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Ion Transport Modulators as Antimycobacterial Agents
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There is an urgent need for better and safer therapeutic interventions for tuberculosis (TB). We assessed the effects of FDA-
approved ion transport modulators, namely, ambroxol HCl, amiloride HCl, diazoxide, digoxin, furosemide, hydrochlorothiazide
(HCTZ), metformin, omeprazole, pantoprazole, phenytoin, verapamil, and drug X and Y on the growth of free and intracellular
Mycobacterium bovis BCG. Free and intracellular M. bovis BCG were cultured in the presence or absence of the test drugs for 3
to 9 days and then quantified. For both free and intracellular bacteria, cultures that were exposed to furosemide, phenytoin, or
drug Y yielded lower bacteria counts compared to drug-free controls (p < 0:05). The same was observed with diazoxide, HCTZ,
verapamil, and drug X, but only for intracellular M. bovis BCG (p < 0:05). To assess the effects of the drugs on bactericidal
activity of rifampicin, free and intracellular M. bovis BCG were treated with rifampicin alone or in combination with each of the
thirteen test drugs for 3 to 9 days. For extracellular bacteria, higher bacteria clearance rates were observed in cultures exposed to
rifampicin in combination with amiloride HCl, diazoxide, digoxin, furosemide, HCTZ, metformin, pantoprazole, phenytoin,
drug X, or drug Y than those exposed to rifampicin alone, indicating that rifampicin had a synergistic effect with these test
drugs. Rifampicin was also synergistic with ambroxol HCl, diazoxide, digoxin, furosemide, HCTZ, omeprazole, pantoprazole,
phenytoin, verapamil, and drug X against intracellular M. bovis BCG. The antimycobacterial properties exhibited by the ion
transport modulators in this study make them viable candidates as adjuncts to the current anti-TB regimens.

1. Introduction

Tuberculosis (TB) remains the leading infectious cause of
death even though it is now curable. At present, TB can only
be cured using drug regimens comprising at least 3 com-
pounds administered over no less than 6 months [1]. Patients
at times fail to adhere to the 6-month long course of antibi-
otics. As poor drug adherence is one of the main drivers of
antibiotic resistance, developing shorter therapeutic regi-
mens for TB would help reduce the burden of multidrug-
resistant (MDR) TB.

As developing drugs de novo is a long and expensive pro-
cess, drug repurposing and repositioning have garnered

attention as cost-effective strategies for reducing the burden
of TB [2]. At present, several FDA-approved ion transport
modulators including verapamil and lansoprazole are
among the most promising potential anti-TB agents [3, 4].
However, only a few ion transport modulators have been
assessed for potential anti-TB activity. In this study, we
assessed the antimycobacterial properties of thirteen FDA-
approved ion transport modulators, namely, ambroxol
HCl, amiloride HCl, diazoxide, digoxin, furosemide, hydro-
chlorothiazide (HCTZ), metformin, omeprazole, pantopra-
zole, phenytoin, verapamil, and drugs X and Y. The
authors have withheld the identities of drug X and drug Y
pending further studies.
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2. Materials and Methods

2.1. Drugs. All drugs were purchased from Sigma-Aldrich
(St Louis, MO, USA). Stock solutions were prepared in
dimethylsulfoxide (DMSO), aliquoted, and stored at
-20°C for no more than six weeks. Working solutions were
prepared in Middlebrook 7H9 broth or RPMI. All drugs
were used at concentrations that were below their respective
maximum free plasma concentrations when administered to
humans at therapeutic doses (see Table 1). We also assessed
the toxicity of the test drugs to THP-1 derived macrophages
using the sulforhodamine B assay as described previously [5],
and all the test drugs were only used in subsequent experi-
ments at concentrations that were not toxic to the macro-
phages (Figure S1 in Supplementary Materials).

2.2. THP-1 and Mycobacterium bovis BCG Culture. THP-1 is
a human leukaemia monocytic cell line that is extensively
used to study macrophage physiology [6]. THP-1 cells were
cultured in RPMI 1640 media supplemented with 10% foetal
bovine serum (FBS), 2mM glutamine, 10mM HEPES,
4500mg/l glucose, 1500mg/l sodium bicarbonate, and
0.05mM 2-mercaptoethanol. Prior to each experiment, the
cells were differentiated into macrophages by treatment with
200nM phorbol myristate acetate (PMA) for 3 days. All
reagents which were used for culturing THP-1 cells were
purchased from Sigma-Aldrich.

Mycobacterium bovis BCG-1 (Russia) was grown in
Middlebrook 7H9 broth with 10% oleic acid, albumin, dex-
trose, and catalase (OADC) growth supplement and 0.05%
Tween 80.

2.3. Assessment of the Effects of the Test Drugs on the Growth
of Extracellular M. bovis BCG. M. bovis BCG was seeded into
96 well plates at 0:2 × 106 colony forming units (CFUs) in
200μl per well. The cultures were treated with the test drugs
for 3, 6, or 9 days at 37°C, after which viable bacteria were

quantified using the BacTiter-Glo™ microbial cell viability
assay kit following manufacturer’s instructions.

