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Abstract: In this article, a recent formulation for real-time simulation is developed combining the
strain energy density of the Spring Mass Model (SMM) with the equivalent representation of the
Strain Energy Density Function (SEDF). The resulting Equivalent Energy Spring Model (EESM) is
expected to provide information in real-time about the mechanical response of soft tissue when
subjected to uniaxial deformations. The proposed model represents a variation of the SMM and can
be used to predict the mechanical behavior of biological tissues not only during loading but also
during unloading deformation states. To assess the accuracy achieved by the EESM, experimental
data was collected from liver porcine samples via uniaxial loading and unloading tensile tests.
Validation of the model through numerical predictions achieved a refresh rate of 31 fps (31.49 ms of
computation time for each frame), achieving a coefficient of determination R2 from 93.23% to 99.94%
when compared to experimental data. The proposed hybrid formulation to characterize soft tissue
mechanical behavior is fast enough for real-time simulation and captures the soft material nonlinear
virgin and stress-softened effects with high accuracy.

Keywords: spring–mass model; stress softening effects (Mullin’s effect); non-Gaussian model; bioma-
terial residual strains; biological tissues; real-time simulations

1. Introduction

Modeling the mechanical behavior of soft biological tissue is a complex task that
has derived in the development of a great number of constitutive material models. Some
of the material models that have been used in the literature for predicting the nonlinear
behavior observed in experimental data are those proposed by Dorftmann and Ogden [1],
Holzapfel [2–4], Arruda-Boyce [5], Cantournet et al. [6], Elías-Zúñiga et al. [7], and refer-
ences listed therein. These models consider a different number of material constants that
need to be determined using experimental data [8,9]. It is also known that the majority of
these constitutive material models are not appropriate to perform real-time simulations
and thus, simplified models such as the Spring–Mass Model (SMM) formulation have been
developed [10–14]. These SMM formulations are based on the linear elasticity theory and
Hooke’s law. Therefore, these are used for small material elongations (λ < 10%). The SMM
is easy to implement, and computer simulations of the material response are performed
in real-time, but its accuracy is lower than that attained by finite element methods. In an
attempt to improve the SMM accuracy for larger materials elongations, several approaches

Polymers 2022, 14, 1407. https://doi.org/10.3390/polym14071407 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14071407
https://doi.org/10.3390/polym14071407
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-5145-1819
https://orcid.org/0000-0002-3837-2083
https://orcid.org/0000-0001-5297-2950
https://orcid.org/0000-0002-4385-6269
https://orcid.org/0000-0002-7441-034X
https://orcid.org/0000-0002-6048-5957
https://orcid.org/0000-0002-2347-5215
https://orcid.org/0000-0002-5661-2802
https://orcid.org/0000-0003-2289-4239
https://doi.org/10.3390/polym14071407
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14071407?type=check_update&version=1


Polymers 2022, 14, 1407 2 of 19

have been proposed in the literature. For instance, Chen et al. [10] introduced a novel
approach for the SMM considering a nonlinear mass-spring model to predict the global
deformation experienced by soft tissue. They found that their proposed nonlinear model
provides realistic and faster results compared to those of finite element method (FEM)
simulations. A hybrid model that uses boundary element method (BEM) and the SMM
was proposed by Zhu and Gu in [11] to simulate the dynamic behavior of soft tissue when
interacting with surgical instruments. This model provides accurate visual and haptic
feedback in the real-time surgical training system for laparoscopic surgery. Motivated
by the low computational cost required by the SMM to simulate in real-time soft tissue
changes compared to FEM-based methods, Patete et al. [12] implemented the SMM for
predicting breast tissue deformations using an iterative algorithm to estimate the spring’s
rest length and stiffness, overcoming critical issues such as the selection of the spring
stiffness and the damping factor. It is well-known that SMM is physically correct if one has
a relationship between the spring constants and the physical response behavior exhibited
by soft materials. Thus, by assuming incompressible and isochoric material behavior,
Duan et al. [13] developed a tetrahedral mass-spring formulation that takes into account
nonlinear effects for realistic simulation of soft-biological tissue. Then, they implemented
a virtual reality environment for laparoscopic cholecystectomy, finding that their model
is capable of predicting large tissue deformation in real-time simulations. Regarding the
determination of the elasticity parameters of the mass-spring-damper model (lumped ele-
ment model) of deformable objects, Natsupakong and Çavusoglu [14] used an optimization
algorithm that minimizes the matrix norm of the error between the stiffness matrices of
the linear lumped element model and of the linear finite element method of the same
object. They investigated the accuracy attained by their optimization algorithm considering
several test objects in two and three dimensions with triangular, quadrilateral, tetrahedral,
and hexahedral elements. They found that quadrilateral and tetrahedral elements predict
soft-tissue Young’s modulus value with good accuracy. One must notice that this method
is more flexible than existing ones in the literature, since no assumptions on the material
elasticity parameters need to be made.

