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Endomembrane alkali cation (Na+, K+)/proton (H+) exchangers (eNHEs) are increasingly
associated with neurological disorders. These eNHEs play integral roles in regulating the
luminal pH, processing, and trafficking of cargo along the secretory (Golgi and post-Golgi
vesicles) and endocytic (early, recycling, and late endosomes) pathways, essential
regulatory processes vital for neuronal development and plasticity. Given the complex
morphology and compartmentalization of multipolar neurons, the contribution of eNHEs in
maintaining optimal pH homeostasis and cargo trafficking is especially significant during
periods of structural and functional development and remodeling. While the importance of
eNHEs has been demonstrated in a variety of non-neuronal cell types, their involvement in
neuronal function is less well understood. In this review, wewill discuss their emerging roles
in excitatory synaptic function, particularly as it pertains to cellular learning and remodeling.
We will also explore their connections to neurodevelopmental conditions, including
intellectual disability, autism, and attention deficit hyperactivity disorders.
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INTRODUCTION

In neurons, accurate execution of processes along the secretory and endolysosomal pathways is essential for
the normal development, maturation, and remodeling of synaptic connections. For instance, glycosylation
of newly synthesized neurotransmitter transporters (Melikian et al., 1996; Martinez-Maza et al., 2001; Li
et al., 2004; Cai et al., 2005), neurotransmitter receptors (Jiang et al., 2006; Kaniakova et al., 2016; Sinitskiy
et al., 2017), and voltage-gated ion channels (Zona et al., 1990; Ednie and Bennett, 2012; Baycin-Hizal et al.,
2014; Scott and Panin, 2014) enhances their stability,membrane trafficking and/or activities that are crucial
for membrane excitability, neurotransmission, and ultimately learning and memory (Matthies et al., 1999;
Inaba et al., 2016). Likewise, optimal performance of the endolysosomal system is vital for neurotrophin
signaling, presynaptic vesicle recycling, axonal growth cone migration, and synaptic plasticity (Morgan
et al., 2013; Bowen et al., 2017; Terenzio et al., 2017; Hiester et al., 2018; Kiral et al., 2018; Naslavsky and
Caplan, 2018). Unlike other cells in the body, the morphologies of neurons are quite elaborate, which
creates additional complexity in the compartmentalization and regulation of protein trafficking between
their somata, dendrites, and axons. In recent years, there has been increasing awareness that disruptions in
biosynthetic and endolysosomal functions underlie several neurodevelopmental and neurodegenerative
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disorders involving synaptic deficits, eventually leading to cognitive
impairments (Lefebvre et al., 2003; Aronica et al., 2005; Nixon, 2005;
Baloyannis, 2014; Maxfield, 2014; Schreij et al., 2016; Wang et al.,
2016; Bingol, 2018; Winckler et al., 2018). The underlying factors are
assuredly multifactorial and complex. While significant advances
have been made in identifying many of these factors, a detailed
appreciation of how they cause neuronal dysfunction has yet to be
fully realized. Increasing evidence has revealed a central role for pH
homeostasis of endomembrane compartments in central nervous
system function and neurological disorders (Jentsch and Pusch, 2018;
Sou et al., 2019; Collins and Forgac, 2020; Khosrowabadi and
Kellokumpu, 2020; Prasad and Rao, 2020). For the purposes of
this review, wewill highlight the importance of the endosomal system
to excitatory synaptic plasticity in the brain, and then focus our
discussion on the significant contributions of alkali cation (Na+ or
K+)/proton (H+) exchangers (NHEs) (also referred to as the SLC9
gene family) to this process.

ENDOSOMAL TRAFFICKING INNEURONAL
PLASTICITY

Studies investigating cognitive deficits commonly focus on the
hippocampus, a medial temporal lobe structure that has long

been implicated in learning and memory (Scoville and Milner,
1957; Penfield and Milner, 1958; Stuchlik, 2014). Pyramidal
neurons in the hippocampus are dotted by dendritic spines,
small (1 µm) heterogenous protrusions that emanate from the
dendritic shaft and serve as the sites of excitatory postsynaptic
connections (Gray, 1959; Bourne and Harris, 2008; McKinney,
2010). In general, dendritic spines contain a “head” structure
joined to the dendritic shaft by a thinner “neck” apparatus (Harris
et al., 1992). Under electron microscopy, the heads of dendritic
spines contain an electron-dense region known as the
postsynaptic density (PSD), which lies in direct apposition to
the presynaptic active zone (Lei et al., 2016; Borovac et al., 2018)
(Figure 1). The PSD typically contains hundreds of proteins
involved in excitatory postsynaptic signaling, including
ionotropic glutamatergic α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPARs) and N-methyl-D-
aspartate receptors (NMDARs). AMPARs are non-specific cation
channels that primarily conduct Na+ and K+ ions and are
responsible for propagating fast excitatory neurotransmission.
NMDARs are also permeable to monovalent cations but also
conduct divalent ions such as Ca2+ which can activate
downstream signaling cascades that alter synaptic strength
(McKinney, 2010). As larger spines typically contain a larger
PSD and more AMPARs, it is widely believed that spine size

FIGURE 1 | Regulation of intracellular pH at a tripartite synapse. Illustration of a tripartite synapse (presynaptic axon terminal, postsynaptic dendritic spine and
astrocyte) and localization of different proteins involved in cytosolic and endosomal pH regulation and neurotransmission. V-ATPase, vacuolar H+-ATPase; NHE, (Na+,
K+)/H+ exchangers; CLC-3, 2Cl−/H+ exchanger isoform 3; CaV, voltage-gated calcium channel; EAAT1, excitatory amino acid transporter 1; NMDAR, N-methyl-D-
aspartate receptor; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; PSD, postsynaptic density; SV, synaptic vesicle; red balls;
glutamate. Created with BioRender.com.
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correlates with the strength of the corresponding synapse
(Arellano et al., 2007). Spines are extremely dynamic
structures that can alter in size following the induction of
long-term potentiation (LTP) and long-term depression
(LTD), cellular correlates of learning and memory. In vitro
measurements of cultured hippocampal neurons initially
revealed that bidirectional changes in spine morphology are
associated with changes in synaptic strength. In particular,
spine growth in response to LTP and shrinkage following LTD
are believed to correspond to synaptic strengthening and
weakening, respectively (Yuste and Bonhoeffer, 2004;
Matsuzaki et al., 2004; Okamoto et al., 2004; Zhou et al., 2004;
Holtmaat and Svoboda, 2009).

