity (Table S12), with all of these genes an-
notated in the human phenotype ontology database (http://www.
webge​stalt.org/). HPO enrichment analysis revealed their asso-
ciation with facial features and muscular dystrophy (Tables 1, S13). 
Genes associated with pigment deposition included MC1R.

3.5  |  Selective-sweep signals in Tarim pigeons

Rapidly evolving adaptive genes related to environmental stress 
were used as the windows to identify the top 5% (FST and the log2(θπ 

ratio)) of genes as the candidate outliers of strong selective sweeps 
(Figure 5a). Compared with the five commercial varieties, positive se-
lection genes were identified in TR, including 422, 389, 422, 253, and 
336 genes related to adaptability (Table S14). Additionally, 47 gene 
regions were identified by overlap analysis (Figure 5b, Table S15), and 
GO analysis revealed significant enrichment of 22 candidate genes 
embedded in the selective regions (169 GO terms; p < 0.05) (Tables 
S16, S17), including organ development (GO:0048513, p = 0.001), 
potassium channel inhibitor activity (GO:0019870, p = 0.003), cel-
lular response to chemical stimulus (GO:0070887, p = 0.003), repro-
ductive structure development (GO:0048608, p  =  0.02), and blue 
light photoreceptor activity (GO:0009882, p  =  0.02) (Figure 5c). 
These enriched genes were related to adaptability, including strong 
solar radiation, large diurnal range, and alkaline water. According 
to the selected regions, the enrichment pathways were mainly re-
lated to abiotic factors (physical and chemical environments), as 

F I G U R E  2  (a) NJ phylogenetic tree for the seven pigeon breeds. European pigeon (EU); Silver King (WK); Shiqi (SQ); Shen King (SK); Tarim 
pigeon (TR); Taishen (TS); High Flier (HF). (b) Two- dimensional PCA plot of pigeon breeds. (c) Genetic structure of pigeon breeds according 
to ADMIXTURE, with K = 3, 4

http://www.webgestalt.org/
http://www.webgestalt.org/
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well as organ development and olfactory and visual systems. The 
KEGG pathways enriched by the selected genes of TR include 
Adipocytokine Signaling Pathway (ID: clv04920, p  =  0.03) and 
Insulin Signaling Pathway (ID: clv04910) (Table S18, Figure S1). Both 
pathways involve PPARGC1A gene, which plays a key role in adaptive 
thermogenesis.

4  |  DISCUSSION

The genetic architecture plays a fundamental role in the origin and 
maintenance of local adaptation with gene flow (Tigano & Friesen, 
2016). Here, phylogenetic tree mainly includes two branches: one 
for commercial pigeons and mostly introduced and cultivated vari-
eties; and the other comprises TR and HF pigeons, indicating that 
traditional Chinese ornamental pigeons might originate from local 
breeds. The results of ROH analysis of the high-flying pigeon breed 
revealed their being highly inbred. The artificial high-intensity and 
continuous selection requires that this group maintain specific 
morphological characteristics for breeding, such as a short beak 
and lightweight. Meat pigeon breeds can provide humans with 
high-quality protein sources, mainly including meat and egg prod-
ucts. Artificial selection targets mainly focus on body size and fer-
tility, and large-scale cages are often used. These pigeon genetic 
resources provided a more extensive phenotypic basis for research 
purposes. The results are mainly classified into two categories: 
economic traits and local environmental adaptability. Economic 
traits mainly include feather color, body size, fecundity, and orna-
mental traits, whereas environmental adaptability abiotic factors 
include physical environment (light, temperature, etc.) and chemi-
cal environment (water, food, air, etc.).

4.1  |  Economic traits

4.1.1  |  Genes related to plumage color

Compared with colored feather pigeons, white feather pigeons 
have better carcass appearance after slaughtering, so they occupy 
the mainstream market in the world. Comparative analysis between 
white-feathered pigeons and other colored pigeons revealed that 
the EDNRB gene region showed a strong selection signal. This gene 
is widely reported as related to mammalian skin, coat, and iris pig-
mentation, including several human syndromes with eye-color de-
fects and heterochromia (Issa et al., 2017; Morimoto et al., 2018), 
iris pigmentation, heterochromia patterns, and coat color in pigs 
(Moscatelli et al., 2020; Wilkinson et al., 2013). Additionally, a mis-
sense mutation in EDNRB causes lethal white foal syndrome in 
horses (Metallinos et al., 1998; Santschi et al., 1998). In birds, only 
sporadic reports of this gene variation have been associated with 
feather color of quails (Miwa et al., 2006, 2007). Pigeons with white 
plumage usually have dark brown iris color. The results of selective 
signal scanning suggested that EDNRB might play a key role in pigeon 
feather and iris color.

