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Abstract

Given the rise in drug-resistant Streptococcus pneumoniae, there is an urgent need to discover new antimicrobials
targeting this pathogen and an equally urgent need to characterize new drug targets. A promising antibiotic target is
dihydrodipicolinate synthase (DHDPS), which catalyzes the rate-limiting step in lysine biosynthesis. In this study, we
firstly show by gene knock out studies that S. pneumoniae (sp) lacking the DHDPS gene is unable to grow unless
supplemented with lysine-rich media. We subsequently set out to characterize the structure, function and stability of
the enzyme drug target. Our studies show that sp-DHDPS is folded and active with a kcat = 22 s-1, KM

PYR = 2.55 ± 0.05
mM and KM

ASA = 0.044 ± 0.003 mM. Thermal denaturation experiments demonstrate sp-DHDPS exhibits an apparent
melting temperature (TM

app) of 72 °C, which is significantly greater than Escherichia coli DHDPS (Ec-DHDPS) (TM
app =

59 °C). Sedimentation studies show that sp-DHDPS exists in a dimer-tetramer equilibrium with a KD
4→2 = 1.7 nM,

which is considerably tighter than its E. coli ortholog (KD
4→2 = 76 nM). To further characterize the structure of the

enzyme and probe its enhanced stability, we solved the high resolution (1.9 Å) crystal structure of sp-DHDPS (PDB
ID 3VFL). The enzyme is tetrameric in the crystal state, consistent with biophysical measurements in solution.
Although the sp-DHDPS and Ec-DHDPS active sites are almost identical, the tetramerization interface of the s.
pneumoniae enzyme is significantly different in composition and has greater buried surface area (800 Å2) compared
to its E. coli counterpart (500 Å2). This larger interface area is consistent with our solution studies demonstrating that
sp-DHDPS is considerably more thermally and thermodynamically stable than Ec-DHDPS. Our study describe for the
first time the knock-out phenotype, solution properties, stability and crystal structure of DHDPS from S. pneumoniae,
a promising antimicrobial target.
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Introduction

Streptococcus pneumoniae is a Gram-positive bacterium and
human commensal inhabiting the upper respiratory tract [1].
The organism often causes pneumonia in children, the elderly
and immunocompromized, and if left untreated can result in
death [2]. Pneumonia accounts for the death of approximately

1 million children per annum under the age of 5, making this
disease the leading cause of childhood mortality worldwide
[2,3]. In recent years S. pneumoniae has received considerable
attention due to the emergence of multi-drug resistant strains,
commonly referred to as drug-resistant Streptococcus
pneumoniae (DRSP) [3,4]. Standard antimicrobial treatment
options, such as the β-lactam and macrolide antibiotics, are
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becoming less effective due to the rise in DRSP [4-7]. This is in
part due to the promiscuous nature of S. pneumoniae in
acquiring genetic resistance elements from other bacteria,
accompanied by selective pressure as a result of high antibiotic
usage [8,9]. Alongside the use of antibiotic agents to combat
infection, vaccination is available as a preventative measure
[10]; however, current pneumococcal vaccines do not offer
protection against all infectious strains. Thus there is an urgent
need to discover new therapeutics targeting appropriate
biomolecules from S. pneumoniae.

A promising antimicrobial target is the enzyme
dihydrodipicolinate synthase (DHDPS), which catalyzes the
first committed step in the lysine biosynthetic pathway of
bacteria, namely the condensation of pyruvate and (S)-
aspartate semialdehyde [(S)-ASA] to form the product,
hydroxytetrahydrodipicolinic acid (HTPA) (Figure 1A) [11-14].
Humans do not synthesize lysine de novo and thus acquire this
essential amino acid from dietary sources; whereas bacteria,
such as S. pneumoniae, synthesize lysine de novo for both
protein and cell-wall synthesis [11-14]. The absence of a lysine
biosynthetic pathway in humans and the fact that lysine is a
fundamental building block of proteins and peptidoglycan in
bacteria, highlights the potential for targeting the enzymatic
machinery involved in this pathway for novel antibiotic
discovery [11-15].