While extensive details into the mechanisms governing LTP and
LTD are outside of the scope of this review, they are highly dependent
upon the proper regulation of protein trafficking via endosomes
(Henley and Wilkinson, 2013; Hiester et al., 2018; Parkinson and
Hanley, 2018). This is perhaps best illustrated at the synapses between
pyramidal cells in hippocampal areas cornu ammonis 3 (CA3) and
CA1, which have been extensively utilized as experimental models to
investigate cellularmechanisms of LTP and LTD. Importantly, LTP is
dependent upon strong NMDAR activation following membrane
depolarization in postsynaptic CA1 pyramidal neurons, which allows
Ca2+ influx into the postsynaptic cell and the activation of various
downstream kinases and mediators (Malenka and Nicoll, 1993;
Malenka, 1994; Huganir and Nicoll, 2013). In the earlier stages of
LTP, these mechanisms enable excitatory synaptic strengthening
through an enhancement of AMPAR function, which may arise
from changes in AMPAR properties or from the recruitment of
additional AMPARs to postsynaptic sites (Isaac et al., 1995; Liao et al.,
1995; Roche et al., 1996; Barria et al., 1997; Benke et al., 1998; Shi et al.,
1999; Banke et al., 2000; Diering and Huganir, 2018). AMPARs
usually assemble as tetramers of two homodimers out of four possible
subunits (GluA1-4). It is generally believed that GluA1-containing
AMPARs (i.e., GluA1/GluA2 heteromers or GluA1 homomers) are
the principal population of receptors that initially traffic to excitatory
synapses during LTP induction, thereby underlying the immediate
potentiation in synaptic strength (Shi et al., 1999; Heynen et al., 2000;
Broutman and Baudry, 2001; Lu et al., 2001). Dendritic spines also
expand significantly in volume following LTP to allow for the
addition of AMPARs to the PSD, thus serving as a morphological
correlate for synaptic strengthening (Bourne and Harris, 2007;
Bourne and Harris, 2008). Importantly, these events result from
the exocytosis of recycling endosomes to the postsynapticmembrane,
the disruption of which impairs activity-dependent spine growth
(Park et al., 2004; Park et al., 2006; Kopec et al., 2007). Endosomes
thus act as a source of both additional AMPARs and lipidmembranes
and can mediate both functional and structural enhancements of
dendritic spines. Hence, it is logical to assume that disruptions in
endosomal dynamics can deleteriously impact excitatory
postsynaptic remodeling at CA3-CA1 synapses.

ENDOMEMBRANE PH HOMEOSTASIS

The internal pH of exocytic and endocytic compartments is an
important determinant of their function and dynamics (Casey

et al., 2010). For instance, the pH milieu of the endoplasmic
reticulum (ER) is near neutral (pH ~7.2) but becomes increasing
acidic from the cis-Golgi network (pH ~6.7) through to the trans-
Golgi network (pH ~6.0) (Figure 2). Secretory vesicles can attain
even higher H+ concentrations (pH ~5.2). Acidification of
compartments along the biosynthetic pathway is important for
proper post-translational processing, sorting and transport of
newly synthesized proteins and lipids. Likewise, endocytosed
membrane-bound proteins from the cell surface that are
targeted for lysosomal degradation are subjected to a gradient
of acidification from early endosomes (EE, pH ~6.3) to late
endosomes (LE, pH ~5.5) and, finally, lysosomes (pH ~4.7).
Conversely, internalized cell-surface proteins destined for
transport back to the plasma membrane may be trafficked
through more alkaline recycling endosomes (RE, pH ~6.5).
Endolysosomal pH is involved in a number of functions,
including 1) cargo sorting, 2) receptor-ligand dissociation and
processing, 3) the maturation and transport of endolysosomal
vesicles, 4) membrane protein and receptor recycling, and 5) the
activity of luminal enzymes including degradative hydrolases
(Casey et al., 2010; Hu et al., 2015). The proper regulation of
luminal pH is thus vital for establishing the identity and function
of each compartment. Vesicular acidification in both the
secretory and endolysosomal pathways is primarily achieved
by the vacuolar H+-ATPase (V-ATPase), an evolutionarily
conserved multisubunit complex that utilizes the chemical
energy present in ATP to pump H+ from the cytosol into the
endomembrane lumen (Casey et al., 2010; Collins and Forgac,
2020; Vasanthakumar and Rubinstein, 2020). Because
V-ATPase-mediated activity transports only H+ independently
of other ions, this results in the generation of an inside-positive
voltage gradient across organellar membranes that gradually
impedes additional H+ influx, limiting acidification. However,
this effect is offset by counterion conductances (anion influx or
cation efflux). The most prominent counterion conductance is
mediated bymembers of the CLC family of voltage-gated chloride
channels and transporters, specifically CLC3-7, which localize to
secretory and endolysosomal compartments and facilitate the
entry of negatively-charged Cl− anions to neutralize the
membrane potential and allow for progressive acidification
(Gentzsch et al., 2003; Guzman et al., 2015; Jentsch and
Pusch, 2018). Notably, these CLC family members act as
electrogenic 2Cl−/1H+ exchangers and can thus serve as both a
mechanism of compensatory anion influx as well as H+ efflux
(Picollo and Pusch, 2005; Scheel et al., 2005; Guzman et al., 2013;
Rohrbough et al., 2018). However, CLCs are not the sole source of
H+ efflux, as a significant fraction of this H+ leakage is also
attributed to endomembrane members of the (Na+ or K+)/H+

exchanger (NHE) gene family (Nakamura et al., 2005; Orlowski
and Grinstein, 2007).