As a monotypic bird, the sex identification of pigeons is diffi-
cult in the commercial production of meat pigeons. TS pigeons are 
one of the a few breeds in which males and females can be identi-
fied by feather color. For almond-colored pigeons with sex-linked, 
copy number variation analysis identified a genomic region that 
include MLANA (Bruders et al., 2020). Moreover, homozygous al-
mond males (ZSt/ZSt) develop severe eye defects and often lack 
plumage pigmentation, suggesting that higher dosage of the mutant 
allele is deleterious (Bruders et al., 2020). In this study, the genomic 
region controlling pigment deposition in TS, which includes AHCY, 

F I G U R E  3  (a) Analysis of the FROH of the seven pigeon breeds. (b) LD decay of the seven pigeon populations, as measured by r2
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F I G U R E  4  (a) FST plot of the comparison of the white pigeon with WK. The threshold line represents the top 1% of the FST value. (b) 
FST corresponding to the selective sweep of white plumage color on scaffold NW_004973178.1 encompassing EDNRB. (c) Venn diagram 
showing the shared gene number between three white commercial pigeon breeds, with local TR pigeons used as the control group (FST and 
θπ analyses). (d) Seven key genes were selected as associated with white plum

TA B L E  1  HPO annotation of candidate genes

Term ID Term name Intersections

HP:0000152 Abnormality of head or neck SYNE1, DMD, SOS1, CTDP1, TLR3, BRAF, 
GRIA4, SGCD, COG8, CDH1, GAS8, TUBB3

HP:0002817 Abnormality of the upper limb SYNE1, DMD, SOS1, CTDP1, BRAF, SGCD, 
COG8, GAS8, TUBB3

HP:0011805 Abnormal skeletal muscle morphology SYNE1, DMD, SOS1, CTDP1, BRAF, GRIA4, 
SGCD, COG8, TUBB3

HP:0000271 Abnormality of the face SYNE1, DMD, SOS1, CTDP1, BRAF, SGCD, 
COG8, CDH1, GAS8, TUBB3

HP:0011821 Abnormality of facial skeleton SOS1, CTDP1, BRAF, COG8, CDH1, GAS8, 
TUBB3

HP:0000492 Abnormal eyelid morphology DMD, SOS1, CTDP1, BRAF, COG8, CDH1, 
TUBB3

HP:0030319 Weakness of facial musculature SYNE1, DMD, SGCD, TUBB3

HP:0003560 Muscular dystrophy SYNE1, DMD, SGCD

HP:0002212 Curly hair SOS1, BRAF
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ASIP, WNT6, and WNT10A. Multiple studies report the involvement 
of ASIP in determining coat color in domestic animals, including 
sheep (Zhang, Li, et al., 2017), horse (Grilz-Seger et al., 2019), don-
key (Abitbol et al., 2015), cattle (Xu et al., 2015), and buffalo (Liang 
et al., 2020). Additionally, variation in the 5′ region of the gene in 
Japanese quails can cause feather color dilution (Robic et al., 2019), 
and the expression of the gene is associated with chicken sexual 
dimorphism (Oribe et al., 2012). Moreover, WNT6 and WNT10A are 

related to the color pattern of butterfly wings (Martin & Reed, 2014), 
and subsequent studies showed that WNT6 is involved in sex-related 
feather color patterns (Iijima et al., 2019). Furthermore, WNT10A is 
associated with hypohidrotic ectodermal dysplasia, which is usually 
inherited in an X-linked form and features light pigmentation (Wright 
et al., 1993).

In the WK pigeon population, ASIP was only identified in high-
flying pigeons, whereas SLC45A1 and CREB1 were identified in 