2.4. Assessment of the Effects of the Test Drugs on the Growth
of Intracellular M. bovis BCG. THP-1 derived macrophages
were cultured as described above. The macrophages were
then infected withM. bovis BCG at a multiplicity of infection
(MOI) of 10 and incubated at 37°C for one hour. Non-
internalised bacteria were removed by washing with PBS
and quantified as described above. The amount of interna-
lised bacteria was calculated by subtracting the amount of
non-internalised bacteria from the amount of bacteria that
was originally added to the macrophages. Next, the cultures
were treated with the test drugs and incubated for 3, 6, or 9
days at 37°C. Bacteria were then recovered from the macro-
phages by lysis with 0.2% saponin for 10 minutes [7]. The
lysate was washed twice with PBS, after which the bacteria
were quantified.

2.5. Assessment of the Effects of the Test Drugs on
Antimycobacterial Activity of Rifampicin. Free or intracellu-
lar M. bovis BCG was exposed to rifampicin (2000ng/ml)
alone or in combination with each of the test drugs for 3, 6,
or 9 days, after which the bacteria were quantified.

2.6. Data Analysis. Statistical analyses and graphical presen-
tation were performed using GraphPad Prism version 8.4.2
(GraphPad Software, La Jolla, California, USA) and R version
3.5.1 (R Core Team, Vienna, Austria). Bacteria load between
different cultures was compared using Kruskal-Wallis non-
parametric analysis of variance (ANOVA) followed by
Dunn’s multiple comparisons post hoc analysis.

3. Results and Discussion

3.1. Ion Transport Modulators Inhibit Growth of M. bovis
BCG. Following treatment of 0:2 × 106 extracellular M. bovis
BCG with different test drugs for 3, 6, or 9 days, at least 1:1

Table 1: Concentrations of the drugs tested in the current study and their maximum free plasma concentrations in humans.

Drug Indications
Concentration used in the current study

(ng/ml)
Maximum free plasma concentration in ng/ml

[reference]

Ambroxol HCl Bronchiectasis, emphysema 6 6 [18]

Amiloride HCl Hypertension, CHF∗ 40 40 [19]

Diazoxide Hypoglycaemia 5000 5000 [20]

Digoxin AF

†

, CHF 2 2 [21]

Furosemide Hypertension, CHF 500 500 [22]

HCTZ Hypertension 500 642 [23]

Metformin Diabetes mellitus 1000 1000 [24]

Omeprazole Gastritis, peptic ulcer disease 200 200 [25]

Pantoprazole Gastritis, peptic ulcer disease 180 180 [26]

Phenytoin Epilepsy 2000 2000 [27]

Verapamil Hypertension 24 24 [28]

Drug X 2 2

Drug Y 2 2
∗Congestive heart failure.

†

Atrial fibrillations.
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Figure 1: Median (+IQR) bacterial concentration (colony forming units/ml) after exposure of extracellular (a–c) and intracellular (d–f) M.
bovis BCG to different test drugs for 3 (a, d), 6 (b, e), or 9 (c, f) days. Dashed lines indicate the CFU in drug-free controls. ∗ indicates p < 0:05
vs. drug-free controls. HCTZ: hydrochlorothiazide.
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Figure 2: Median (+IQR) bacterial concentration (colony forming units/ml) after exposure of extracellular (a–c) and intracellular (d–f) M.
bovis BCG to rifampicin (RIF) alone or in combination with different test drugs for 3 (a, d), 6 (b, e), or 9 (c, f) days. Dashed lines indicate CFU
in cultures treated with rifampicin alone. ∗ indicates p < 0:05 vs. cultures treated with rifampicin only. HCTZ: hydrochlorothiazide.
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× 106 viable bacteria were recovered from each of the cul-
tures, indicating that none of the drugs were bactericidal at
the tested concentrations. No significant differences in viable
bacteria counts were observed between any of the drug-
treated cultures and drug-free controls after three days of
treatment (Figure 1(a)). Bacterial cultures that were treated
with digoxin, furosemide, or drug Y for 6 or 9 days had
significantly lower bacterial counts compared to drug-free
controls (p < 0:05), indicating that these drugs are bacterio-
static to extracellular M. bovis BCG (Figures 1(b) and 1(c)).
Significantly lower bacterial counts were observed in cultures
that were treated with phenytoin only after treatment for 9
days (p < 0:05).

Following infection of 0:2 × 106 macrophages with M.
bovis BCG at MOI 10, an average of 0:505 × 106 bacteria
(25.2%) were taken up by the macrophages, and the rest were
washed out of the wells with PBS. When the intracellular
bacteria were treated with the test drugs for 3, 6, or 9 days,
≥0:507 × 106 bacteria were recovered from each culture, indi-
cating that none of the test drugs were bactericidal to the
intracellular bacteria at the concentrations that were used.
Exposure of the cultures to the test drugs for 3 days did
not yield any significant difference in bacteria counts
between the drug-treated samples and drug-free controls
(Figure 1(d)). However, cultures that were treated with
diazoxide, HCTZ, phenytoin, or drug Y for 6 or 9 days had
significantly lower bacteria counts than drug-free controls
(p < 0:05) (Figures 1(e) and 1(f)). Cultures that were exposed
to furosemide, verapamil, or drug X for 9 days also had sig-
nificantly lower bacterial counts than drug-free controls
(p < 0:05) (Figure 1(f)).