THE NHE FAMILY

NHEs are a family of evolutionarily conserved secondary active
transporters that couple the countertransport of monovalent
alkali cations (such as Na+, K+, or Li+) for H+ across
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biological membranes. To date, 13 distinct mammalian genes
from three phylogenetically distinct categories have been
identified, including NHE1 through NHE9 (encoded by the
SLC9A1-SLC9A9 genes), Na+/H+ antiporters 1 and 2 (NHA1-
2, encoded by the SLC9B1-2 genes), and the recently
characterized NHE10 and NHE11 (SLC9C1 and SLC9C2
genes, respectively) (Brett et al., 2005a; Orlowski and
Grinstein, 2011; Fuster and Alexander, 2014; Pedersen and
Counillon, 2019). NHE proteins differ in their sequence
length, drug sensitivity, cation selectivity, and tissue and
subcellular localization, with some being predominantly
localized to specific subdomains of the cell surface and others
to intracellular organelles. Amongst the SLC9A isoforms, five
(NHE1 through NHE5) are primarily active at the plasma
membrane, while the remaining four (NHE6 through NHE9)
localize mainly in intracellular compartments. Plasmalemmal
NHEs mediate the electroneutral exchange of extracellular Na+

(or Li+) for cytosolic H+ (stoichiometry of 1:1 or 2:2) (Aronson,
1985; Fuster et al., 2008) and are mainly responsible for regulating
systemic and cytosolic pH. In contrast, endomembrane NHEs
mediate the electroneutral transport of luminal H+ for a cytosolic
cation (such as Na+ or K+, with the latter being more prominent
given its higher intracellular concentration) to alkalinize
organellar pH (Numata and Orlowski, 2001; Brett et al.,
2005b; Nakamura et al., 2005). Together, the NHE/SLC9A
transporters regulate intracellular and organellar pH, volume,
and osmolality, which in turn influences vesicular trafficking,
signaling, cell growth and migration. The functions of the SLC9B
and SLC9C isoforms are less well characterized. SLC9B isoforms
are broadly expressed and have been implicated in hypertension
(Xiang et al., 2007; Chintapalli et al., 2015; Kondapalli et al.,
2017), insulin secretion (Deisl et al., 2013; Deisl et al., 2016) and
sperm motility and fertility (Chen et al., 2016). By contrast,

expression of the SLC9C isoforms is largely confined to testis
where they are also essential for sperm function (Wang et al.,
2003; Quill et al., 2006; Wang et al., 2007; Windler et al., 2018;
Cavarocchi et al., 2021).

While NHEs are typically categorized as acting at the plasma
membrane or endomembrane compartments, many of them
shuttle continuously between cellular locations in a cell- or
stimulus-dependent manner. Most notably, upon exit from the
ER, the endomembrane NHEs (eNHEs) are trafficked through
the secretory pathway and transiently appear at the cell surface
prior to being internalized to their respective compartments
(Orlowski and Grinstein, 2007). Moreover, although the
phylogenetically-related epithelial-enriched NHE3 and neural-
enriched NHE5 isoforms are often categorized as cell surface
NHEs, they are also found within a pool of intracellular vesicles
that rapidly shuttle to and from the plasma membrane in
response to diverse stimuli (D’Souza et al., 1998; Janecki et al.,
1998; Kurashima et al., 1998; Szászi et al., 2002; Yang et al., 2002;
Donowitz et al., 2009; Bobulescu et al., 2010; Diering et al., 2011;
Lukashova et al., 2011; Lukashova et al., 2013; Jinadasa et al.,
2014). Indeed, the tissue expression and spatiotemporal
membrane trafficking of these NHEs is a significant
determinant of their function. For instance, NHE3 is present
at the apical surface as well as intracellular vesicles of renal and
gastrointestinal epithelia and plays critical roles in regulating not
only ion secretion and resorption, indirectly mediating the
transmembrane movement of fluid, but also regulating the pH
of newly formed endosomes and internalization of select cargo
(D’Souza et al., 1998; Gekle et al., 2001; Gekle et al., 2004;
Orlowski and Grinstein, 2011; Fuster and Alexander, 2014;
Pedersen and Counillon, 2019). Similarly, NHE5 has been
detected in endosomes of C6 glioma cells that partially overlap
markers for recycling endosomes where it has been implicated in

FIGURE 2 | The steady-state pH of endomembrane compartments. The average resting pH of endomembrane compartments (indicated) becomes progressively
more acidic along the secretory and endocytic pathways. Created with BioRender.com.

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 8921964

Gao et al. NHE/SLC9A in Neurodevelopmental Disorders

http://BioRender.com
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


modulating endosomal pH as well as cell surface delivery and
signalling of the hepatocyte growth factor receptor (HGFR; also
called the MET receptor tyrosine kinase) and epidermal growth
factor receptor (Fan et al., 2016; Kurata et al., 2019). By contrast,
other isoforms such as NHE6, NHE7, NHE8, and NHE9 are
widely expressed where they reside mainly in intracellular
compartments and, to a limited extent, at the plasma
membrane (Nakamura et al., 2005; Orlowski and Grinstein,
2007; Ohgaki et al., 2011). Though these isoforms primarily
regulate endomembrane pH homeostasis and trafficking, they
can also be active at the cell surface of specialized cells (Goyal
et al., 2005; Hill et al., 2006; Zhang et al., 2007; Xu et al., 2008).

ROLES OF NHES IN THE CENTRAL
NERVOUS SYSTEM

Increasing attention has recently been paid to the function of
NHEs in brain. Earlier experiments investigating NHEs in
excitatory synaptic plasticity showed that NHE blockade using
the broad-spectrum inhibitor 5-(N-ethyl-N-isopropyl)-amiloride
(EIPA) was found to significantly improve LTP maintenance in
rat hippocampal slices (Ronicke et al., 2009). While the specific
NHE isoform(s) responsible for this phenomenon was not
determined, it is evident that NHE-mediated pH modulation
can play a critical role in synaptic transmission and remodeling.
Accordingly, disruption of some of these isoforms has been
associated with neuropathologic conditions. Ablation of NHE1
in mice leads to a severe neurodegenerative phenotype associated
with ataxia, seizures, and postnatal lethality (Cox et al., 1997; Bell
et al., 1999). NHE1 has since been shown to regulate the release of
the major inhibitory neurotransmitter γ-aminobutyric acid
(GABA) (Jang et al., 2006; Dietrich and Morad, 2010; Bocker
et al., 2019) and may thus play a larger role in mediating cellular
excitability. Likewise, mutations in human NHE1 cause
Lichtenstein-Knorr syndrome, an autosomal recessive disorder
characterized by hearing loss and cerebellar ataxia (Guissart et al.,
2015). Disruption of human NHE1 function has also been
associated with other forms of ataxia, spastic paraplegia,
intellectual disability, and epilepsy (Zhu et al., 2015; Iwama
et al., 2018; Mendoza-Ferreira et al., 2018). Moreover, genetic
variants in the human NHE7 have recently been shown to cause a
non-syndromic form of intellectual disability accompanied by
macrocephaly, minimal speech, muscular weakness and
hypotonia (Khayat et al., 2019). NHE7 resides within the
Golgi complex, accumulating predominantly in the trans-Golgi
network and post-Golgi vesicles (Numata and Orlowski, 2001;
Lin et al., 2005) where it regulates luminal pH as well as
glycosylation of exported cargos (Khayat et al., 2019).
Although further insights into the neuronal function of NHE7
are presently lacking, these findings illuminate the role of
organellar pH in regulating learning and cognition in the brain.

