
Oncotarget69808www.impactjournals.com/oncotarget

CANcer-specific Evaluation System (CANES): a high-accuracy 
platform, for preclinical single/multi-biomarker discovery

Min-Seok Kwon1, Seungyoon Nam2,3,4, Sungyoung Lee1, Young Zoo Ahn5, Hae 
Ryung Chang6, Yon Hui Kim7 and Taesung Park1,8

1Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
2Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon 21565, Korea
3Department of Life Sciences, Gachon University, Seongnam-si 13120, Korea
4College of Medicine, Gachon University, Incheon 21565, Korea
5System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center of Korea, Goyang-si 10408, 
Korea

6Research Institute of Women’s Health, Sookmyung Women’s University, Seoul, 04310, Korea
7Corestem Inc., Seongnam-si 13486, Korea
8Department of Statistics, Seoul National University, Seoul 08826, Korea

Correspondence to: Taesung Park, email: tspark@stats.snu.ac.kr
Yon Hui Kim, email: yhkim@corestem.com

Keywords: biomarker performance, claudin, gastric cancer, transcriptome, data mining
Received: December 10, 2016    Accepted: May 22, 2017    Published: July 15, 2017
Copyright: Kwon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

ABSTRACT

The recent creation of enormous, cancer-related “Big Data” public depositories 
represents a powerful means for understanding tumorigenesis. However, a consistently 
accurate system for clinically evaluating single/multi-biomarkers remains lacking, 
and it has been asserted that oft-failed clinical advancement of biomarkers occurs 
within the very early stages of biomarker assessment. To address these challenges, we 
developed a clinically testable, web-based tool, CANcer-specific single/multi-biomarker 
Evaluation System (CANES), to evaluate biomarker effectiveness, across 2,134 whole 
transcriptome datasets, from 94,147 biological samples (from 18 tumor types). For 
user-provided single/multi-biomarkers, CANES evaluates the performance of single/
multi-biomarker candidates, based on four classification methods, support vector 
machine, random forest, neural networks, and classification and regression trees. 
In addition, CANES offers several advantages over earlier analysis tools, including: 
1) survival analysis; 2) evaluation of mature miRNAs as markers for user-defined 
diagnostic or prognostic purposes; and 3) provision of a “pan-cancer” summary view, 
based on each single marker. We believe that such “landscape” evaluation of single/
multi-biomarkers, for diagnostic therapeutic/prognostic decision-making, will be 
highly valuable for the discovery and “repurposing” of existing biomarkers (and their 
specific targeted therapies), leading to improved patient therapeutic stratification, a 
key component of targeted therapy success for the avoidance of therapy resistance.

INTRODUCTION

Traditionally, biomarker studies begin from a 
handful number of candidate genes or proteins, based 
on experimental and computational assessment. Also, 

for given candidates, validation techniques, and their 
supporting evidence, have been compromised, due to a 
lack of technical advances and publicly available clinical 
data. Now that various technologies, including next-
generation sequencing, are mature, it is possibly to rapidly 
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analyze “Big Data” (e.g., whole tumor transcriptomes 
and genomes) for association with clinical information. 
However, while these high-technology approaches 
should empower clinical researchers to identify clinical, 
translational, and accessible biomarkers, few approaches 
for this purpose have been successful [1]. To overcome 
the challenges of biomarker-driven cancer therapy, 
various standards and guidelines have been made to 
increase the rigor of the development process [2]. For 
screening purposes, diagnostic biomarkers would require a 
generally agreed upon requirement of high specificity and 
sensitivity, to allow general population screening for even 
the most common cancers [3]. For example, it is estimated 
that for a relatively rare disease such as ovarian cancer 
(1.3% lifetime risk), effective (i.e., resulting in reduced 
mortality) screening, for an asymptomatic population 
of 2500 women, would require a sensitivity ≥ 75% and 
a specificity ≥ 99.6%, to achieve a positive predictive 
value of 10% for the detection of individuals with stage 
1 disease (at which the disease is > 90% curable) [4]. To 
achieve such predictive accuracy, it has been asserted that 
combinations of biomarkers (“biomarker panels”) may 
allow obtainment of such stringent criteria [5, 6].