The articles of Delingette et al. [15], Picinbono et al. [16], Holzapfel et al. [17], Ostaja-
Starzewski [18], Meier et al. [19], Nealen et al. [20], Luo and Xiao [21], Tang et al. [22],
Liu et al. [23], San Vicente et al. [24], Del Castillo et al. [25], Nikolaev [26], Kot et al. [27],
Lloyd et al. [28,29], Omar and Zhong [30,31], Nguyen et al. [32], Zhang et al. [33],
Dong et al. [34], Va et al. [35], Aryeetey et al. [36], Tripicchio et al. [37], Ballit and Dao [38],
and references cited therein, have good discussions on how to incorporate typical biological
properties and behavior of soft tissue, and how to perform a correct mapping of the elastic
properties among physical objects and the SMM elements. All these related works attempt
to simulate soft tissue deformation for surgical real-time visual and force haptic interaction.

It is evident that a lot of work has been done to increase the accuracy and efficiency of
the spring–mass models to effectively capture real-time soft tissue deformations. Therefore,
in order to improve the efficiency and computational performance of real-time simulations,
the study reported in this article proposes a new hybrid formulation based on an equiv-
alent energy spring model (EESM) with a stiffness function that depends on soft tissue
deformations. We assume that the strain energy density model formulation is equal to that
of a one-dimensional spring that matches with that of a non-Gaussian constitutive material
model. Furthermore, we consider in the proposed material model the important soften-
ing phenomena associated with the observed real-time mechanical behavior of biological
materials at the virgin and softened state assuming that the hyperelastic nonlinear and
anisotropic material behavior can be described as an equivalent “isotropized” material [6,7].

2. Hybrid Material Model
Mathematical Formulation

During implementation of the SMM for predicting the response of biological tissue in
real-time [12,13], each organ is considered as a construction of mass points and springs, as
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shown in Figure 1. In this approach, the non-linearity that exhibits soft tissue is obtained
by a random combination of the material stiffness assembled with an internal skeleton
structure that provided variable stiffness. To calculate the force Fi at a point Pi in the
mesh shown in Figure 1, Hooke’s law is used to determine the force of a linear spring that
connects Pi with Pj considering the stiffness kij, the initial spring length Lij, and the current
spring length at the time of the calculation, using the following expression [13]:

Fi = kij
(∣∣Pj − Pi

∣∣)− Lij)
Pj − Pi∣∣Pj − Pi

∣∣ (1)
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Figure 1. A mesh of springs represented with unidimensional elements using the SMM.

Equation (1) provides good precision for small tissue deformations. However, the main
drawback of this expression is the lack of a physical relationship between the mechanical
properties such as the Young modulus and the Poisson ratio with the parameters used to
predict the response behavior of soft tissue [12,13]. In order to find the elasticity constants, a
subjective trial-and-error calibration process has to be performed to find mesh deformations.
In spite of the accuracy attained by the SMM for predicting small tissue deformations,
this model cannot predict the material nonlinear response behavior when subjected to
large deformations because the mechanical behavior of soft tissue is no longer described
by the linear elastic theory. Therefore, there is a need for a new model to capture the
material behavior for small or large deformations, while keeping the efficiency of the SMM
to perform real-time simulations.