To date, almost all characterized DHDPS enzymes,
excluding notable exceptions from Staphylococcus aureus
[16,17] and Pseudomonas aeruginosa [18,19], adopt a

Figure 1.  Enzymatic reaction and multiple sequence
alignment of DHDPS.  (A) Condensation reaction catalyzed by
DHDPS. (B) Multiple sequence alignment of DHDPS
sequences from bacteria, namely S. pneumoniae (Sp), B.
anthracis (Ba), S. aureus (Sa), and E. coli (Ec), and also the
plant species N. sylvestris (Ns). Conserved active-site residues
are shaded grey.
doi: 10.1371/journal.pone.0083419.g001

homotetrameric structure [20-36]. Each monomeric unit folds to
form a TIM-barrel, or (β/α)8 topology, which subsequently self-
associates to form a tetramer or dimer of ‘tight’ dimers [20-36].
Tetramerization of DHDPS is shown to be important for
stabilizing conformational dynamics of the ‘tight’ dimer interface
where the key active-site residues are located [26,27,36].
These include K161 (E. coli numbering), which forms a Schiff
base with the first substrate to bind the enzyme (i.e. pyruvate),
and a catalytic triad comprised of Y107, T44 and Y133, which
are strongly conserved in all DHDPS enzymes characterized to
date [25,31] including S. pneumoniae (Figure 1B).

Given the clinical importance of S. pneumoniae and the rise
in multi-drug resistance in this Gram-positive pathogen, the
aims of this study were to (i) determine the phenotype of a
DHDPS gene knock mutant of S., pneumoniae; (ii) characterize
the solution properties, stability and catalytic activity of Sp-
DHDPS; and (iii) determine the high-resolution crystal structure
of the enzyme to afford structure-based drug design strategies
in future studies.

Materials and Methods

Bacterial strains, media, and chemicals
Escherichia coli K-12 TOP10 cells (Invitrogen, Carlsbad,

CA), grown in Luria-Bertani (LB) medium, were used for
preparation of plasmid DNA. Escherichia coli BL21(DE3) strain
grown in LB medium was used for recombinant protein
expression. S. pneumoniae 774A, isolated from CSF of a child
with meningitis [37] was grown routinely in Brain Heart Infusion
(BHI) broth or on Horse Blood Agar (HBA) plates, at 37°C in an
atmosphere of 5% CO2. The chemically defined medium with
(CDM+), or without (CDM-), (S)-lysine (200 µg ml-1) was that
described by van de Rijn and Kessler [38], supplemented with
choline chloride (5 µg ml-1), asparagine (50 µg ml-1), and
sodium pyruvate 250 µg ml-1) as described by Moscoso et al.
[1]. Ampicillin was used at a final concentration of 50 µg ml-1,
chloramphenicol at 10 µg ml-1, erythromycin at 0.1 µg ml-1, and
5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) at
25 µg ml-1. For growth studies, cells from freshly grown single
colonies on HBA plates were inoculated into 3 ml of CDM+ and
3 ml CDM-. Cultures were incubated statically for 16 hours in
an atmosphere of 5% CO2 at 37°C. Growth was assessed by
monitoring the optical density (Absorbance) of duplicate
cultures on an hourly basis using a Klett-Summerson
photoelectric colorimeter (filter no. 54, spectral range 520-580
nm).

Recombinant DNA techniques
Routine DNA manipulations were performed using standard

techniques [39]. Plasmid DNA was purified using Wizard plus
SV DNA purification system (Promega, Madison, WI). PCR
amplifications were performed with Phusion High-Fidelity DNA
Polymerase (Finnzymes Oy, Finland) or high-fidelity Platinum
Taq DNA polymerase (Invitrogen, Carlsbad, CA). DNA derived
from PCR reactions was purified using the UltraClean PCR
Clean-up Kit (Mo Bio Laboratories, Inc.). Oligonucleotides were
purchased from GeneWorks Pty. Ltd. (Hindmarsh, South
Australia, Australia).
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Construction of the S. pneumoniae 447A ΔdapA mutant
strain