There are more than 200 types of cancer from 
over 60 different organs in the body [7]. Some cancers 
of different organs have many shared features, such as 
therapeutic response, while conversely, some cancer 
subtypes from the same organ are quite distinct [8]. 
These phenotypic features of cancer types depend on the 
expression patterns of single or multiple genes [9, 10]. For 
example, since the oncogene ERBB2 (HER2) is amplified 
in subgroups of glioblastoma and, stomach, uterine, 
bladder, and lung cancers, responsiveness to HER2-
targeted therapy may or may not be analogous to that of 
HER2-amplified breast cancer [9, 10]. Similarly, erlotinib, 
an effective inhibitor of the actively mutated epidermal 
growth factor receptor (EGFR), originally approved 
for the treatment of advanced pancreatic cancer, has 
now shown efficacy for non-small cell lung and various 
other cancers [11]. Here, to more rapidly make such 
preliminary determinations, we designed and developed 
a comprehensive web-based assessment tool, “CANcer-
specific Evaluation System” (CANES), for exhaustive 
biomarker evaluation that: (i) employs repositories 
across 2,134 whole transcriptome datasets, from 94,147 
biological samples (cell lines and normal and cancerous 
tissues), representing 18 tumor types; (ii) performs the 
initial steps of evaluating single and/or multi-genes as 
biomarker candidates; and (iii) uses various classification 
methods to support diagnostic or prognostic assessment 
of genes, as well as miRNAs, as biomarkers, yielding a 
“pan-cancer” summary view of the evaluation of each 
individual biomarker. Finally, one of the outstanding 
features of CANES is that it allows direct comparison 
between the diagnostic or prognostic performance of 
single vs. multi-biomarker sets. Multi-biomarker sets 

often tend to show good performance, by chance, when the 
number of biomarkers is large and sample size is small, 
resulting in artifactual results. CANES addresses this 
problem by providing standardized evaluation measures 
and empirical p-values, allowing direct comparison of the 
diagnostic/prognostic performance of multi-biomarker 
sets, having different numbers of biomarkers.

In summary, CANES represents a powerful tool 
for “landscape” evaluation across 18 cancer-types for 
single/multi-biomarkers, in association with diagnostic 
therapeutic decision making and prognostic use by 
preclinical researchers, producing high-quality results 
that can be further translated toward clinical “precision 
medicine.”

RESULTS

Demonstration of CANES performance in 
predicting single vs. multi-biomarker evaluation

In our previous study, we identified several pathways 
involved in gastric cancer progression using our systems 
biology approach, PATHOME [12]. We also showed the 
significance of regulation of HNF4α, as well as reduced 
HIF1α, in early gastric cancer (GC) [12, 13], as detected 
only by our PATHOME algorithm (Figure 1A). We further 
found the HIF1-related pathway to associate with three 
claudin protein family members (claudins-1, -4, and -18), 
by a protein-protein interaction tool, STRING (Search 
Tool for the Retrieval of Interacting Genes/Proteins, 
version 9.1) [14] (Figure 1A). Of the three claudins we 
identified to interact with an HIF-1 network, CLDN1 and 
CLDN4 were previously reported as upregulated in gastric 
cancer progression, while CLDN18 was downregulated 
[15–20]. Our CANES results were consistent with those 
previously shown gene expression patterns in another 
GC dataset (GSE13911) (Figure 1B). Table 1 shows that 
for biomarker use of the three CLDN genes for gastric 
cancer, CLDN18 had the highest balanced accuracy (BA), 
followed by CLDN1 and then CLDN4.

We next used CANES to predict each of the three 
CLDN genes’ ability to distinguish specific cancers among 
a panel of 18 tumor types. Figure 2 depicts radial plots 
(left panel) that represent four performance measures 
(area under curve; AUC, BA, sensitivity; SN, and 
specificity; SP) across 18 tumor types per single and/or 
multiple gene(s). All three claudin genes showed different 
predictive patterns. AUC plots demonstrated that CLDN1 
and CLDN18 represent potential predictors of thyroid 
cancer, and CLDN4 and CLDN18, predictors of pancreatic 
cancer. Pairwise CLDN biomarker AUC comparisons 
(heatmap, Figure 2, right panel), across 12 tumor types 
(The Cancer Genome Atlas; TCGA data), showed that 
CLDN1 could readily distinguish colon from kidney, brain, 
lung, and ovary cancers, while both CLDN1 and CLDN4 
(but not CLDN18) could distinguish brain from kidney 
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cancer. While these AUC values would not be sufficiently 
predictive to discriminate between specific tumor types, it 
is quite possible that their combination with other highly 
predictive markers or diagnostic methodologies (e.g., 
MRI, CT) could reach positive predictive values (PPVs) 
acceptable for early detection [5, 6].

Based on that (multiple biomarker) hypothesis, 
we evaluated the three claudin family genes as a multi-
marker. Figure 3A shows the multi-marker performances 
of CLDN1, CLDN4, and CLDN18 expression in 
distinguishing 18 tumor types. Figure 3B-3E show multi-
marker performances in GC. Figure 3C shows higher 
values for the three-gene set, as compared to single marker 
performance in GC (Table 1). When CLDN1, CLDN4, 
and CLDN18 were analyzed, as single markers, across 18 
cancer tissue types, the AUC values were 0.756 (p=1.4×10-

4), 0.647 (p=0.156), and 0.792 (p=2.5×10-4), respectively. 
When CLDN1, CLDN4, and CLDN18 were analyzed 
throughout the 18 cancer types as a multi-marker set, the 
AUC value was 0.850 (p=3.3×10-4) (Table 1 and Figure 4). 
Thus, these findings support the many assertions that 
multiple biomarker sets hold greater sensitivity/specificity, 
compared to single markers, for disease detection [5, 6], 
in general or at-risk populations. To address the problem 
that a randomly chosen marker set with a large number of 
probes often tends to show good performance, CANES 
provides empirical p-values.