The roles of two other closely-related (58% amino acid
identity) eNHEs, NHE6, and NHE9, have also received
considerable attention. Both eNHEs are expressed
ubiquitously, though NHE6 is particularly enriched in brain
(see https://www.ncbi.nlm.nih.gov/gene/10479 for SLC9A6 and

https://www.ncbi.nlm.nih.gov/gene/285195 for SLC9A9). These
eNHEs localize predominantly to discrete but overlapping pools
of EEs and REs (Nakamura et al., 2005; Orlowski and Grinstein,
2007; Deane et al., 2013) (Figure 1). In the human genome, the
SLC9A6/NHE6 and SLC9A9/NHE9 genes localize at
chromosomal positions Xq26.3 and 3q24, respectively. In
humans, several mRNA splice-variants of NHE6 have been
documented in research databases (https://www.ncbi.nlm.nih.
gov/gene/10479). Thus far, only two of these, NHE6v1 and
NHE6v2 (originally called NHE6.1 and NHE6.0, respectively)
have been examined at the protein level, with the former
containing an additional 32 amino acid insertion within its
second extracellular loop. This insert contains an additional
glycosylation site, though its functional significance, if any,
remains uncertain. As expected, overexpression of NHE6
(Ohgaki et al., 2010; Xinhan et al., 2011; Ilie et al., 2016) and
NHE9 (Kondapalli et al., 2013) in cultured cells resulted in the
elevation of endosomal pH, whereas knock-down or ablation had
the opposite effect (Ohgaki et al., 2010; Xinhan et al., 2011;
Ouyang et al., 2013; Ullman et al., 2018). Most notably,
deleterious mutations in these eNHEs have been directly
associated with neurodevelopmental disorders. Mutations in
NHE6 result in Christianson syndrome (CS), a monogenic
disorder causing severe X-linked intellectual disability (XLID),
non-verbalism, epilepsy, truncal ataxia, sleep disturbances,
postnatal microcephaly, and autistic traits (Christianson et al.,
1999; Gilfillan et al., 2008; Tarpey et al., 2009; Garbern et al., 2010;
Schroer et al., 2010; Mignot et al., 2013; Ilie et al., 2019; Gruber
et al., 2022). While CS is considered to be a rare disorder, SLC9A6
is one of the six most commonly mutated loci in patients with
XLID (Pescosolido et al., 2014), suggesting that mutations in this
gene may be more common than previously thought. By contrast,
variants in SLC9A9/NHE9 are associated with attention deficit
hyperactive disorder (ADHD) (de Silva et al., 2003; Lasky-Su et al.
, 2008) and autism spectrum disorder with epilepsy (ASD)
(Morrow et al., 2008). Curiously, findings from post-mortem
tissue of individuals diagnosed with idiopathic ASD have
suggested a downregulation of NHE6 expression with a
concomitant increase in that of NHE9 (Schwede et al., 2013),
suggesting a possible reciprocity in the function of these two
eNHEs in the development of ASD. Indeed, genes encoding
endosomal regulators are highly dominant among risk genes
for ASD, illustrating the importance of this system and, by
extension, these eNHEs in the function of neurons and
synapses (Patak et al., 2016). The mechanisms by which
genetic disruptions in eNHEs result in such severe disorders of
the nervous system are poorly understood and remain to be
elucidated.

ROLES OF NHES IN VESICULAR
TRAFFICKING

Given their subcellular locations, it is perhaps not surprising that
these eNHEs would play critical roles in endocytic cargo
trafficking. Even in non-neuronal cells, one of the first
physiological roles identified for NHE6 function was in the
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development of cellular polarity. In liver hepatoma HepG2 cells,
which possess distinct apical and basolateral surface domains,
knock-down of NHE6 selectively decreased endosomal pH and
disrupted transcytotic recycling of proteins to the apical domain,
thereby disrupting the development of proper cellular polarity
(Ohgaki et al., 2010). NHE6 is further implicated in clathrin/
adaptor protein 2 (AP2)-mediated endocytosis (CME) of cell-
surface proteins. In HeLa cells, NHE6 colocalizes strongly with
both clathrin and transferrin, a cellular iron carrier that is
classically used to study CME into recycling endosomes
(Xinhan et al., 2011; Ilie et al., 2016). Accordingly, knock-
down of NHE6 attenuated transferrin uptake in HeLa cells,
which was indicative of a role for NHE6 in trafficking of
recycling endosomal cargo. However, manipulation of NHE6
expression did not impair CME of the activated epidermal
growth factor, suggesting that NHE6 regulates only a subset of
cargo internalized by CME (Xinhan et al., 2011; Ilie et al., 2016).
NHE9 similarly colocalizes with transferrin in mouse primary
cortical astrocytes, in which overexpressing NHE9 significantly
enhanced transferrin uptake (Kondapalli et al., 2013).
Interestingly, siRNA knockdown of NHE9 did not alter
transferrin uptake, suggesting some degree of compensation
from NHE6 in the absence of NHE9. Parenthetically, a recent
report showed that NHE9 is present within microvascular
endothelial cells that line the blood-brain barrier and mediates
iron delivery to the brain (Beydoun et al., 2017). In response to
iron starvation, NHE9 levels are upregulated, alkalinizing
endosomal pH and promoting the recycling of transferrin
receptors back to the cell surface to facilitate additional iron
uptake (Beydoun et al., 2017). The importance of NHE6 and
NHE9 in regulating transferrin uptake and CME in general may
thus be context- and cell-type specific. It should be noted that in
neurons, AMPARs, NMDARs, ionotropic GABAA receptors, and
other cell-surface proteins are predominantly internalized via
CME (Kittler et al., 2000; Hanley, 2018). Therefore, alterations in
eNHE function are predicted to perturb CME mechanisms in
neurons and disrupt the regulation of neurotransmission and
remodeling of both excitatory and inhibitory synapses.