To develop a new material model that captures soft tissue nonlinear effects, one must
bear in mind the material histological composition. In fact, one can assume that soft tissue
is a composite material formed by a matrix with isotropic behavior and a volume fraction
of reticular fibers with a nonlinear anisotropic behavior. Figure 2 illustrates a portion of a
porcine liver sample that corroborates our material structure assumptions.

In order to model the behavior of soft tissue and other composite materials, we
introduce a new formulation based on the SMM and the non-Gaussian material constitutive
model proposed by Elías-Zuñiga in [7].
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Figure 2. Porcine liver sample showing the histological composition of the tissue: (a) Microscopic
view of the tissue sample showing its heterogeneous composition; (b) Parenchyma cells and fibers
structures in a microscopic view of a porcine liver tissue sample, showing the histological composition.

This constitutive model was selected since it has been applied with success to charac-
terize the mechanical behavior of multiple biological and composite materials. Some of the
materials studied include mice skin and tracheal membranes [7], brominated isobutylene
and paramethylstyrene copolymer and reinforced natural rubber reinforced with multiwall
carbon nanotubes (BIMSM-MWCNT and NR-MWCNT respectively) [39], poly(glycolide-
co-caprolactone) and polypropylene sutures [40], and magnetorheological polyurethane
elastomers reinforced with carbonyl iron microparticles [41], to name a few. Moreover,
the hybrid formulation with SMM proposed in this work allows to perform real-time
simulations, opening a whole wide range of potential opportunities.

In the material model introduced by Elías-Zuñiga et al. in [7], they used the rule of
mixture to create an equivalent strain energy density (ESED) model, which includes the
material energy contributions from isotropic and anisotropic volumetric fractions. Thus,
they assumed that the total strain energy density WT of this ESED model is defined as:

WT = (1− f )Wiso + f Waniso, (2)

where Wiso and Waniso are, respectively, the isotropic and anisotropic strain energy densities,
and f represents the equivalent anisotropic volumetric fraction contribution to the total
material energy density [42–44]. To account for the isotropic contribution (matrix), we use
the non-Gaussian strain energy density given as [43]

Wiso(λ1, λ2, λ3) = µ

[
N
(

βλr + ln
(

β

sinhβ

))
− ln

(
β

λr

)]
+ c, (3)

where λr is the relative chain stretch defined as

λr =
λchain

λL
, (4)

λL =
√

N represents the fully extended chain stretch, N is the chain number of chain links
of length l, λchain is the chain stretch given as

λchain ≡
√

I1

3
, with I1 = λ2

1 + λ2
2 + λ2

3, (5)

c is a constant [43–45].
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and β = L−1(λr) is the inverse of the Langevin function L(β) defined as

λr = L(β) = cothβ− 1
β

, (6)

which can be written in simplify form using Puso approximation as [46]

β =
3λr

1− λ3
r

, (7)

For the case of Waniso, we use the isotropized strain energy density expression dis-
cussed in [6,7] that has the form

Waniso =
A1

3
(I1 − 3) +

A2

9
(I1 − 3)2 − 2A1

3
ln
√

I3, (8)

where A1 and A2 are the energy density fitting parameters, and I3 = λ2
1λ2

2λ2
3. Thus,

substitution of Equation (3) and Equation (8) into Equation (1) gives the equivalent strain
energy density expression that can be used to model soft tissue:

WT = (1− f )Wiso + f
(

A1

3
(I1 − 3) +

A2

9
(I1 − 3)2 − 2A1

3
ln
√

I3

)
. (9)

Notice that the use of Equation (9) for real-time simulation is restricted by the com-
putational time required to solve this model at each amount of stretch to get the material
response behavior. Therefore, a hybrid formulation is proposed based on the Strain Energy
Density Function (SEDF) given by Equation (9), and the SMM, which has low computa-
tional cost. In this equivalent energy spring model (EESM), we attempt to find an equivalent
spring stiffness using an equivalent energy density function; in other words, the equiva-
lence is established with a Neo–Hookean model for one-dimensional spring that is assumed
to have variable stiffness value. Here the total strain energy at certain amount of stretch λ
is considered to be equivalent to the one obtained from the SEDF, at the same amount of
stretch, so that the following relationship holds:

Ws(λs) =
σε

2
=

F(λs − 1)
2νij

=
ksλs

2νij
(λs − 1) = WT(λ1, λ2, λ3), (10)

where Ws is the total strain energy density of the EESM element, νij is a geometrical
parameter that represents the transversal area of the soft tissue object that is used to find
the material model parameters, λs is the spring element stretch, and ks is the stiffness
function of an EESM element. For uniaxial extension, the total strain energy density WT of
an incompressible material could be found by considering that λ1 = λ, λ2 = λ3 = 1/λ1/2.
Therefore, it is possible to find the material parameters for each spring to represent the
soft tissue non-linear behavior as a function of the amount of stretch. In this case, the
stiffness function is determined from the precalculated equivalent energy considering the
SEDF of the isotropic and anisotropic volumetric fractions contributions using Equation (9).
Thus, from Equation (10) one can find the relationship that allows to compute the stiffness
function of an EESM element:

ks(λ) =
2νij((1− f )Wiso + f Waniso)

(λ2
s − λs)

. (11)

This expression helps in finding the element stiffness value that causes a stretched
spring to reach the same soft tissue strain energy density at the same amount of stretch. In
this case, ks is calculated for a specific configuration of the EESM element, using the material
parameter values obtained from experimental uniaxial extension data. The analysis with
the SMM is performed by considering the creation of EESM elements in a simulation mesh.
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Each EESM element is assumed to be one-dimensional spring that has an initial length
equal to the distance between two connected points (Pi and Pj), as shown in Figure 3.
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During the implementation of this algorithm, the EESM stiffness function, kij, is used at
each stretch value to define a 3D array. This array is pre-calculated based on the parameters
that characterized the material mechanical behavior, and by defining a variable stiffness
parameter, given by the following expression

kij(λs) =
[
ksx(λs), ksy(λs), ksz(λs)

]
. (12)

By using this method, one can find the parameters of a simplified model that allows
real-time simulation using the mechanical properties of soft tissue organs collected from
uniaxial extension tests. In addition, notice that all the above energy density expressions can
be computed by considering the principal stretch fibers direction and those fiber families
oriented at 55◦, and described by (1,1,1) (and all variations (−1,1,1), (1,−1,1), (1,1,−1), and
so on). See [6,7], and references cited therein. Further, we assume that the contribution of the
material fibers have random distribution along the principal axes, and that the properties
obtained are distributed based on the fiber main orientation. The EESM formulation for
uniaxial tension considers that the contribution of the stiffness in the principal directions is
the one described in the model and used to predict its mechanical behavior, as shown in
Figure 4.
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Figure 4. Graphical representation of the uniaxial mechanical test for characterization of soft tissue
anisotropic properties.

To simplify its calculation, the value of kij is stored in the initialization phase for each
EESM at all values of λs. During the main refresh cycle of the real-time simulation, the
method uses the stiffness value, which is calculated at the same elongation experienced by
the soft tissue, as the stiffness parameter needed by the EESM.
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3. Experimental Tests

To characterize the soft tissue mechanical behavior using the EESM, experimental
uniaxial tensile tests in porcine liver tissue samples were performed to assess the accuracy
attained from our proposed method.

3.1. Sample Preparation

To perform the experimental tests on the liver tissue, we followed the specimen
preparation procedure proposed by Umale et al. [47] and Brunon et al. [48]. However,
in our case we decided to cut the liver samples according to the tooling dimensions of
55 × 20 × 5 mm, as shown in Figure 5a,b. All liver samples were cut considering the
same general orientation shown in Figure 5b. Then, quasi-static uniaxial experimental
tests were carried out on the cut fresh liver samples without preconditioning at room
temperature. The tests were performed considering loading and unloading cyclic tests since
the softening effects are to be investigated as well. Since soft tissue is an incompressible and
inhomogeneous material, it is evident that experimental tests provide information about
the material response behavior linked to different fiber volume fraction, fiber orientation,
and tissue anisotropic properties.
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(a) Tooling dimensions for cutting liver fresh samples. (b) Liver sample geometry.