Overlapping extension PCR [40] was used to generate a
DNA fragment carrying the erythromycin resistance (EmR) gene
flanked by regions up and downstream of S. pneumoniae 447A
dapA. Briefly, primer pairs dap.F/dapERM.R and dapERM.F/
dap.R (Table 1) were used to amplify DNA flanking the region
to be deleted from the chromosome of S. pneumoniae 447A,
and primers pVA838.F/pVA838.R (Table 1) were used to
amplify the EmR gene from plasmid pVA838 [41]. The products
of these three PCR reactions (100 ng each) served as template
in overlapping extension PCR using primers dap.F/dap.R
(Table 1) to generate a linear construct, which was cloned into
pGEM-T Easy (Promega, Madison,WI), introduced into E. coli
K-12 TOP10 cells and confirmed by sequencing. The pGEM-T
Easy construct was used as a template in a PCR with primers
dap.F/dap.R, to amplify the linear allelic replacement DNA
fragment, which was introduced into S. pneumoniae 447A by
transformation. The ΔdapA mutation was confirmed by PCR
using primer pairs in which one primer flanked the targeted
region and the other primed within the EmR gene (OCD52/
dapERM.R and OCD53/dapERM.F). The PCR products were
sequenced using primers OCD52 and OCD53 (Table 1).

Transformation of S. pneumoniae 447A
Bacteria were grown in c-CAT medium (1% w/v Casamino

acids, 0.5% w/v Tryptone, 0.5% w/v NaCl, 1% w/v Yeast
Extract, 16 mM K2HPO4, 0.2 % w/v glucose, 15 μg ml-1
glutamine) at 37°C to OD600 of 0.25-0.30. Cells were diluted
1/10 in 10 ml CTM medium (c-CAT containing 0.2% BSA and 1
mM CaCl2), grown at 37°C to OD600 of 0.10, collected by
centrifugation and resuspended in 1 ml of 15% v/v glycerol
prepared in CTM adjusted to pH 7.8. 100 μl aliquots of cell
suspension were stored at -80°C until required. For
transformation, 100 µl of cells were thawed on ice, 1 ml of
CTM-pH 7.8 and 100 ng of synthetic competence-stimulating
peptide 1 (CSP-1) [42] were added and cells incubated at 37°C
for 13 min. DNA was added and cells were incubated at 32°C
for 35 min then incubation continued for 3 hours at 37°C.
Transformation mixture was plated out on HBA containing 0.1
µg ml-1 erythromycin and incubated overnight at 37°C in an
atmosphere of 5% CO2.

Table 1. Sequences of primers employed in the S.
pneumoniae dapA knock out experiments.

Primer Sequence
pVA838.F CACAAGTGATTTGTGATTGTTG
pVA838.R GCGCTTAGTGGGAATTTGTAC
dapERM.F GTACAAATTCCCACTAAGCGCGTCGTAGATGGCGACTACGAAGC
dapERM.R CAACAATCACAAATCACTTGTGCAATCAAGGCTGGAATAGCATC
dap.F CGAAGAGATGAAGATGACCAAGG
dap.R GAATCAACAACCTCTTCTTTGAAAATGC
OCD52 CACGTGATTTGCATGCGGAA
OCD53 ATCGGTGTTGAGCGTTCGAA

doi: 10.1371/journal.pone.0083419.t001

Expression and purification of Sp-DHDPS
Recombinant Sp-DHDPS was expressed, purified and

assessed by SDS-PAGE and mass spectrometry to be >95%
homogeneous as described previously [43].

Coupled kinetics assay
Kinetic studies were conducted using the coupled-assay

method as previously described [16,36,44,45]. Data were
collected on a Cary UV-Vis spectrophotometer (Varian)
connected to a Peltier cell to maintain a constant temperature
of 30°C. Assays were performed in 1.5 ml semi-micro acrylic
cuvettes with a path length of 10 mm. (S)-ASA was
synthesized according to the methods of Roberts et al. [46]. A
standard assay contained 20 nM of DHDPS, 250 mM HEPES
pH 8.0, 0.2 mM NADPH, varied concentrations of pyruvate and
(S)-ASA, 75 µg ml-1 of DHDPR (purified from E. coli) in a final
volume of 0.8 ml. Cuvettes were pre-incubated at 30°C for 8
min before the reaction was initiated via the addition of (S)-
ASA. Rates were determined from the initial linear portion of
the data collected. The background degradation of NADPH
was factored into rate calculations and each data point was
measured in triplicate within a <10% error margin.