ROLES OF ENDOSOMAL NHES IN
NEURODEVELOPMENT

Both NHE6 and NHE9 are critical during neurodevelopment.
During murine embryogenesis, NHE6 is strongly present in
developing fiber tracts across multiple brain areas, including
the cortex, striatum, thalamus and hippocampus (Deane et al.,
2013; Ouyang et al., 2013). NHE6 expression is then persistent
throughout the postnatal brain, although it is significantly
upregulated at postnatal day (PD) 50 during a period of
intense synaptic pruning and refinement (Deane et al., 2013).
In contrast, NHE9 expression is relatively low during
development and begins to increase only postnatally, peaking
at around PD 50 and declining thereafter (Ullman et al., 2018).
Adult brain NHE9 expression appears to be restricted to the
olfactory bulb, superficial cortical layers, and hippocampus (Lein
et al., 2007). At the cellular level, NHE6 and NHE9 are broadly

present within EEs and REs throughout the axons, somata, and
spines of hippocampal pyramidal neurons (Deane et al., 2013;
Ouyang et al., 2013; Ullman et al., 2018). These observations
confirm the involvement of eNHEs in neuronal endosomes and
suggest that they may function in long-range trafficking
throughout neuronal compartments as well. Given that NHE6
is a critical mediator in the development of cellular polarity
(Ohgaki et al., 2010), it is unsurprising that neurons deficient
in functional NHE6 display reductions in axodendritic branching
(Ouyang et al., 2013; Ilie et al., 2014; Ilie et al., 2016; Gao et al.,
2019; Lizarraga et al., 2021). Accordingly, male Nhe6 knock-out
(KO)mice exhibit a pronounced overall undergrowth of the brain
in addition to progressive volumetric losses in the cortex,
striatum, hippocampus and cerebellum throughout adulthood
(Xu et al., 2017). These reductions in neuronal branching and
brain size are in accordance with the postnatal microcephaly
commonly observed in human CS patients (Christianson et al.,
1999; Pescosolido et al., 2014), which is highly suggestive of a
reduction in adolescent brain development when NHE6 function
is reduced or ablated. This has been hypothesized to arise from
reduced activity of brain-derived neurotrophic factor (BDNF)
(Ouyang et al., 2013), a critical neurotrophin that activates
intracellular pathways regulating neuronal outgrowth,
differentiation, plasticity and survival (Huang and Reichardt,
2001; Chao, 2003). Typically, binding of BDNF to its high
affinity receptor tyrosine receptor kinase B (TrkB) results in
the dimerization, autophosphorylation and endocytosis of the
phosphorylated TrkB complex into signaling endosomes (SEs)
(Xu et al., 2000; Rajagopal et al., 2004; Rex et al., 2007; Koleske,
2013). These SEs are then capable of activating downstream
signaling cascades locally near the site of endocytosis to
regulate neurite branching and elaboration, or undergo long-
range retrograde transport back to the cell soma to activate
transcriptional programs in the nucleus (Harrington and
Ginty, 2013; Cosker and Segal, 2014). Importantly, this sorting
decision can be influenced by the internal acidity of these SEs
(Harrington et al., 2011), again underscoring the critical role of
proper endosomal pH regulation. In hippocampal neurons,
NHE6 colocalizes strongly with TrkB, suggesting that NHE6 is
indeed involved in regulating the luminal pH of TrkB-containing
SEs. Moreover, phosphorylated TrkB levels are reduced in Nhe6
KO neurons (Ouyang et al., 2013) (Figure 3). These results
engendered the hypothesis that the overacidification of
endosomal pH induced by a lack of NHE6 function may lead
to the mistargeting of TrkB to more acidic lysosomes to be
degraded by resident hydrolases. Indeed, application of
exogenous BDNF was sufficient to restore phosphorylated
TrkB levels and neurite branching in cultured hippocampal
KO neurons (Ouyang et al., 2013), implying that reversing the
attenuation in BDNF/TrkB signaling was the root cause of these
morphological impairments in neurons grown in vitro. Given
that BDNF/TrkB signaling can also influence synaptic function
and plasticity (Leal et al., 2017), it is conceivable that excitatory
neurotransmission may also be impacted in murine Nhe6 KO
hippocampal neurons. Augmenting signaling through this
pathway using specific TrkB agonists may thus prove to be
beneficial in alleviating neurological deficits in CS patients
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harbouring SLC9A6 mutations, as hippocampal BDNF/TrkB
signaling is likely to be similarly diminished in these individuals.

How does the loss of eNHE function impact animal
behaviour? Homozygous male Nhe6 KO (Slc9a6-/Y) mice
exhibit several neurobehavioural abnormalities that resemble
clinical phenotypes seen in CS patients. Perhaps the most
evident are deficits in locomotor control, as revealed by their
relatively poor performance in rotarod and balance beam tasks
when compared to age- and sex-matched wild-type (WT) mice
(Stromme et al., 2011). These mice further exhibit hyperactivity
and anxiety-type behaviours in open field paradigms (Stromme
et al., 2011; Sikora et al., 2016), as well as impaired visuospatial
learning (Sikora et al., 2016) and diminished sensitivity to pain
and pressure stimuli (Kerner-Rossi et al., 2019; Petitjean et al.,
2020). Interestingly, female heterozygous mice (Slc9a6+/−) show
an intermediate phenotype compared to homozygous KO males
(Slc9a6-/Y) and WT male and female mice (Sikora et al., 2016),
mirroring clinical findings in female carriers of deleterious
SLC9A6 alleles (Christianson et al., 1999; Pescosolido et al.,
2019; Nan et al., 2022). These observations in heterozygotes
are suggestive of a gene dosage effect of SLC9A6 mutations
upon these phenotypes, as the extent (or skewing) of
X-inactivation (Belmont, 1996; Plenge et al., 2002) of either
the WT or mutant SLC9A6 allele in females likely accounts for
the wide heterogeneity of their traits. Conversely, Slc9a9/Nhe9
KO mice do not show obvious changes in gross hippocampal
morphology or impairments in locomotion, anxiety, smell, or
pain sensitivity (Yang et al., 2016; Ullman et al., 2018). However,
they do exhibit classic characteristics of ASD, including repetitive
behaviours and impaired social and olfactory function (Yang
et al., 2016; Ullman et al., 2018). These differences allude to an
intriguing divergence in how the loss of either eNHE impacts

brain function in mammals and reflects the differing phenotypes
observed in human patients harbouring genetic alterations in
either NHE6 or NHE9.