3.2. Experimental Setup

To collect experimental data needed to compute the stiffness values of the EESM
elements given by Equation (11), we performed cyclic loading and unloading uniaxial
extension test on porcine liver parenchyma samples. All uniaxial tests were performed in
an Instron 3365 electromechanical universal testing machine with load cell of 5 kN, and
movable crosshead velocity of 0.01 mm/s, as illustrated in Figure 6. Destructive tests were
carried out to identify the liver tissue maximum elongation at break. Then, three loading
and unloading cycles were set at different elongation stretch values, as shown in Figure 7.
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Figure 7. Experimental data for uniaxial tensile test on porcine liver tissue samples.

4. Computational Implementation
4.1. Simulation Setup

Figure 8 shows the flow diagram used to implement the EESM material model for
getting real-time simulation of soft tissue behavior subjected to deformation fields using
Python, Visualization Toolkit (VTK), NumPy, SciPy, Wx, Matlab, and tools such as collision
detection, and main interaction cycle for the virtual environment discussed in previous
works [49]. This computer algorithms were implemented using average hardware to avoid
any bias. The simulations were run in an equipment with an Intel® Core™ i7-4510U @
2.00 GHz with 8 GB RAM and an NVIDIA GeForce 710 M. All simulations used the same
standard mesh, which is a liver geometry composed by 5322 elements.
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Figure 8. Flow diagram of the main cycle used as a framework for real-time simulation setup.

4.2. Model Integration

Figure 9 shows the flow algorithm diagram that was followed to calculate the EESM
parameters as a function of the organ tissue geometry. In this step, we use the material
properties of the organ soft tissue obtained from uniaxial experimental tests.
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Figure 9. Flow diagram of implementation of proposed model in the initialization phase.

For the EESM, the strain energy density of a linear spring is obtained from the neo-
Hookean model using Equation (10) and equating this value with that obtained from
Equation (9) at the same amount of stretch starting from the undeformed state (λ = 1) to
the maximum specimen stretch value (λmax), and by considering incremental stretch step
values ∆λ. The computed value of the SEDF is stored in the program initialization phase.
Then, for an elongation λ, one can compute the value of ks(λ), which allows to obtain the
soft tissue energy density value at the same amount of stretch.

Figure 10 shows the flow diagram computer algorithm used to find the EESM value
for each spring–mass element considering the soft tissue material constants obtained
via uniaxial tests, which aids in calculating the kij value, which is in storage with the
corresponding stretch value experienced by each element.
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5. Material Constitutive Equation

To find the stress versus stretch material models that will aid in investigating the
accuracy of our proposed hybrid model for soft tissue, we take the derivative of Equation (9)
with respect to the amount of stretch [44] to get the following Cauchy stress-stretch virgin
material constitutive equation

T = (1− f )ℵB +
2 f
3

(
A1 +

2A2

3
(I1 − 3)

)
B− 2 f A1

3
1− p1, (13)

where T is the Cauchy stress, B is the left Green-Cauchy deformation tensor defined as

B = λ2
1e11 + λ2

2e22 + λ2
3e33, (14)

λi are the principal stretches in a common orthonormal frame ϕ = {O; ek}, ejk = ej ⊗ ek, ei
are the orthonormal principal directions, p is a hydrostatic pressure, and ℵ is the soft tissue
response function defined as

ℵ =
µ

3λr

β +
1

N8

 1
λr
− 1

β
(

1− λ2
r − 2λr

β

)
. (15)

Stress softening and residual strains can be predicted using the following material
model [50–52]:

τk =
(
(1− f )ℵλ2

k +
2 f
3

(
A1 +

2A2
3 (I1 − 3)

)
λ2

k −
2 f A1

3 − p

+ µλk
2C gk(λ1, λ2, λ3)

)
e−b
√

(M−m)( m
M ),

(16)

k = 1, 2, 3 (no sum) with

gk(λ1, λ2, λ3) =

∂
3
∑

a=1

(
λn

max a − λ2
a
)2

∂λ
, (17)

where C is a material constant, n is a fitting parameter that in general takes the value of 1, b
is a dimensionless softening parameter, λa are the principal stretches, and λmaxa, a = 1, 2, 3
are the maximum stretch values at which unloading begins on the primary loading path.