Circular dichroism (CD) spectroscopy
CD spectroscopy experiments were performed on an Aviv

Model 420SF CD spectrometer using a 1.0 nm bandwidth. CD
spectra of Sp-DHDPS were recorded at a protein concentration
of 4.5 µM solubilized in 20 mM Tris-HCl pH 8.0 and 150 mM
NaCl. Wavelength scans spanning 195-240 nm were measured
using a step size of 0.5 nm with a 2 sec averaging time in a 1
mm stoppered quartz cuvette as reported previously [16,36,47].
The resulting spectra were analyzed using the CONTINLL
algorithm and SP43 database employing the CDPRO software
package [48,49]. Thermal denaturation experiments were
monitored at 222 nm over a temperature range of 4–90°C
collecting data at 1°C intervals with a 5 s averaging time. Given
that DHDPS requires chaperones to fold [50], the denaturation
of DHDPS enzymes is irreversible in vitro, and therefore the
apparent melting temperature (TM

app), or midpoint of the
transition between folded to unfolded state, was determined
empirically from the ordinate maximum of the first derivative of
the thermal denaturation profile [36].

Analytical ultracentrifugation
Analytical ultracentrifugation (AUC) studies were conducted

in a XL-I analytical ultracentrifuge (Beckman Coulter) using 12
mm double sector cells with quartz windows loaded into either
an An-60 Ti 4-hole rotor or An-50 Ti 8-hole rotor at a
temperature of 20°C. Sp-DHDPS samples for all centrifugation
runs were solubilized in 20 mM Tris-HCl pH 8.0 and 150 mM
NaCl. For sedimentation velocity experiments, 380 µL of
sample and 400 µL of reference (20 mM Tris-HCl pH 8.0 and
150 mM NaCl) were employed and absorbance versus radial
profiles were generated at 40,000 rpm in continuous mode
using a step size of 0.003 cm and a radial range of 5.8-7.3 cm
without averaging. Data were collected at wavelengths of 210
nm (296-740 nM Sp-DHDPS) or 230 nm (4.5 µM Sp-DHDPS).

DHDPS from Streptococcus pneumoniae
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The absorbance versus radii profiles at different time points
were fitted to single discrete species or a continuous size-
distribution model using the program SEDFIT [51,52] (available
from www.analyticalultracentrifugation.com). The program
SEDNTRP [53,54] was used to determine the partial specific
volume of Sp-DHDPS (0.7475 ml g-1), buffer density (1.005 g
ml-1) and buffer viscosity (1.021 cp) at 20°C. For sedimentation
equilibrium experiments, 120 µL of reference solution and 100
µL of sample at three initial protein concentrations (i.e. 296 nM,
355 nM and 740 nM) were centrifuged at rotor speeds of
10,000 rpm and 18,000 rpm. Initial absorbance versus radial
profiles were measured at 210 nm between 6.8 and 7.2 cm in
step mode using a 0.001 cm step size and 3 averages until
sedimentation equilibrium was attained (t ~ 24 hours). At
sedimentation equilibrium, detailed absorbance versus radius
scans were taken using a step size of 0.001 cm over a radial
range of 6.8 to 7.2 cm with 15 replicates. The resulting
absorbance versus radial position profiles at multiple sample
concentrations and rotor speeds were globally fitted to a single
discrete species model or various self-associating models
(including monomer-dimer, monomer-trimer, dimer-tetramer,
trimer-hexamer and monomer-dimer-tetramer models) using
the program SEDPHAT [55] (available from
www.analyticalultracentrifugation.com).

Dynamic light scattering
Dynamic light scattering measurements were made on an

ALV 5022F DLS (ALV, Germany). Protein samples were
analyzed at a final concentration of 59 μM. Measurements
were taken over a 30 s time period with 10 replicates at 20°C.
The samples were illuminated with a HeNe laser (633 nm) and
experiments were conducted at a scattering angle of 90
degrees. The in-built ALV analysis software was used to
determine average radii.