In addition to evaluating biomarker performance 
for specific tumors, another key feature of CANES is its 
assessment of the predictive accuracy of multiple marker 
panels, among multiple cancer types. Consequently, we 
evaluated a panel of well-known breast cancer markers 

Figure 1: The figure here depicts HIF-1 pathway and gene expression levels of CLDN1, CLDN4, and CLDN18 in gastric 
cancer. (A) HIF-1-related pathway (previously identified by our established algorithm (12) showing additional interactions with a triad 
consisting of CLDN1, CLDN4, and CLDN18, as identified by the STRING database (indicated in the red-filled circle). (B) Gene expression 
levels of CLDN1, CLDN4, and CLDN18, in gastric cancer (“C”) vs. normal (“N”) samples in a gastric cancer dataset (GSE13911). CLDN1 
and CLDN4 were upregulated in tumors, while CLDN18 was downregulated.
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BRCA1, BRCA2, BRIP1, CHEK2, PALB2, RB1 [21], 
and TP53 [22], for predictive accuracy in lung cancer. 
Figure 5 shows the CANES evaluation report for those 
seven grouped breast cancer biomarkers, as classified 
by support vector machine and leave-one-out cross-
validation, using lung cancer datasets from 46 cancer 
and 45 normal tissues [23] as the testing dataset. Figure 
5 shows a representative CANES performance report on 
the test dataset. The seven multi-markers (Figure 5A) 
were evaluated in multiple cancer types (Figure 5B), and 
showed higher AUC, BA, SN, and SP values for lung 
cancer (Figure 5C). However, this multi-marker set was 
not statistically significant (p=0.129 for BA and p=0.156 
for AUC) in lung cancer. To find significant multi-marker 
sets, all possible subgroups of the seven genes were 
evaluated using the same lung cancer dataset. Finally, 
10 subgroups had significant BAs and AUCs, among 
which a multi-marker set with BRIP1-RB1 showed the 
best performance, with a BA=0.9780 (p=0.009) and 
AUC=0.9995 (p=0.001) (Figure 5D). After adjusting for 
multiple testing, using the Westfall and Young multiple 
correction method [24], the adjusted p-values were 
0.055 and 0.024 for BA and AUC, respectively. Based 
on this performance evaluation, these two biomarkers 
could potentially be applied to lung cancerdiagnostic 
evaluations, similar to a previous report that in addition 
to breast cancer, the oncogene ERBB2-HER2 is amplified 
in subgroups of glioblastomas and stomach, uterine, 
bladder, and lung cancers (thus suggesting possible 
repurposing of the anti-HER2 antibody trastuzumab 
for these cancers) [10]. This result demonstrates that 
transcriptomic analysis of molecular patterns across 
cancer types allows the etiologic and therapeutic 

knowledge of one cancer type to be applied to another, 
suggesting that therapy guidance/response markers for 
one tumor may also be appropriate for others. Therefore, 
CANES provides powerful prediction to evaluate 
biomarkers across cancer types.

In addition to the above, we previously reported 
five genes, ENAH, RAD51, CHEK2, ATF4, and ICOSLG, 
as possible drug response biomarkers in breast cancer 
[25]. Setting these genes as a reference set in breast 
cancer, we compared biomarker suggestion results for the 
five candidates by using each tool (Table 2). One widely 
used commercial tool, Ingenuity Pathway Analysis 
(IPA), does not report a numerical representation for 
performance evaluation, including AUC, except either 
detection or no detection for single genes [26]. Also, 
IPA cannot perform multi-gene biomarker performance 
evaluation, and relies on its own database [27]. Similarly, 
Oncomine merely reports limited quantified information, 
such as the number of significant differential analyses 
(driven by Student t-tests for two classes) relating to 
each candidate biomarker [28]. However, Oncomine does 
not describe evaluation quantification for multi-gene 
biomarker performance, and is restricted to microarray 
analysis [29]. Unlike these two tools, CANES reports 
diverse performance evaluations (only AUC shown due 
to limited space in Table 2) for multi-gene biomarkers, 
as well as for each candidate. For example, considering 
that AUC > 0.75 supports good biomarker feasibility, 
ENAH and RAD51 could be repurposed for breast 
cancer diagnosis usage. Thus, CANES can introduce 
biomarker candidates from published literature for 
diagnosis of other cancer types, based on evidence-based 
measurements.