F I G U R E  5  (a) The top 5% of distribution of log2 values (θπ•control/θπ•Tarim pigeon) and highest FST values calculated in 40-kb sliding 
windows with 20-kb increments between the Tarim pigeon and the control commercial population. (b) Upset and Venn diagrams show the 
overlapping genes between TR and the five commercial breeds. (c) Enriched GO terms for key genes detected by selective sweep according 
to the FST and θπ ratio
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comparisons with other groups. SLC45A1 encodes a protein that 
plays a role in glucose uptake and is implicated in the regulation of 
glucose homoeostasis in the brain (Bartölke et al., 2014). There are 
few reports on the relationship between SLC45A1 and pigment depo-
sition, although SLC45A2 is associated with skin and hair pigmenta-
tion (Fracasso et al., 2016), and its mutation is related to chicken 
Silver Feather (Gunnarsson et al., 2007). Additionally, SLC45A2 mu-
tation is associated with classical color phenotypes of pigeons and 
offers a mechanistic explanation of their dominance and epistatic 
relationships (Domyan et al., 2014). Furthermore, evidence indicates 
that inherited abnormalities in CREB1 pigmentation-related genes 
can not only increase the risk of cutaneous melanoma but also in-
fluence patient clinicopathological features (Loureno et al., 2020).

We identified MC1R in HF during comparison with other breeds 
and encodes a protein that regulates pigment deposition (Mountjoy 
et al., 1992). Variation in MC1R in different species can lead to a 
dominant black-coat color phenotype or recessive red or yellow phe-
notype (Robbins et al., 1993). In pigeons, variation in MC1R resulting 
in a V85 M substitution is associated with phenomenalism (Guernsey 
et al., 2013).

4.1.2  |  Genes related to production

The production traits of meat pigeons mainly include meat traits 
and reproductive traits. Commercial pigeon breeders pursue larger 
body size and higher meat production, mainly based on the sales 
of squab at 28 days old. The weight of commercial meat pigeons is 
generally 500–800 g, while that of Chinese traditional ornamental 
pigeons and local pigeons is only about 350 g. Compared with local 
breeds, we identified LCORL, TNS3, and IGFBP1 as associated with 
growth and development in white meat pigeons. The LCORL region 
has been identified as a locus for human height (Wood et al., 2014) 
and weight (Horikoshi et al., 2013), and genome-wide analysis of 
multiple species revealed this region as related to body size, includ-
ing in pig (Rubin et al., 2012), horse (Srikanth et al., 2019), cattle (Xu 
et al., 2015), and sheep (Yurchenko et al., 2019). The present study is 
the first identification of this gene as being related to production in 
pigeons. TNS3 plays an important role in development and growth, 
and its inactivation in mice results in growth retardation and postna-
tal lethality (Chiang et al., 2005). TNS3 gene was enriched in muscle 
organ development (GO: 0007517) and muscle structure develop-
ment (GO: 0061061), and TNS3 is associated with fossil bone length 
in Pekin ducks (Deng et al., 2019). IGFBP1 is secreted by hepatocytes 
and other cell types (Baxter, 2014), and studies report that women 
with elevated IGFBP1  levels are more likely to have a low relative 
muscle mass (Stilling et al., 2017).

Compared with other breeds, we identified reproduction-related 
genes in WK, including RAMP3, KIAA0556, VAMP3, and GSG1L. 
RAMP3 encodes an adrenomedullin receptor (McLatchie et al., 1998) 
involved in uterine quiescence during pregnancy and regulated 
by steroid hormones (Thota et al., 2003). Additionally, RAMP3 ex-
pression correlates with temporary sperm storage in and possible 

sequential sperm release from the chicken uterovaginal junction 
following artificial insemination (Yang et al., 2020). Balanced chro-
mosome rearrangements in unaffected individuals possess high 
reproductive risks, including infertility, abnormal offspring, and 
pregnancy loss, with KIAA0556 detected in families harboring these 
rearrangements (Tan et al., 2020). GSG1L and VAMP3 play important 
roles in the development of animal gonads (Boonanuntanasarn et al., 
2020), and VAMP3  is important to sperm fertilization in pig (Tsai 
et al., 2010) and associated with testis weight in chickens (Zhang, 
Yu, et al., 2017).

4.1.3  |  Genes related to ornamental traits

Compared with other breeds, the genes identified in high-flying pi-
geons are mostly related to rare human diseases, especially muscular 
dystrophy and special facial features. This might be related to the di-
rection chosen by breeders, such as a light body, short beak, big eyes, 
and feather color. SYNE1 is associated with Emery–Dreifuss muscu-
lar dystrophy (Chen et al., 2017; Heller et al., 2020; Sandra et al., 
2019), and mutation of DMD, as the largest in the human genome 
(total intron content: >2.2  Mb) (Keegan, 2020), causes Duchenne 
muscular dystrophy and Becker muscular dystrophy (Yang et al., 
2019). SOS1 and BRAF are associated with Noonan syndrome, an 
autosomal-dominant disorder characterized by short stature, con-
genital heart disease, curly hair, and facial dysmorphia (Allanson & 
Roberts, 2001; El Bouchikhi et al., 2016; Quaio et al., 2013). CTDP1 is 
the only gene in which pathogenic variants are known to cause con-
genital cataracts, facial dysmorphism, and neuropathy characterized 
by abnormalities of the eye (Kalaydjieva & Chamova, 1993). SGCD 
is associated with recessive limb-girdle muscular weakness and 
Pompeii disease (Bevilacqua et al., 2020).