From Equations (16) and (17), one can show that the Cauchy stress-stretch constitutive
virgin material model is given as:

Tj − Tk =

(
(1− f )ℵ+ 2 f

3

(
A1 +

2A2

3
(I1 − 3)

))(
λ2

k + λ2
k

)
, (18)

and for the stress-softened material as

τj − τk = {
(
(1− f )ℵ+ 2 f

3

(
A1 +

2A2
3 (I1 − 3)

))
(λ2

j − λ2
k)+

µλk
2C (λjgj(λ1, λ2, λ3)− λkgk(λ1, λ2, λ3))}e−b

√
(M−m)( m

M ),
(19)

where j 6= k = 1, 2, 3 (no sum). The value of λr, m, and M can be computed by considering
that for simple extension homogeneous deformation state, λ1 = λ, λ2 = λ3 = λ−1/2. This
gives the following relationships

λr =

√
1

3N
(λ2 + 2λ−1), m =

√
λ4 + 2λ−2, M =

√
λ4

max + 2λ2
max. (20)

Finally, using
σ = TF−1, and σs = τF−1, (21)
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we can compute the engineering stress-stretch constitutive material equations for the virgin
and for the stress-softened materials, respectively.

6. Results

To address the accuracy attained from our proposed hybrid material model, we use
uniaxial loading and unloading experimental data collected from porcine liver samples [49].
Figure 11 shows the predicted loading and unloading engineering stress curves obtained
from Equations (18) and (19). One can see from Figure 11, that the material model based on
the equivalent SEDF captures experimental data well. In this case, the material constants
used to fit experimental data were: µ = 0.1 kPa, N = 1.1974, b = 3.3389, A1 = 9.6754 kPa,
A2 = 7543.6 kPa. C = 9.5273 kPa, and f = 0.2755. To find the stiffness function of an EESM
element, the SEDF is computed using Equation (9) with νij = 3.569× 10−5 m2.
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Figure 11. Predictions of the mechanical behavior of porcine liver tissue using the SEDF. The material
constants used to fit experimental data were: µ = 0.1 kPa, N = 1.1974, b = 3.3389, A1 = 9.6754 kPa,
A2 = 7543.6 kPa, C = 9.5273 kPa, and f = 0.2755.

Figure 12a shows the estimated strain energy density curves attained for the liver sam-
ples maximum stretch. Then, the spring stiffness function is determined from Equation (11)
so that the SEDF and the EESM have the same value, as illustrated in Figure 12a, while
Figure 12b shows the variation of the sample stiffness as a function of the amount of
stretch. These stiffness vs. stretch values are storage in a computer subroutine so that this
information can be used to investigate in real-time, the material response behavior when
subjected to a certain amount of deformation.

Figure 13 shows the experimental data and the SEDF predictions compared to the
SMM and EESM element predictions using the computed stiffness values. Both models
were evaluated under the same conditions, using the same software and hardware, and
estimating the best fitting stiffness parameter values to represent the material stress-stretch
behavior. Notice that the EESM proposed approach predicts the soft tissue nonlinear
behavior and the Mullins effects well.
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Figure 12. EESM results: (a) strain energy equivalence between SEDF and EESM; (b) stiffness
function of an EESM element that predicts the behavior of the porcine liver tissue, based on the
experimental data and the SEDF equivalence. The material constants used to fit experimental data
were: µ = 0.1 kPa, N = 1.1974, b = 3.3389, A1 = 9.6754 kPa, A2 = 7543.6 kPa, C = 9.5273 kPa, and
f = 0.2755.
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Figure 13. Comparison between the experimental data of porcine liver tissue in uniaxial tensile test,
the SEDF prediction, a simple SMM prediction, and the proposed EESM prediction.