Table 1: Prediction measures of three single markers (CLDN1, CLDN4, and CLDN18) and a multi-marker 
(CLDN1/4/18) for gastric cancer (cancer tissue vs. normal tissue)

Average evaluation measure Single marker Multi-marker

CLDN1 CLDN4 CLDN18 (CLDN1, 4, 18)

Area under curve (AUC) 0.756 0.647 0.792 0.850

Balanced accuracy (BA) 0.776 0.659 0.801 0.851

Accuracy (AC) 0.892 0.784 0.905 0.936

Sensitivity (SN) 0.817 0.705 0.880 0.849

Specificity (SP) 0.696 0.590 0.705 0.851

Positive predictive value (PPV) 0.821 0.693 0.778 0.859

Negative predictive value (NPV) 0.618 0.548 0.855 0.851

False positive rate (FPR) 0.304 0.409 0.295 0.149

False discovery rate (FDR) 0.178 0.306 0.221 0.150

F1 score (F1) 0.789 0.690 0.822 0.849

These performance measures are for prediction of cancer and normal in stomach cancer.
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Dynamic usage of big-data-based for predicting 
mutli-biomarker system for oncology therapeutic 
development

The utility of CANES extends beyond the 
above illustrations. For example, CANES supports the 
feasibility (e.g., high sensitivity and specificity) of using 
specific panels of biomarkers for widespread population 
screening for distinct cancer types (or at minimum, to 
individuals already at increased risk for such cancer types), 
representing the achievement of a previously extremely 
difficult endeavour [30, 31]. We concede that biomarker 
discovery using CANES represents merely one step in a 
long and arduous process [2, 32], according to the recently 
adopted REporting recommendations for tumor MARKers 

(REMARK) guidelines [2]. However, should the newly 
discovered, tumor-specific gene expression biomarkers 
prove present in body fluids, improved preclinical accuracy 
could potentially enhance the eventual translation of such 
diagnostics [3] toward the long-desired goal of simple blood 
or urine tests for cancer detection in high-risk populations 
[33, 34]. Moreover, from a research perspective, identifying 
a strong association of a specific gene(s) with a particular 
tumor could facilitate understanding of the mechanism-of-
action(s) of that specific biomarker(s), and the identification 
of other druggable targets/pathways involved in the 
progression of that distinct tumor.

Thus, CANES represents a novel and publically 
available tool for enhancing the characterization/discovery of 
single/multi-biomarker sets for specific cancer types. This tool 

Figure 2: This figure shows CANES evaluation of expression of CLDN1, CLDN4, and CLDN18, as individual biomarkers 
for discriminating multiple cancer types. Left panel is a radial plot representing the predictive value (AUC, BA, SN and SP) of an 
expressed marker across 18 tumor types within the CANES database. The radial plot shows numeric magnitudes of performance values (0 
to 1) from the centers of the circles in 18 radial directions corresponding to the 18 tumor types. In each radial plot, the green area represents 
AUC, the blue line represents BA, the red line represents SN, and the orange line is SP. For example, the SN for CLDN4 in bladder cancer 
is 1.0. The right panel (matrix) represents how well each marker can distinguish between two cancer types. Heatmap color represents 
the level of AUC. The higher AUC in a heatmap cell indicates that the two pairwise-compared cancer types are better distinguished by a 
given marker. BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; COAD, colon adenocarcinoma; ESCA, esophageal 
carcinoma; HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell 
carcinoma; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous 
cell carcinoma; OV, ovarian serous cystadenocarcinoma. *White box: dataset not yet provided by TCGA.
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will also provide analysis to implement within translational 
research, improving the characterization of specific cancer 
types, identifying cancer progression pathways, and improving 
evidence-based biomarker therapeutic development.

Unlike other diseases, the development of clinical 
cancer biomarkers has been fraught with difficulties 
[31, 35]. Despite several thousands of publications, the 
actual number of clinically approved biomarkers remains 
less than 100 [3, 30]. For general population screening, 
the prostate-specific antigen (PSA) remains the only 
approved serum biomarker, and guidelines even for its 
use have spurred controversy (e.g. men over age 40 vs. 
50, etc., non-family prostate cancer history, etc.), due to 
its high false positive rate, and subsequently, unnecessary, 
invasive procedures [36]. Similarly, while tumor whole 
genome and transcriptome sequencing have ushered in 
the advent of “personalized” therapies, individualized 
for specific patients, the cost/benefit of these massive 
analyses remains debatable, and these approaches may 
be confounded by uncontrolled false discovery rates 
and the genomic instability and heterogeneity found in 
most tumors [37]. Likewise, while the clinical utility of 
tumor-specific prognostic gene expression “signatures” 

has gained greater acceptance [5], many have not yet 
proved unreliable [38]. Even for well-known prognostic 
biomarkers, such as the Cancer Embryonic Antigen 
(CEA, colon cancer), CA-125 (ovarian cancer), and 
CA-19-9 (pancreatic cancer), their precise role(s) 
in the progression of those diseases remains largely 
unknown [30]. Moreover, the poor “bench-to-bedside” 
progression of preclinically discovered biomarkers has 
been attributed to a number of factors, including biased 
or low-rigor statistical assessment, irreproducibility, and 
an overall decreased quality of preclinical studies [39]. 
Despite a number of ambitious attempts to remedy these 
shortcomings [2, 32, 40], this overall trend has largely 
persisted [30, 31, 35].