Crystallization
Crystallization of Sp-DHDPS was performed as previously

described [40]. Briefly, crystals were obtained by employing the
hanging-drop vapor-diffusion method. 1 µl protein solution (10
mg ml-1) and 1 µl precipitant solution were equilibrated against
1 ml reservoir solution [0.2 M ammonium chloride, 20% (w/v)
PEG 6000, 0.1 M MES pH 6.0] in 24-well Linbro plates at 20°C.
Crystals were soaked briefly in cryoprotectant composed of 0.2
M ammonium chloride, 20% (w/v) PEG 6000, 0.1 M MES pH
6.0 and 20%(w/v) glycerol and were then flash-frozen using
liquid nitrogen.

Structure determination
X-ray diffraction experiments were carried out at the

Australian Synchrotron, Victoria, Australia on the MX1
beamline using Blu-Ice [56]. A 1.9 Å resolution data set was
integrated and merged with HKL2000 [57] and scaled with
SCALA [58]. The crystals were initially assigned to the
tetragonal crystal system, space group P42212 with unit cell
dimensions a = b = 105.5 Å and c = 62.4 Å, and an overall
Rmerge of 6%. Molecular replacement was carried out using the
program PHASER [59] with the structure of dihydrodipicolinate
synthase from B. anthracis (PDB ID: 1XL9) [22] as the search

model. One molecule was located in the asymmetric unit. The
structure was refined using the program PHENIX [60] with rigid
body refinement, simulated annealing and atomic displacement
parameters (ADP) refinement. Iterative model building was
carried out using the program COOT [61] followed by ADP
refinement. Even though the 2Fo-Fc electron density map was
clear, there were spurious streaks in the Fo-Fc difference maps
and refinement stalled with a Rwork of 24 % and a Rfree of 32 %.
Examination of the cumulative intensity plot from SCALA
suggested that the data were affected by crystal twinning. The
data were inspected further by running the program
phenix.xtriage. Since there are no twin laws possible in the
above crystal symmetry, over-merging of pseudo-symmetric or
twinned data may have been present. The diffraction data were
re-integrated in space group P1 using XDS [62] and further
analyzed with phenix.xtriage. The presence of seven pseudo-
merohedral twin operators were found, two 4-fold and five 2-
fold. The twin law giving the lowest Robs was -h,l,k
superimposing on h,k,l. The data were scaled in space group
P2 (cell dimensions a = 64.4 Å, b = 105.3, Å, c = 105.5 Å, β =
90.0° degrees) and refined as above with the inclusion of the
above two-fold twin law and four crystallographically-
independent subunits (residues 2-299 and 2-297) in the
asymmetric unit leading to values for Rwork of 19.7 % and Rfree of
22.9 % (this model has been deposited with PDB ID: 3H5D).
However, inspection of the diffraction data and the structural
model provided clear evidence for 21 screw axes perpendicular
to the monoclinic unique b axis. The twinning axis is parallel to
the crystallographic two-fold axis (which is a pseudo-42 or 21

screw axis with significant intensity violations), leading to
reflections −k,h,l being overlapped with h,k,l and to the
observed pseudo-tetragonal 4/mmm Laue symmetry. The final
model, now in space group P22121, was solved by molecular
replacement using MOLREP [63] with the model PDB ID: 3HIJ
[36] together with amplitude-based twin refinement with NCS
restraints using REFMAC5 [64]. The final model (Rwork = 16.5%
and Rfree = 21.2%) comprises of two monomers (residues A2 –
A299 and B2 – B297, and A302 – A311 and B302 – B311), 235
water molecules, 4 potassium ions, 4 glycerol molecules and 2
MES ions. The pseudo-tetragonal symmetry leads to two
possible choices of asymmetric unit, one comprising a pair of
subunits forming the ‘weak’ dimer interface, the other
comprising a pair of subunits forming the ‘tight’ interface – the
usual asymmetric unit seen in other tetrameric DHDPS
structures. Both were tested, the latter being confirmed as
correct. The crystallographic two-fold axis generates the
tetramer. Residues 300-301 of chain A and residues 298-301
of chain B were not observed in electron density maps, and as
a result of crystal packing, it is not unequivocally clear whether
the C-terminal residues 302-311, which were very clearly
defined in electron density maps once the twinning and space
group problems were solved, indulge in domain swapping to a
neighboring tetramer or remain with their own tetramer,
However, electrospray ionization mass spectrometry analysis
of dissolved crystals of recombinant Sp-DHDPS indicates that
the entire protein (residues 1-311) is intact. A summary of the
crystallographic data collection and refinement statistics is
provided in Table 2.