In addition, three springs with different initial and final lengths (called Spring1,
Spring2, and Spring3) were used to run some numerical tests. Spring1, Spring2, and Spring3
were elements subjected to the maximum stretch value of λ = 1.3, λ = 1.23, and λ = 1.15,
respectively. Predictions obtained from these springs are shown in Figure 14. Notice that
theoretical predictions and experimental data agree well, which is an indication of the
accuracy achieved from our proposed approach.
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Figure 14. Predictions of the mechanical behavior of three different EESM elements representing
springs with variable stiffness that characterize the behavior of porcine liver tissue.

Simulation Performance

For validation purposes, a simulation test environment was created as discussed in
Section 4, to allow interaction with the meshes and for simulating soft tissue behavior.
The accuracy attained from our proposed model was assessed using the coefficient of
determination (R-squared, R2) that helps to identify if the majority of the experimental data
have been correctly predicted by the EESM and SMM models [53]. For the experimental
data shown in Figure 10, the estimated values of R2 using the prediction values computed
from EESM were 99.94% and 93.23% for the loading and unloading curves, respectively.
However, the R2 value for the predicted SMM values when compared to experimental
data was about 15.11%. This is an indication of the limitations of the SMM for predicting
soft-tissue nonlinear behavior, as shown in Figure 13.

In addition predictions from the EESM formulation are obtained in an initialization
phase that does not need to be computed in real-time since it does not influence the
graphical rendering refresh cycle. Then, the stiffness functions are stored for all EESM
elements in the simulation mesh. Notice that the performance in real-time no longer
depends on the constitutive model based on the SEDF however, it is a function of the
simulated geometry mesh, and of the number of assumed EESM elements.

In the validation tests, the implementation of the proposed model gets a refresh rate of
25 to 32 Hz. An initial test was done with the liver geometry, shown in Figure 15, conformed
by 5322 EESM elements requiring 1522 ms for initialization process. Each simulation cycle
for calculation of deformation and graphical update needed 31.49 ms, representing a 31-fps
update rate. The computer used for this test has the following CPU: Intel® CoreTM i7-4510U
@ 2.00 GHz/8 GB RAM.
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Figure 15. Real-time simulation of mechanical behavior of a liver geometry using EESM elements:
(a) Internal mesh of one-dimensional elements representing springs with variable stiffness in function
of the constitutive model; (b) shaded visualization of the deformation mesh calculated on real-time
with 31 fps.
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In summary, material models based on linear material behavior such as the SMM
approach can predict with good accuracy the behavior of soft tissue only for small deforma-
tions (lower than 10%) because of the material linear response, as illustrated in Figure 16.
The accuracy of the EESM approach to predict soft-tissue behavior at larger deformations
(bigger than 10%) when compared to the SMM approach and other linear elastic models
is clearly seen in Figure 17 therefore, it is concluded that our proposed hybrid model for
predicting nonlinear material behavior observed in soft biological tissue works well.
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7. Discussion

The results shown in the previous section demonstrate that it is possible to use the
proposed EESM approach to predict in real-time, the mechanical behavior of soft tissue.
This model has the benefits of the two main components of the hybrid formulation: (1) fast
computational time response of the SMM; (2) the accuracy to predict the material mechan-
ical behavior of the SEDF that uses the isotropized strain energy density function. The
EESM formulation demonstrated its capacity to represent mechanical properties of soft
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tissue in real-time simulations. The construction between the SEDF and the SMM shows
good results as a hybrid model, being able to have the accuracy of a complex constitutive
model with the computational performance of a simple model. The low error attained by
our proposed model in predicting soft tissue behavior for loading and unloading real-time
simulations indicates that our solution procedure works well for describing nonlinear
phenomena typical of biological tissues such as stress-softened effect. In fact, Mullin’s
effect is not taken into account in the soft-tissue SMM published in the literature. To the
best of the author’s knowledge, this is the first publication that includes Mullin’s effect in
biological tissues real-time simulations.