DISCUSSION

One possible solution to increasing biomarker 
success rates is through the use of bioinformatics 
and improved statistical evaluation, using publically 
accessible databanks, thus increasing sample sizes and 
removing various confounding variables [3, 41, 42]. In 
this study, we undertook such an approach by designing 

Figure 3:This figure demonstrates CANES evaluation of the performance of a three-member CLDNs 1/4/18 biomarker 
panel. (A) Balanced accuracy (“BA”) (in blue), sensitivity (“SN”) (in red), and specificity (“SP”) (in orange) of the marker panel among 18 
different cancer types. (B) Receiver operator characteristic (ROC) curve for the predictive accuracy of the panel in a TCGA gastric cancer 
dataset (GSE13911). AUC is the area under the ROC curve. The higher AUC indicates better performance in terms of both sensitivity 
and specificity. (C) Ten separate evaluation measures of the CLDN1/CLDN4/CLDN18 panel for gastric cancer dataset (GSE13911). (D) 
Principal components (PC) analysis (cancerous gastric tissues, red circles; normal gastric tissues, blue circles) showing the separation of 
cancerous and normal tissues along the first principal component (PC1) and second PC (PC2) in gastric cancer dataset GSE13911. (E) 
Heatmap cluster analysis showing the panel to clearly delineate cancerous vs. normal gastric tissues. The rows are genes or probes, and the 
columns are cancerous (red horizontal sidebars) and normal tissues (blue horizontal sidebars).
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a single/multi-biomarker evaluation tool, CANES, 
a simple and user-friendly web-based application. 
CANES evaluates multiple markers, using the above-
described data repositories, to harness the power of 
“Big Data” for researchers to develop new models of 
translational research, for diagnostic and prognostic 
applications, and “targeted” therapies. By incorporating 
clinical data from those databases, matched to specific 
patient transcriptomes/genomes, CANES can evaluate 
the performance of multiple biomarkers for a number 
of clinical parameters, e.g., diagnosis, therapy response, 
survival, etc. (in contrast to other widely used analysis 
tools), thus increasing the robustness of assessment (for 
improved screening) and improving the probability of 
eventual clinical translation [30, 31]. While CANES 
continues to use all publicly available microarray 
datasets, it can also incorporate next generation 
sequencing technology (e.g., RNA-seq) datasets, for 

specific cancers, that are now increasingly available from 
the TCGA [10] and other databases.

Currently, CANES provides classification evaluation 
of numerous organ-based cancer types, including liver, 
lung, and pancreatic cancers, and many others. For 
each cancer subtype, even though there is considerable 
publically available expression data, with subtype 
information, CANES cannot yet support subtype-based 
classification evaluation, due to subtype’s term diversity 
and lack of standardization of subtype terms. However, 
we have now designed a plan to update our system for 
subtype-based classification evaluation.

In summary, CANES is a powerful tool that 
will enable preclinical researchers to assist bench-side 
researchers in exploring available data for the disease 
of interest, as well as cater to the needs of bedside 
practitioners, to develop and implement cancer-specific 
biomarker therapies.

Figure 4: This figure shows a bar plot for diagnostic performances of three single-markers (CLDN1, CLDN4 and 
CLDN18) and a multi-marker (CLDN1, CLDN4 and CLDN18) in terms of AUC across 18 tumor types.
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Figure 5: The figure here shows an example CANES output report following upload of breast cancer biomarker set. 
(A) In this instance, seven well-known breast cancer biomarkers (BRCA1, BRCA2, BRIP1, CHEK2, PALB2, RB1, and TP53) were evaluated 
for numerous performance measures in lung cancer. (B) Bar graph of three evaluation measures (BA, SN, and SP) of the 7-member panel 
across 18 organs. (C) The numerical evaluation measures of the 7-member panel in a lung cancer dataset (GSE18842). (D) The evaluation 
measures for a multi-marker with BRIP1 and RB1 in GSE18842.

Table 2: Comparison of 5 biomarkers identified as Herceptin non-responsive biomarker between CANES vs. IPA-
biomarker and Oncomine V4.5

CANES IPA-biomarker Oncomine v4.5

Single 
biomarker 
evaluation 

(AUC1)

Multi-gene 
biomarker 
evaluation 

(AUC1)

Quantification 
of single/

multi-gene 
biomarker

Single 
biomarker 
evaluation

Multi-gene 
biomarker 
evaluation2

Quantification 
of single/

multi-gene 
biomarker

Single gene 
evaluation: 

detection rate 
(A/B3)

Multi-gene 
biomarker 
evaluation2

Quantification of 
single/multi-gene 

biomarker

ENAH 0.826 0.854 Yes (11 
measurements) Yes - No 11.32 % (6/53) -

Only single 
biomarker 

with limited 
quantification

RAD51 0.777 Yes 9.09 % (4/44)

ATF4 0.688 0.78 No - 1.96 % (1/51) -

CHEK2 0.681 No 2.33 % (1/43)