4.2  |  Adaptive traits

Compared with commercial pigeon breeds and in addition to selec-
tion pressures for meat and fertility, local TR pigeons had to adapt 
to a warm arid climate in Kashgar (Liang et al., 2019) characterized 
by strong solar radiation, and large daily and annual temperature 
ranges (Abdul Rexiti Aji, 2002). Additionally, sulfate concentrations 
exceed the groundwater quality standard in 73.2% of the uncon-
fined groundwater area and in 53.2% of the confined groundwater 
area in Kashgar Delta (Wei et al., 2019). Studies have focused on 
plant soil chemical tolerance (Bian et al., 2020), and a recent report 
demonstrated the adaptability of limestone langurs to a calcium 
ion chemical environment (Liu et al., 2020). KLHL8 was enriched in 
a pathway related to sulfate transmembrane transporter activity 
(GO:0015116, p = 0.03). GLRA2 is a member of the ligand-gated ion 
channel superfamily (Feng et al., 2001) that plays an important role 
in maintaining potassium and calcium homeostasis. It is speculated 
that these genes may be related to the water environmental adapt-
ability of TR pigeon.
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PPARGC1A (also known as PGC-1α) is related to metabolism and 
starch synthesis by encoding a nuclear transcriptional coactivator 
that plays a pivotal role in metabolic processes, including mito-
chondrial biogenesis, thermogenesis, respiration, insulin, secretion, 
and gluconeogenesis (Baar, 2014). Human variants of PPARGC1A 
are associated with endurance (Ahmetov et al., 2016) and might 
be involved in pigeon energy maintenance. Moreover, PPARGC1A, 
METTL15, and PGAM5 play an important role in mitochondria 
(Magalhaes et al., 2018; Van Haute et al., 2019; Yu et al., 2020), with 
deletion of PGAM5 resulting in accelerated retinal pigment epithelial 
senescence in vitro and in vivo (Greenway et al., 2020). Furthermore, 
ADGRL3 expression is highly regulated during brain development 
and peaks during the prenatal and postnatal periods (Arcos-Burgos 
et al., 2010), with numerous studies reporting that ADGRL3 (LPHN3) 
is related to attention-deficit/hyperactivity disorder (Acosta 
et al., 2016; Huang et al., 2019; Hwang et al., 2015). ADGRL3 gene 
is enriched in the blue light photoreceptor activity (GO:0009882, 
p = 0.02). Photoreceptors are essential for circadian rhythm in ani-
mals. It is speculated that this gene may be related to the rhythmic 
behavior of TR pigeons. NTNG1 is associated with neurological dis-
eases, including Rett syndrome (Archer et al., 2006), schizophrenia, 
and bipolar disorder (Eastwood & Harrison, 2008; Wilcox & Quadri, 
2014). In the present study, we found that pathways enriched in the 
selected gene regions of TR pigeons were mainly concentrated in 
organ development, inorganic ion transport, circadian rhythm, the 
olfactory system, and metabolism.

5  |  CONCLUSIONS

This study elucidated the genetic and evolutionary relationship 
among seven pigeon breeds. Inbreeding or genetic diversity as-
sessment revealed the degree of artificial selection of ornamental 
breeds, local breeds, and commercial pigeon breeds. The genomic 
imprints left by artificial selection revealed the EDNRB gene that 
affects white feather traits and the LCORL gene that affects body 
weight or size, which can be used as candidate genes for molecular 
breeding of meat pigeons. Compared with the choices of pigeons 
in production and ornamental traits, the adaptability of human-
mediated selection was more complex and diverse, including chemi-
cal and physical environments. This research insights into how the 
Tarim pigeon has evolved an effective adaptive mechanism to cope 
with the adverse conditions of local drought, brackish water, strong 
light, and large temperature differences. Screening genomic re-
gions of pigeons related to economic traits and adaptability not only 
broadens the understanding of selection and evolutionary processes 
in pigeons but also helps make better use of genetic resources for 
breeding improvements.
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