ROLES OF ENDOSOMAL NHES IN
EXCITATORY SYNAPTIC FUNCTION

These behavioural findings clearly establish the importance of
eNHE function in the formation, function and plasticity of
excitatory synapses. The precise roles of these eNHEs within
the tripartite synapse (i.e., presynaptic and postsynaptic sites as
well as neighbouring astrocytes) are uncertain, but recent studies
have implicated their involvement in both pre- and post-synaptic
vesicle function (Figure 1). In the presynaptic terminal, H+

import into synaptic vesicles (pH ~5.7) is necessary for the
loading of neurotransmitters (Miesenbock et al., 1998; Goh
et al., 2011), underscoring the importance of vesicular pH
regulation in this process. In the axons of cultured
hippocampal neurons, signals of immunolabelled NHE6 and
NHE9 endosomes overlap partially with synaptic vesicle 2
(SV2), a marker of presynaptic terminals (Ouyang et al., 2013;
Ullman et al., 2018). NHE6 endosomes have also been observed
in glutamatergic and GABAergic nerve terminals via mass
spectrometry (Gronborg et al., 2010) as well as in purified
glutamate-positive synaptic vesicles (Preobraschenski et al.,
2014), where it may regulate vesicular cation transients during
neurotransmitter loading. It is thus plausible that a reduction in
NHE6 function could deleteriously impact quantal glutamate
release. Indeed, fiber volleys recorded from area CA1 in Nhe6
KO hippocampi are significantly reduced in amplitude when
compared toWT. As these recordings are reflective of presynaptic

FIGURE 3 | Schematic of impaired endosomal pH homeostasis and AMPAR and TrkB trafficking leading to defective synaptic potentiation and behavioural learning
in NHE6 KO versus WTmice. Potential treatment strategies (i.e., elevate endolysosomal pH, enhance TrkB activation) to address these deficiencies in KO are indicated.
Thickness of arrows represents relative extent of AMPA transport (black) or TrkB receptor signaling (gray). EE, early endosome; RE, recycling endosome; LE, late
endosome; Ly, lysosome; BDNF, brain-derived neurotrophic factor; PSD95, postsynaptic density protein-95; cargo X, undefined membrane cargo.
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firing and activation properties, this finding implies a possible loss
in the number of overall functional synapses (Ouyang et al.,
2013). However, WT and Nhe6 KO do not significantly differ in
the amplitude of paired-pulse ratio recordings at CA3-CA1
synapses (Ouyang et al., 2013), suggesting that the basal
vesicular release properties of individual synapses may not be
impacted by the loss of NHE6. Indeed, NHE6 has only been
detected in a subset of synaptic boutons (Deane et al., 2013).
Hence, a broad role for NHE6 in synaptic vesicle pH homeostasis
and neurotransmitter uptake is unclear. Further investigations
into the precise role of NHE6 within the presynaptic terminal are
thus warranted to better understand the possible roles of this
isoform in neurotransmitter loading and release.

By contrast, a recent study implicated NHE9 in presynaptic
release. In contrast to studies in Nhe6 KO, fiber volley amplitudes
recorded from hippocampal area CA1 appeared to be comparable
between WT and Nhe9 KO, and thus the absence of NHE9 does
not seemingly impact vesicular glutamate loading (Ullman et al.,
2018). However, Nhe9 KO CA3-CA1 synapses showed a
significant increase in paired-pulse ratio, suggestive of a
decrease in presynaptic release probability. This supposition
was further supported by measurements showing that
exocytosis of synaptic vesicles was impaired in Nhe9 KO tissue
due to a reduction in presynaptic Ca2+ influx. This was attributed
to overacidification of endosomes in the absence of NHE9, as
transient vesicle alkalinization using the V-ATPase inhibitor
bafilomycin was sufficient to restore presynaptic Ca2+ entry in
Nhe9 KO neurons. This suggests that proper endosomal pH
regulation in the axonal bouton is indeed a critical component
in the trafficking or function of proteins regulating Ca2+

dynamics and neurotransmitter release. Further work into the
involvement of NHE9 in regulating both neurotransmitter
loading and presynaptic Ca2+ homeostasis will be necessary to
elucidate its precise roles in axon boutons.

To date, the roles of NHE6 are perhaps better understood in
relation to postsynaptic function. NHE6 accumulates at the base
and head regions of dendritic spines and colocalizes with the
excitatory postsynaptic scaffolding molecule PSD95 (Deane et al.,
2013; Ouyang et al., 2013) (Figure 1). Furthermore, NHE6
colocalizes strongly with the GluA1 subunit of the AMPAR
and is rapidly recruited to spines in response to NMDAR-
mediated chemical LTP (Deane et al., 2013). Presumably,
NHE6-mediated trafficking of AMPAR-containing vesicles is
necessary for excitatory synaptic function and plasticity. As
such, Nhe6 KO CA1 pyramidal neurons demonstrated a
marked reduction in overall dendritic spine density, with a
loss of larger, more mature, dendritic spines concomitant with
an increase in immature protrusions when compared to WT
(Ouyang et al., 2013). These results strongly suggest that a
complete loss of NHE6 function may reduce excitatory
synaptic strength and activity-dependent remodeling, which
has since been investigated with NHE6 mutants (discussed
further below). In contrast, Nhe9 KO neurons display
comparable axodendritic branching and dendritic spine
density to WT cells (Ullman et al., 2018). Nonetheless,
electrophysiological recordings from Nhe9 KO CA1 pyramidal
neurons revealed cell-autonomous impairments of AMPAR and

NMDAR function, suggesting that the loss of NHE9 can also alter
glutamatergic neurotransmission in a pleiotropic manner
(Ullman et al., 2018). Curiously, NHE9 does not appear to be
involved in the trafficking of the AMPAR subunits, nor does the
loss of NHE9 impact the surface expression of AMPARs or
NMDARs (Ullman et al., 2018). Further insights into the role
of NHE9 in mediating glutamatergic receptor trafficking and
function are therefore necessary to better understand how
changes in NHE9 function impact excitatory neurotransmission.