ICOSLG 0.653 No 0 %

Previously, we proposed the five genes ENAH, RAD51, CHEK2, ATF4, and ICOSLG as Herceptin non-responsive biomarker candidates in breast cancer. 
Setting the genes as a reference set in breast cancer, we inspected the agreement between the five genes and each tool’s results. IPA-biomarker does not 
report a numerical representation for evaluation except either detection or no detection. Oncomine reports the number of significant differential analyses 
relating to each candidate, without performance evaluation information. For comparison of multi-gene biomarker evaluation, we used the two multi-gene 
biomarker sets (one for ENAH and RAD51; the other for ATF4, CHEK2, and ICOSLG).
1AUC: average of area under curve.
2IPA and Oncomine do not support a multiple-gene biomarker evaluation (NA: non applicable).
3In breast cancer, ”A” represents the number of total analyses relating to a given gene, and “B” the number of significant analyses relating to the gene. 
For example, in ENAH, Oncomine reports the 53 analyses relating to ENAH in breast cancer. Out of them, six analyses reports the significant expression 
difference between breast cancer and normal groups.
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Figure 6: Key features of CANES. (A) The figure depicts how the web-based CANES tool provides a highly stringent evaluation 
system to compare user input marker candidates to datasets retrieved from four “Big Data” depository (TCGA, GEO, ArrayExpress, ICGC). 
For reproducibility of evaluation, CANES not only constructs its own preprocessed expression datasets but also provides various evaluation 
analyses (cancer diagnosis and prognosis). (B) For user inquires, CANES consists of four modules (1) a preprocessing module (a step for 
data normalization, as well as for clinical information summary); (2) a database module (for storing pre-calculated data); (3) an evaluation 
module (a step for evaluating users’ input genes based on survival significance and classification performance); and (4) a web-interface 
module (for user-friendly visualization).

Figure 7: The figure shows how CANES performs the four classifications of the biomarker candidate evaluations. SVM, support 
vector machine; RF, random forest; NN, neural network; CART, a classification tree. Classifications are used to evaluate the performances power.
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MATERIALS AND METHODS

Web-based CANcer-specific single/multi-
biomarker Evaluation System (CANES)

CANES postulates that biomarker candidates 
are well reproduced in multiple, independent datasets, 
regardless of different technology platforms (e.g., RT-
PCR, microarrays, RNA-Seq, etc.). CANES processes 
individual datasets in a preprocessing step (without 
merging all the datasets into a single pool). The evaluation 
phase then inspects whether or not the biomarker 
candidates are reproduced across multiple samples. 
CANES collects RNA molecular profiles from public 
databases and assigns them into distinct tumor types using 
their annotations, following a rigorous quality control 
process. CANES then provides evaluation results for user-
specified, multiple markers, across various cancer types or 
studies. As shown in Figure 6, CANES has four modules: 
a preprocessing module, a database module, an evaluation 
module, and a web-interface module. The preprocessing 
module normalizes individual datasets separately for 
storage in the CANES internal database, which is then 
used as an expression resource for evaluation. For the 
selected biomarker candidate (single and/or multi-gene), 
the evaluation module provides numerous measures for 
assessing prediction performance.

Figure 6A shows a schematic of CANES’ overall 
procedure. The CANES database draws information, from 
18 distinct tumor type datasets, from “big genome” data 
depositories, including the Gene Expression Omnibus 

(GEO) [44], TCGA [10], the International Cancer Genome 
Consortium (ICGC) [45, 46], and ArrayExpress, a 
functional genome database administered by the European 
Bioinformatics Institute [43]. After steps involving 
quality checking, format conversion (to match the user’s 
biomarker search entry(ies)), and preprocessing, CANEs 
evaluates the performance of single/multi-biomarker 
candidates, based on four established classification 
methods (Figure 7A-7D).

CANES evaluation can also be based on a stored 
model, trained by various classifiers, to assess the predictive 
value of a test dataset (Figure 7B). Alternatively, the user can 
provide his/her own training dataset to train a model using 
the same four classifiers (Figure 7D). For classification, 
CANES employs a consensus of four different approaches, 
support vector machine (SVM), random forest (RF), neural 
networks (NN), and classification and regression trees 
(CART). For validation of user-provided datasets, CANES 
uses leave-one-out cross-validation (LOOCV) (Figure 7C).