DHDPS from Streptococcus pneumoniae

PLOS ONE | www.plosone.org 4 December 2013 | Volume 8 | Issue 12 | e83419



Coordinates
Coordinates and structure factors for the final model are

accessible via the Protein Data Bank (PDB ID: 3VFL).

Results

S. pneumoniae 447A ΔdapA mutant requires (S)-lysine
for growth

To validate DHDPS as a promising drug target in
Streptococcus pneumoniae, the gene encoding this enzyme
(i.e. dapA) was deleted from strain 447A. The ΔdapA mutant
was generated by homologous recombination as described in
the Materials and Methods. Cultivation of the ΔdapA and wild-
type strains on nutrient-rich media, such as HBA, showed that
their size and morphology were indistinguishable (data not
shown). To determine whether the ΔdapA mutant required (S)-
lysine for growth, wild-type and mutant strains were grown in
Chemically Defined Medium CDM+ and CDM- (where + and -
indicates the presence and absence of 200 µg ml-1 (S)-lysine,

Table 2. Data collection and refinement statistics for the X-
ray structure of Sp-DHDPS (PDB ID: 3VFL).

Temperature (K)  100
Space group   P22121

Cell dimensions Å (a, b, c) 62.4, 105.3, 105.5
Resolution (Å)  74.6 -1.9
No. of observations  757223
No. of unique observations  51243
Completeness (%)  99.6 (97.7)1

I/σI   35.7 (4.7)

Rsym (%)2   6.3 (56.2)
Twin operator   -h, l, k
Twin fraction   0.46
Wilson B factor Å2   22.6

REFINEMENT STATISTICS
Non-hydrogen atoms
Protein   4725
Water   235
Ligands   52

Rwork (%)3   16.5

Rfree (%)4   21.2

RMSD values from ideal value  
Bond lengths (Å)  0.02
Bond angles (°)  2.4

Ramachandran plot
Most favored and allowed region (%) 99.3

B factors (Å2)
Average main chain  27.8
Average side chain  29.6
Average water molecule  29.9
1 Values in parentheses represent the highest resolution shell (2.1–1.9).
2 Rsym = Σ|I - (I)|/ΣI.
3 Rwork = Σ||Fo| - |Fc||/Σ|Fo|.
4 Rfree is based on 5% of the total reflections excluded from refinement.
doi: 10.1371/journal.pone.0083419.t002

respectively) at 37°C in an atmosphere of 5% CO2. Analysis of
growth rates of wild-type and ΔdapA mutant strains showed
that the rate of growth of the mutant in CDM+ was not
significantly different to that of the wild-type strain (Figure 2).
However, the ΔdapA mutant was unable to grow in CDM-

whereas the wild-type strain reached comparable cell density in
CDM+ and CDM- (Figure 2). This demonstrates that the dapA
gene, encoding DHDPS, is essential for the growth of S.
pneumoniae in the absence of lysine.