Both NHE6 and NHE9 are also expressed in astrocytes (Deane
et al., 2013; Kondapalli et al., 2013; Ullman et al., 2018). With
regards to NHE9, one report found that astrocytes lacking NHE9,
or expressing ASD-associated variants in SLC9A9, exhibited a
significant reduction in endosomal pH compared to those
transfected with WT NHE9 (Kondapalli et al., 2013).
Astrocytes expressing these ASD-associated SLC9A9 variants
also failed to upregulate the surface expression of excitatory
amino acid transporter 1 (EAAT1), resulting in a decrease in
glutamate uptake when compared to overexpression of WT
NHE9 (Kondapalli et al., 2013). Altered glutamate clearance
may thus underlie the aforementioned disturbances in
AMPAR and NMDAR function in Nhe9 KO neurons (Ullman
et al., 2018), although direct assessments of excitatory
transmission in cells expressing these NHE9 mutants have yet
to be performed. Moreover, excess glutamate in the synaptic cleft
likely imbalances the ratio of excitatory and inhibition
transmission, which could account for the co-morbidity of
epilepsy frequently observed in ASD (Kondapalli et al., 2014).
Whether NHE6 also traffics EAAT1 in astrocytes is presently
unclear, although magnetic resonance spectroscopy data of CS
patients have shown an increase in glutamate concentration in
the brain that may indicate enhanced excitatory transmission
(Gilfillan et al., 2008; Schroer et al., 2010). Indeed, Nhe6 KOmice
do exhibit a pronounced increase in activated astrocytes and
microglia within their gray matter (Xu et al., 2017; Kerner-Rossi
et al., 2019). This observationmay be a response to the heightened
neurodegeneration detected in CS patients (Christianson et al.,
1999; Gilfillan et al., 2008; Garbern et al., 2010; Schroer et al.,
2010) and NHE6 KOmice (Stromme et al., 2011; Xu et al., 2017),
but it could also be indicative of possible neuroinflammation
which may not directly arise from its role in astrocytes.
Interestingly, though not covered in this review, diminished
NHE6 expression has also been detected in astrocytes
associated with Alzheimer’s disease, suggesting a broader role
for NHE6 is neurodegenerative pathophysiology (Prasad and
Rao, 2018a; Prasad and Rao, 2018b). Taken together, it is
evident that both NHE6 and NHE9 play very specific roles
throughout the tripartite synapse, although important details
remain to be discovered with regards to exactly which
functions both eNHEs play within each compartment.

Tangentially, though not strictly considered an eNHE, the
plasmalemmal NHE5 isoform also appears to play a role in
postsynaptic remodeling and signaling. An intriguing study
showed that in response to NMDAR-mediated chemical LTP,
NHE5-containing vesicles are also recruited to, and undergo
exocytosis at, dendritic spines. The addition of NHE5 at the
postsynaptic membrane functions to extrude H+ into the synaptic
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cleft to negatively regulate NMDAR activation and restrict
excessive spine expansion (Diering et al., 2011). Rapid
recruitment of NHE5 from intracellular stores to the cell
surface can thus serve to regulate the pH of synaptic
microdomains, which can lend further precision to
postsynaptic plasticity during LTP. Indeed, mice deficient in
NHE5 displayed improved performance in learning and
memory tasks accompanied by an increase in the number of
hippocampal excitatory synapses in the hippocampus, which may
have arisen from an augmentation in BDNF/TrkB signaling
(Chen et al., 2017). Interestingly, past results have also shown
that NHE5-mediated pH regulation may also be involved in the
surface localization and retrograde signaling through the related
tyrosine receptor kinase A (TrkA) (Diering et al., 2013). These
data suggest that despite being canonically classified as a
plasmalemmal NHE, activity-dependent trafficking of NHE5 to
the synaptic cleft may serve to regulate neurotrophin signaling
and plasticity. Additional work investigating the importance of
NHE5 trafficking and pH regulation will undoubtedly reveal
other intriguing roles of this isoform in synaptic physiology
and regulation.

INSIGHTS FROM PATIENT-DERIVED NHE6
MUTATIONS

Given the monogenic nature of CS, recent work has also focused
upon expressing CS-associated SLC9A6 mutations in both non-
neuronal cells and cultured neurons in vitro to investigate
consequences to transporter activity and their impact on cell
function. Most patient-derived variants harbor non-sense
mutations that introduce a premature stop codon in the
N-terminal transmembrane region of the protein, thereby
preventing synthesis of a full-length protein and complete
loss-of-function (LOF) (Gilfillan et al., 2008; Pescosolido et al.,
2014). However, several CS-linked variants are missense
mutations that result in production of a full-length protein,
the effects of which are beginning to be elucidated (Roxrud
et al., 2009; Ilie et al., 2014; Ilie et al., 2016; Gao et al., 2019;
Ilie et al., 2019; Ilie et al., 2020).

In AP-1 cells [modified Chinese hamster ovary (CHO) cells
containing negligible levels of NHE6 protein], most transfected
NHE6 variants display impairments in post-translational
oligosaccharide maturations and protein misfolding, resulting
in enhanced ubiquitination and degradation by the
proteasomal (ER-associated protein degradation, ERAD)
(Meusser et al., 2005) and/or lysosomal (endosomal sorting
complexes required for transport, ESCRT) pathways (Roxrud
et al., 2009; Ilie et al., 2014; Ilie et al., 2016; Ilie et al., 2019; Ilie
et al., 2020). Moreover, endosomes containing most of these
NHE6 mutants are more acidic compared to those expressing
NHE6WT (with some exceptions, see below) (Ilie et al., 2016; Ilie
et al., 2020), which is highly suggestive of impairments in
endocytic processes. As such, expression of these mutant
exchangers in HeLa cells and primary hippocampal neurons
also disrupted transferrin uptake (Ilie et al., 2014; Ilie et al.,
2016; Ilie et al., 2019; Ilie et al., 2020). These deficits appear to be

cargo-selective, as uptake of epidermal growth factor was not
disrupted in HeLa cells expressing an in-frame deletion mutant of
NHE6 (p.Glu287_Ser288del; ΔES) (Ilie et al., 2016). It should be
noted that although both HeLa cells and hippocampal neurons
express endogenous NHE6, the introduction of exogenous NHE6
mutants exerts a dominant-negative effect as NHEs typically
homodimerize to become functional. Thus, the expression of
mutant NHE6 constructs results in the formation of WT and
mutant NHE6 heterodimers that perturb the function of the WT
fraction of NHE6 (Ilie et al., 2016). This effect is best exemplified
in neurons, where transient expression of in-frame deletion
mutants ΔES (Ilie et al., 2016) or ΔWST
(p.Trp370_Ser_Thr372del) (Ilie et al., 2014) impaired neuronal
branching, findings akin to those observed in NHE6 null neurons
(Ouyang et al., 2013). Moreover, transfection of exchanger-
deficient NHE6 variants into Nhe6 KO neurons failed to
rescue neuronal branching (Ouyang et al., 2013), indicating
that ion exchange activity of NHE6 is necessary for neuronal
morphogenesis. Furthermore, transient expression of some of
these mutations into AP-1 cells or primary hippocampal neurons
was sufficient to activate apoptotic cell death (Ilie et al., 2016; Ilie
et al., 2020). These data strongly suggest that a lack of NHE6
function leads to the pronounced neurodegeneration observed in
Nhe6KOmice (Stromme et al., 2011; Xu et al., 2017) as well as the
progressive regression of symptoms in CS patients.