Figure 6B depicts a flowchart to further illustrate the 
CANES pipeline. The user uploads a marker candidate set 
through a web-interface module, entering the candidate 
set that is evaluated against clinical, preprocessed, and 
normalized gene expression data, that is then recategorized 
from the four above-mentioned public data repositories 
(Figure 6B). Based on user-defined cut-off levels for 
high vs. low gene expression, CANES evaluates the 
biomarker(s) for the following measures: AUC (an 
accuracy measurement based on the true positive rate 
plotted as a function of the false negative rate) [42], 
accuracy (AC), BA (defined as the arithmetic mean of SN 

Table 3: Comparison of databases relating to biomarker evaluation

Functions CANES ONCOMINE IPA-biomarker cBioPortal

Performance 
evaluation for single 
marker

Pan-cancer summary 
view

Yes (Reporting 
all the BAs and 
AUCs across 
pan-cancer)

Yes (reporting 
the number 

of over/under 
expressed genes 
in pan-cancer)

No

Yes (only 
proportion of 

alterations only 
applied across 
pan-cancer)

Survival analysis Yes No No Yes

Utility for miRNA Yes No Yes No

Performance 
evaluation for 
multiple markers

Pan-cancer summary 
view Yes No No No

Survival analysis Yes No No No

Utility for miRNA Yes No No No

Accessibility Free

Free for 
non-profit 

organisations but 
allow restricted 

use

Commercial Free

User dataset is mandatory? No No Yes No
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and SP that corrects for imbalanced performance by the 
classifiers) [47], SN, SP, positive predictive value (PPV), 
negative predictive value (NPV), false positive rate (FPR), 
false discovery rate (FDR), and F1 score (a test accuracy 
measurement that considers both precision and recall) 
(Supplementary Table 1) [47].

Table 3 shows the notable advantages of CANES 
over other widely used biomarker database analyses, 
including Oncomine [48], IPA-Biomarker (www.qiagen.
com/ingenuity), and cBioPortal [49], in terms of biomarker 
evaluation functionality. These include: 1) survival 
analysis, including Kaplan-Meier analysis and Cox 
proportional hazard regression; 2) evaluation of mature 
miRNAs as markers, as well as genes, for user-defined 
diagnostic or prognostic purposes; and 3) provision of 
a pan-cancer summary view for evaluating each single 
marker (Table 3).

Preprocessing module

The current version of CANES uses microarray 
data obtained from two public repositories and two cancer 
consortia, GEO [44], ArrayExpress [43], TCGA [10], and 
ICGC [46]. All expression datasets can be collected using 
the R package GEOquery [50]. In the CANES preprocessing 
module, expression datasets from these public repositories 
are parsed and normalized by quantiles robust multi-array 
average (RMA) [51]. For RNA sequencing data, counts are 
normalized to expression values. All datasets with missing 
rates > 5% are excluded, and the remaining datasets with 
missing values are imputed by the ‘impute’ package [52] of 
Bioconductor. To detect outliers caused by instrument error 
or sample contamination, mislabeling, or misprocessing, we 
use within-group and between-group correlations [53]. Since 
all detected outlier samples are marked, users can exclude 
them from their analyses, using specified options. Moreover, 
available clinical information and sample annotations are 
parsed into the CANES database. To define the exact cancer 
type or subtype, we confirm or recategorize diagnoses, 
prognoses, and drug responses as designs of the dataset. All 
processed expression data are converted into customized, 
(Figure 6B, middle) indexed binary files for fast retrieval as 
big genomic expression data. The preprocessing module is 
implemented using Python and R.

Database module

The database module contains preprocessed 
expression datasets and their corresponding annotation 
data. Currently, the preprocessed datasets consist of gene 
expression data and annotation data for 94,147 samples 
(Supplementary Table 2). Gene expression data are obtained 
from these samples with broadly used gene expression 
microarray platforms and RNA sequencing platforms, 
and processed as described. The database module is 
implemented using MySQL and Python. All expression data 
is saved as customized indexed binary files.

Evaluation module

The evaluation module of CANES is implemented 
using classification methods such as SVM, RF, NN, 
and CART. For user-selected multiple markers, this 
module provides the evaluation result with the evaluation 
measures across 18 cancer-types, based on ten evaluation 
measures, including AUC, AC, BA, SN, SP, PPV, NPV, 
FPR, FDR, and F1 score [47] (Supplementary Table 1). 
In addition, the evaluation module provides standardized 
evaluation measures and empirical p-values to address 
the problem of randomly chosen marker sets, with a large 
number of probes, tending to show good performance (for 
further description in “Summary evaluation measurements 
and their p-value calculations in CANES” in the Materials 
and Methods section). To measure the contribution of 
a single marker to the performance of multi-markers, 
CANES provides an influence measure, which is the 
difference between the evaluation measure for all markers 
and that for all markers excluding the single marker. All 
these manipulations can be conducted by four different 
evaluation schemes, as follows (Figure 6B).

i) Evaluation of multiple markers with selected 
training and testing datasets. CANES can conduct 
prediction analysis using specific cancer types or studies. 
Users can generate and store the prediction model for 
their own multi-marker lists using the selected dataset 
and classification method. Graphical and interactive result 
layouts are provided and can be saved.

ii) Evaluation using a stored prediction model on 
a selected testing dataset. CANES stores the evaluation 
result, which can then be used on a different testing 
dataset. For example, users can store the prediction model 
with breast cancer markers and breast cancer datasets, 
and then evaluate this stored model against a liver cancer 
dataset.

iii) Evaluation of LOOCV with the selected dataset. 
To prevent overfitting by any specific training dataset, 
CANES can evaluate multiple markers using LOOCV. 
In this evaluation module, CANES can also support the 
evaluation of individual markers, in a multi-marker set, 
by measuring the contribution level of the performance of 
multi-markers.

iv) Evaluation with the user-provided training 
dataset and the selected testing dataset. CANES allows 
evaluation of a prediction model generated by a user-
provided dataset. The user dataset is uploaded via a 
web-interface module, is preprocessed and normalized, 
and is then used as a training dataset employingdifferent 
classification methods. The prediction models trained with 
the user’s own dataset are tested with independent datasets 
from public repositories.