Secondary structure and stability of Sp-DHDPS
Sp-DHDPS was expressed and purified to >95%

homogeneity as described previously [43]. The enzyme was
subjected to circular dichroism (CD) spectroscopy in aqueous
solution to assess the secondary structure of the recombinant
product. The CD spectrum (Figure 3A) shows a broad
minimum spanning 208 nm to 222 nm, suggesting Sp-DHDPS
adopts a mixed α/β secondary structure in solution [16,36,47].
This assertion was confirmed by fitting the CD spectrum of Sp-
DHDPS to the CONTINLL algorithm and SP43 database using
the CDPRO software suite [48,49]. The nonlinear best-fit
demonstrates a significant proportion of α-helix and β-strand
(Table 3). The calculated secondary structure composition of
Sp-DHDPS is comparable to that of DHDPS enzymes from
other bacteria, including E. coli (Table 3). Next we assessed
the stability of recombinant Sp-DHDPS in solution by
conducting thermal denaturation experiments monitored by CD
at 222 nm (Figure 3B). The resulting thermal denaturation
profile reveals that the enzyme unfolds via a single transition
with an apparent melting temperature (TM

app) of 72°C (Figure
3B and Table 4). Recombinant DHDPS from E. coli (Ec-
DHDPS) also unfolds via a single transition, but with a
significantly lower TM

app of 59°C (Figure 3B and Table 4). These
data therefore indicate that Sp-DHDPS is markedly more stable
in solution than Ec-DHDPS. We were thus interested in
unraveling the molecular mechanism for this enhanced
thermostability by assessing the quaternary structure of Sp-
DHDPS in solution.

Quaternary structure of Sp-DHDPS in aqueous solution
To gain further insights into the solution stability of Sp-

DHDPS, sedimentation velocity studies were conducted in the
analytical ultracentrifuge. Absorbance versus radial data
profiles at different time points were fitted to a continuous size-
distribution, c(s), model [51.52,65,66]. The resulting c(s)
distribution for Sp-DHDPS at an initial concentration of 4.5 µM
is shown in Figure 4A. The c(s) distribution reveals a single
peak with a s20,w value of 7.2 S that is consistent with a
tetrameric species (Table 4) [34,36]. The corresponding c(M)
distribution (Figure 4B) confirmed this assertion and shows a
single peak with a molar mass of 133 kDa, which closely
matches the theoretical mass of the Sp-DHDPS tetramer (135
kDa). Sedimentation studies at a 6-fold lower protein
concentration (i.e. 740 nM) were conducted and the resulting
c(s) nonlinear least-squares fit also reveals the presence of a
single peak (Figure 4B) with a s20,w value of 7.0 S, consistent
with the enzyme existing primarily as a tetramer [26,27,34,36].
These sedimentation velocity analyses suggest that Sp-
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DHDPS exists as a very stable tetramer in solution.
Sedimentation equilibrium experiments were subsequently
performed in the analytical ultracentrifuge to examine the
strength of subunit interactions and the resulting data at
multiple protein concentrations fitted to various equilibrium
schemes. Not surprisingly, the optimal global nonlinear least-
squares fit was obtained for a dimer-tetramer equilibrium model
(Figure 5, solid lines) with a tetramer-dimer dissociation
constant (KD

42) of 1.7 nM. Interestingly, the calculated KD
42 for

Sp-DHDPS is considerably tighter than that obtained for the
previously characterized Ec-DHDPS tetramer (Table 4) [34].
We next set out to determine the average hydrodynamic radius
of the Sp-DHDPS tetramer in solution using dynamic light
scattering.

The hydrodynamic radius of the Sp-DHDPS tetramer
The quaternary structure and hydrodynamic radius of Sp-

DHDPS were studied by dynamic light scattering (DLS)
experiments at an enzyme concentration of 59 μM [3.5 × 104-
fold above the KD

4→2 of Sp-DHDPS (Table 4)]. The resulting
data were analyzed by the method of cumulants (second-order)
and were found to be reproducible between runs and
independent of the choice of fit range. Figure 4D shows a
regularized distribution fit employing the in-built software (ALV).
Analysis of data resulted in a range of hydrodynamic radii that
centered on an average value of 4.5 ± 0.2 nm. The average
hydrodynamic radius was consistent between runs and was not
affected by the choice of fit parameters (correlation function
limits or radius limits). By comparison, the Stokes radius of the
tetramer calculated from sedimentation velocity studies is 4.3
nm, which is in excellent agreement with the DLS experiment.