In this study, diazoxide, HCTZ, verapamil, and drug X
were bacteriostatic to intracellular, but not to extracellular
bacteria. One possible explanation for this is that the macro-
phages might have accumulated the drugs, particularly in the
compartments harbouring the M. bovis. Alternatively, the
drugs might have enhanced control ofM. bovis by the macro-
phages. While diazoxide, HCTZ and drug X have not been
previously reported to enhance host antimycobacterial
responses, various authors have previously demonstrated
that verapamil enhances autophagy and control of Mtb in
primary human and mouse macrophages [8–11]. While TB
and other infectious diseases are traditionally treated with
agents that directly compromise pathogen physiology, there
is growing interest in host-directed therapy; the control of
pathogens by potentiating the host’s antipathogen responses
[12]. In addition to small molecules, other potential host-
directed therapeutic strategies for TB include cytokine ther-
apy and therapeutic vaccines [12].

In addition to enhancing control of mycobacteria by
macrophages, verapamil is bactericidal to extracellular Mtb
at concentrations higher than those that were used in this
study [10]. While ambroxol and metformin did not have a
significant effect on the growth ofM. bovis BCG in this study,
they have both been shown to enhance the control of myco-
bacteria by macrophages at concentrations higher than those
that were employed in this study [13, 14].

To the best of our knowledge, this is the first time that
diazoxide, digoxin, furosemide, HCTZ, phenytoin, and

drugs X and Y have been shown to have antimycobacterial
activity.

3.2. Ion Transport Modulators Enhance Antimycobacterial
Activity of Rifampicin. Following treatment of extracellular
bacteria with rifampicin alone or in combination with each
of the test drugs for 3, 6, or 9 days, the viable bacteria count
was higher in cultures that were treated with rifampicin alone
than in cultures that were treated with rifampicin in combi-
nation with HCTZ or drug Y at all time points. Cultures that
were treated with amiloride HCl, diazoxide, digoxin, furose-
mide, metformin, pantoprazole, phenytoin, or drug X in
combination with rifampicin had lower bacteria counts than
cultures treated with rifampicin alone on at least one time
point (Figures 2(a)–2(c)).

For intracellular bacteria, there were no differences in
bacteria counts between cultures that were treated with
rifampicin alone or in combination with any of the test drugs
for 3 days (Figure 2(d)). However, cultures that were treated
with ambroxol HCl, diazoxide, digoxin, furosemide, HCTZ,
omeprazole, pantoprazole, phenytoin, verapamil, or drug X
in combination with rifampicin had significantly lower bac-
terial counts than those treated with rifampicin alone on at
least one time point (p < 0:05) (Figures 2(e) and 2(f)).

Our findings are consistent with the findings of the previ-
ous studies which showed that verapamil and metformin
enhance the antimycobacterial activity of rifampicin and
other first-line anti-TB drugs [8, 15, 16]. Verapamil enhances
the activity of rifampicin at least in part by interfering with
both host and bacterial efflux pumps [8]. Host and bacterial
efflux pumps reduce the concentration of anti-TB drugs
inside macrophages and bacteria, respectively, leading to
drug tolerance [17]. This allows the bacteria to persist for
longer, necessitating the use of prolonged treatment regi-
mens to eliminate Mtb. In addition, overactive bacterial
efflux systems are responsible for a proportion of the cases
of MDR-TB [17]. Combining anti-TB drugs with some ion
transport modulators with efflux pump activity could there-
fore help reduce the burden of MDR-TB.

4. Conclusions

In summary, we have shown that furosemide, phenytoin, and
drug Y are bacteriostatic to both extracellular and intracellu-
lar M. bovis BCG at physiologically achievable concentra-
tions. In addition, diazoxide, HCTZ, verapamil, and drug X
are bacteriostatic to intracellularM. bovis BCG, while digoxin
is bacteriostatic to extracellular M. bovis BCG.

The results also show that diazoxide, digoxin, furose-
mide, HCTZ, pantoprazole, phenytoin, and drug X enhance
the bactericidal activity of rifampicin against both extracellu-
lar and intracellular M. bovis BCG. Amiloride HCl, metfor-
min and drug Y enhance the activity of rifampicin against
extracellularM. bovis BCG, while ambroxol HCl, omeprazole
and verapamil enhance the activity of rifampicin against
intracellular M. bovis BCG.

As this study was done in vitro using M. bovis BCG and
an immortalized cell line, our findings may not accurately
predict how the drugs would perform in vivo. Therefore,
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there is a need to investigate the efficacy of the ion transport
modulators used in this study against mycobacteria in vivo.
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