Web-interface module

The web-interface of CANES consists of the input 
layout and the result explorer. The input layout is the interface 
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that transfers user-selected multiple markers and queried 
parameters to the evaluation module. In the input layout, a 
user can input a set of official gene symbols, miRNAs, or 
probe IDs, and select either a preprocessed public dataset, or 
a user-uploaded private dataset, as the training dataset. The 
result explorer provides tables and graphical visualization of 
the evaluation results (Figure 6B, bottom left). The CANES 
web-interface module is implemented using PHP, within a 
JQuery and CodeIgniter framework.

CANES is freely accessible from the CANES 
website http://bibs.snu.ac.kr/software/canes. Moreover, 
the design and implementation of CANES facilitates 
easy incorporation of additional query functions and 
applications, as well as other datasets, irrespective of 
cancer type, in the form of pre-processed datasets. All 
evaluation results are presented in a table and/or graphical 
visualization, and can be downloaded as high-quality PDF 
images and CSV-based text-format spreadsheets.

Summary evaluation measurements, and their p-value 
calculations, in CANES

We defined various evaluation measurements, in 
consistency with widely accepted formulas, as follows: 
accuracy(AC) is (TP+TN)/(TP+TN+FP+FN) where TP is 
the true positive value, TN the true negative, FP the false 
positive, and FN the false negative value. Sensitivity 
(SN) is defined as TP/(TP+FN), and specificity (SP) by 
TN/(FP+TN). In addition, balanced accuracy (BA) is 
defined as (SN+SP)/2, while positive predictive value 
(PPV) is defined as TP/(TP+FP), negative predictive 
value (NPV) as TN/(FN+TN), false discovery rate 
(FDR) as 1-PPV, and F1 as 2TP/(2TP+FP+FN). Area 
under the curve (AUC) is the area under the receiver 
operating characteristic (ROC) curve, which is the line 
representing the true positive rate (TPR or sensitivity) 
and false positive rate (FPR or 1-specificity) of any 
distinct diagnostic test. AUC can also be used as an 
index of the test’s performance (Supplementary Table 1).

Based on these evaluation measures, CANES 
provides standardized evaluation measures, and empirical 
p-values, as follows:

i) CANES calculates the observed evaluation 
measure (ti,o) for the user-defined marker set with mi 
probes for the ith dataset.

ii) CANES uses a preconstructed empirical null 
distribution of the observed evaluation measure (ti,o). In 
the ith dataset, n probe sets are generated with randomly 
selected mi probes. The empirical null distribution is then 
constructed using the evaluation measure (ti,r) for the n 
probe sets.

iii) Using the empirical null distribution, the average 
( ti. ) and the standard deviation (si) can be calculated as 
follows:
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The standardized evaluation measure (Zi), and its 
p-value, are defined as follows:
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Note that ti.  and si need to be computed for mi 
probes in the ith dataset.

There is an advantage in using zi over ti,o. We found out 
that the values of ti,o tend to increase as the number of probes 
increases. Thus, ti,o needs to be standardized to be sufficiently 
robust to the number of probes. zi is a standardized version 
of ti,o, and is a more appropriate evaluation measure than ti,o. 
Through zi, a direct comparison of the diagnostic performance 
between models with different numbers of probes becomes 
possible. The empirical p-value is the relative frequency that 
the randomly selected marker sets have better performances 
than the user-defined marker set. Note that these p-values are 
the same for zi and ti,o.

To summarize performance measures from k 
datasets into a single measure, CANES provides the 
summarized p-value by combining p-values as follows:

i) minP method : PA = min{p1, p2,..., pk}

ii) Fisher’s method : ∑χ ( )= − −
=
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iii) Stouffer’s method : 
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System implementation of CANES

The job scheduling scheme of CANES is based 
on a first-come, first-serve process. To support intensive 
queries from public users, the CANES system consists of 
one web-server and 10 Xeon® (manufactured by Intel) 
calculation servers. Once a job is submitted by the user, 
the job is executed in the background, on calculation 
servers. Therefore, users don’t need to keep the submission 
webpage open on their browser until the job is finished. 
After the user’s job is done, CANES sends a notice email 
with a direct link to the results page. To prevent waste of 
computing resource by redundant model fitting, CANES 
can keep the previous search results in the cache space and 
provide the stored results, without re-evaluation.
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