It is evident that our proposed approach can be improved if soft tissue effects such as
viscoelastic properties and the rigidity and topology of multiscale mechanical networks
are considered. It is well-known that network topology of soft-tissue can be described
with the loss modulus (the imaginary part of the complex shear modulus G*) by the
fractal material network dimension [54]. This idea is confirmed in a recent work published
by Leggett et al. [55], in which they found that epithelial cells organize into fractal-like
clusters that exhibit a branched architecture with fractal dimension predicted by diffusion-
limited aggregation. In other words, the moving cells organize into multicellular clusters
that promote tissue formation and wound healing, to mention a few. Therefore, one must
consider the important role that mathematical modelling has on describing the performance
of soft tissue when subjected to certain types of stimuli. Recently, scientist have used
fractional and fractal calculus to describe phenomena that ordinary derivatives cannot
predict, such as the anatomical network structure or the dynamical physiologic networks
that are fractals. See, for instance, the works published by West et al. [56], Beleanu et al. [57],
Beleanu et al. [58], and Ameen et al. [59]. Therefore, and in order to enhance our proposed
material hybrid model to reproduce living anatomy or physiology of the human body for
real-time medical simulations, we need to use fractal representation of the expressions that
provide the Cauchy stress-stretch expressions. In this sense, we recall that the isotropic part
of the Cauchy stress-stretch virgin material expression (13) is derived from an expression
of the form

Ti = λi
∂W
∂λi
− p, i = 1, 2, 3 no sum. (22)

Since living cells and organisms are forced to adopt self-organizing fractal struc-
tures [59], the fundamental laws of physics needs to be modeled using fractal derivatives to
be able to capture the qualitative and quantitative real-time system behavior. In this sense,
Equation (22) must be cast into an expression of the form

Ti = λi
∂αW
∂λα

i
− p, i = 1, 2, 3 no sum, (23)

where α is a fractal dimension whose value depends mainly on tissue anatomy, physi-
ology, and on the distribution of the strain energy-density. The mathematical treatment
of Equation (23) can be done considering the solutions procedures discussed in [57–60].
Recently, other fractal theory definitions [61,62], and solution methods have been pro-
posed [63–66]. However, the discussion of our findings using fractal material constitutive
equations shall be addressed in a forthcoming paper to be published somewhere else.

Finally, to model soft tissues other than liver using Equation (11), one needs to perform
experimental uniaxial tests to get the equation parameter values to predict in real-time the
corresponding tissue haptic behavior.

8. Conclusions

The material constitutive model proposed in this study (equivalent energy spring
model, EESM, with a stiffness function that depends on the material’s amount of stretch)
combines the computational efficiency of the spring–mass model with the accuracy of
non-Gaussian material model to predict, in real-time, the nonlinear behavior of soft tissue.
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In this model, the material strain energy density is assumed equal to that of a one-
dimensional spring that matches with that of a non-Gaussian constitutive material model.
Furthermore, the anisotropic behavior exhibited by soft tissue materials was captured by
an equivalent “isotropized” material model that allows to find the parameter values of
each neo-Hookean spring that emulates soft tissue non-linear behavior as a function of the
amount of stretch.

The computed value of the SEDF was stored in the program initialization phase to
ease the computation of the material stiffness to obtain, for the same amount of stretch,
the corresponding soft tissue energy density value. Then, this information was used to
investigate in real-time, the material response behavior when subjected to loading and
unloading uniaxial deformation state. Theoretical predictions obtained via the proposed
EESM confirmed the capacity of the material model in predicting soft tissue nonlinear
behavior with good accuracy since the R2 values were 99.94% for loading tests, and 93.23%
for unloading data. This represents an improvement of about 75% when compared to
the theoretical values obtained from the spring–mass model. In summary, the proposed
hybrid model predicts loading and stress-softened soft tissue behavior well and it has the
computational performance of a spring–mass model.

This article sheds new light on getting in real-time the response of soft tissue materials,
considering not only the material nonlinear characteristics exhibited at large deforma-
tions, but also computational aspects such as precision and performance to simulate a
virtual reality environment for surgical laparoscopic training by having accurate visual and
haptic feedback.
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