Additional evaluations of the ΔES mutation in cultured
hippocampal neurons have recently revealed numerous
interesting findings with regards to synaptic function. Neurons
expressing ΔES displayed a significant reduction in the number of
larger, more mature dendritic spines (Gao et al., 2019), again
mirroring data from NHE6-deficient pyramidal neurons
(Ouyang et al., 2013). Notably, the mutant exchanger was
diverted away from EEs and REs towards LEs and lysosomes,
which also resulted in a mistrafficking of the AMPAR GluA1
subunit to lysosomes. Consequently, ΔES-transfected neurons
were unable to undergo structural and functional remodeling in
response to NMDAR-dependent LTP. However, transiently
inhibiting lysosomal function or V-ATPase activity was
sufficient to partially restore these deficits in synaptic density
and plasticity (Gao et al., 2019). These results suggest that NHE6-
mediated pH regulation is necessary to mediate proper AMPAR
recycling through the endosomal system, which allows AMPARs
to be rapidly inserted into PSDs from intracellular stores during
LTP. In the absence of functional NHE6, however, these vesicles
become hyperacidified, resulting in the mistrafficking of
AMPARs to lysosomes for subsequent proteolysis (Figure 3).
This study provides some of the first data showing how excitatory
postsynaptic trafficking and remodeling may be impaired when
NHE6 function is downregulated. Importantly, it also suggests
that reversing dysregulations in vesicular pH—for instance, by
using Na+/H+ ionophores (e.g., monensin) that mimic NHE6
function (Mollenhauer et al., 1990; Prasad and Rao, 2015) or by
employing protonation agents (e.g., chloroquine) that alkalinize
endosomal pH (Akpovwa, 2016; Al-Bari, 2017)—may prove to be
beneficial therapeutic strategies to treat CS patients (Figure 3).
How the ablation of NHE6 function affects synaptic plasticity at
the level of the whole circuit remains to be fully elucidated,
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although we predict that functional and structural LTP will be
similarly impaired in Nhe6 KO hippocampi.

Parenthetically, certain NHE6 mutants appear to diverge
slightly from these patterns. An interesting example of this is
the de novomissense NHE6 variant p.Gly218Arg (G218R). When
expressed in both AP-1 cells and primary hippocampal neurons,
vesicles containing G218R were more alkaline compared to
controls (Ilie et al., 2019). This observation was suggestive of a
gain-of-function effect, in contrast to the loss of function
associated with the ΔWST and ΔES mutants. While a fraction
of G218R was subjected to ERAD, the alkalinization of
endosomal pH instead resulted in the trafficking of a
significant portion of the mutant exchanger to LEs and
extracellular release in exosomes upon LE fusion with the
plasma membrane (Ilie et al., 2019). Nonetheless, neurons
expressing G218R showed similar morphological impairments
to those expressing LOF mutations, including reduced dendritic
arborization and spine density (Ilie et al., 2019). These results
underscore the importance of precisely regulating endosomal pH
within strict physiological bounds, as dramatic shifts in either
acidification or alkalinization can impose similarly disrupt
neuronal and synaptic morphology. This is especially
important to consider if endosomal alkalinization agents or
genetic rescue approaches are to be used in the treatment of
CS, as such therapies will therefore have to be tailored for each
specific mutation. In contrast, other mutations identified in CS
patients have been demonstrated to exert only negligible effects
on exchanger properties and cellular physiology. Specifically, two
additional missense mutations, one in the extreme N-terminal
cytoplasmic segment (pAla9Ser; A9S) and another in the
regulatory C-terminal cytoplasmic domain (Arg568Gln;
R568Q) appear to have comparable biochemical characteristics
(i.e., biochemical maturation, stability, and vesicular pH
regulation) to that of WT NHE6 when expressed in AP-1 cells
(Ilie et al., 2020). Engineering the equivalent A9S mutation in
mice also revealed normal brain development and neuronal
arborization and endosomal pH regulation (Ouyang et al.,
2019). In addition, this NHE6 variant appears to be relatively
common in healthy individuals (genome aggregation database,
gnomAD; RRID:SCR_014964), confirming that this mutation
alone does not likely lead to neurological impairments.
Conversely, while the R568Q mutation also appeared to be
relatively benign in heterologous cells, the effects of this
particular variant upon synaptic transmission and plasticity in
neurons have yet to be studied. These findings suggest that some
patients harbouring NHE6 mutations may have been
misdiagnosed, and additional genome-wide analyses will be
required to elucidate the true cause of their pathophysiology.

In conclusion, although the prevalence of recorded
mutations in both NHE6 and NHE9 continues to increase,
treatment options are extremely limited for patients afflicted
by neurodevelopmental disorders that arise from altered
eNHE function. This paucity arises from an incomplete
understanding of the complex roles these eNHEs play at
the cellular, molecular and behavioural levels. Even though
both NHE6 and NHE9 similarly localize to endosomal
compartments, these eNHEs can nevertheless play
divergent roles owing to the differences in their
spatiotemporal expression patterns. Specifically, the current
literature suggests that loss of NHE6 may be especially
important during the formation, establishment and
potentiation of excitatory synapses in the developing brain,
whereas NHE9 may play a greater role in circuit refinement in
the postnatal nervous system. This is further reflected in the
reciprocity in their expression in ASDs (Schwede et al., 2013),
which suggests that NHE9 hyperfunction may also be
detrimental to nervous system refinement during
adolescence. Moreover, the fact that mutations in NHE6
appear to be much more deleterious than those in NHE9
suggests that the former indeed plays a greater role in
excitatory synaptic formation and plasticity, although the
contributions of NHE9 within presynaptic terminals and
astrocytes should not be discounted. While the growing
interest in these exchangers and, more broadly, the role of
endosomal dynamics in synaptic function is encouraging,
there clearly remains an urgent need to further understand
the unique roles of eNHEs in the tripartite synapse. Such
knowledge will help guide development of translational
strategies to ameliorate the broad range of neurological
impairments associated with mutations in these genes.
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