Enzyme kinetic properties of Sp-DHDPS
To characterize the catalytic properties of the Sp-DHDPS

tetramer, we employed the DHDPS-DHDPR coupled assay
[45] at an enzyme concentration of 20 nM, which is ~12-fold
greater than the KD

4→2 (Table 4). Initial rates were measured
with fixed pyruvate concentrations of 0.5 mM, 1.0 mM, 2.0 mM,
4.0 mM, 8.0 mM and 16.0 mM and varying ASA concentrations
(0-0.48 mM). The resulting data were expressed initially as
Lineweaver-Burk plots (Figure 6A), which displayed a
characteristic series of parallel lines indicating that Sp-DHDPS
follows a Ping-Pong kinetic mechanism [67]. This mechanism
has been demonstrated for DHDPS orthologs from other
bacterial species, including Ec-DHDPS [45,68,69]. The data
were subsequently plotted to produce Michaelis-Menten
profiles (Figure 6B) and fitted to bi-substrate kinetic models
(with and without substrate inhibition), namely the ternary
complex and Ping-Pong mechanism employing ENZFITTER
software (Biosoft). The global nonlinear regression analysis
yielded a best-fit to a Ping-Pong model with no substrate
inhibition (Figure 6B, solid lines) that resulted in a R2 = 0.98
and the kinetic parameters reported in Table 5. The KM of Sp-
DHDPS for (S)-ASA is similar that for the E. coli enzyme (Table
5). However, the KM for pyruvate is 10-fold higher than that for
Ec-DHDPS, and the catalytic turnover (kcat) is 6-fold lower for
Sp-DHDPS compared to the E. coli ortholog (Table 5).

Crystal structure of Sp-DHDPS
In order to gain further insight into the stability and kinetic

behavior at the atomic level, we next sought to determine the
crystal structure of Sp-DHDPS. The collection of high-
resolution synchrotron X-ray data has been reported recently
[43]. Crystals were pseudo-merohedrally twinned to give the
illusion of tetragonal symmetry, with a twin fraction of 0.46

Figure 2.  Growth phenotype of the dapA knockout strain of S. pneumoniae.  Growth of wt S. pneumoniae 447A (control) and
the ΔdapA mutant strain in the presence and absence of 20 mM (S)-lysine. Growth was assessed by monitoring the optical density
(Relative Absorbance) of duplicate cultures on an hourly basis as described in the Materials and Methods.
doi: 10.1371/journal.pone.0083419.g002
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(Table 2). Moreover, the apparent 42 screw axis was
characterized by significant systematic absence violations,
which led after abortive attempts in P42212 to solution and
refinement in the monoclinic space group P21 where there is
ambiguity with respect to the twin law. However, with two well-
defined 21 screw axes perpendicular to the pseudo-tetragonal
axis, final refinements proceeded successfully in the
orthorhombic space group P22121 with the twinning axis being
parallel to the pseudo-tetrad. Only in this final assignment of
crystallographic symmetry did the C-terminal residues 302-311
(see below) become well defined. The structure has been
refined at 1.9 Å resolution (Table 2) to an Rwork of 16.5 % (Rfree

Table 3. Secondary structure composition of Sp-DHDPS
and Ec-DHDPS determined by CD spectroscopy1.

Enzyme α-helix β-strand turn unordered RMSD
Sp-DHDPS 36 15 20 29 0.05

Ec-DHDPS 34 17 20 29 0.04
1 Parameters resulting from the nonlinear best-fit using the CONTINLL algorithm
and SP43 database within the CDPRO software suite [48,49].
doi: 10.1371/journal.pone.0083419.t003

Figure 3.  Circular dichroism spectroscopy of Sp-DHDPS.  (A) CD spectrum of Sp-DHDPS () plotted as the molar circular
dichroism (Δε) as a function of wavelength. The solid line represents the nonlinear least squares fit using the CONTINLL algorithm
and SP43 database within the CDPRO software suite [48.49]. The best-fit resulted in the secondary structure composition reported
in Table 3. (B) Thermal denaturation profiles of Sp-DHDPS () and Ec-DHDPS () plotted as mean residue ellipticity (MRE) versus
temperature. The apparent melting temperature (TM

app), or midpoint of the transition between folded and unfolded states, was
determined from the ordinate maximum of a plot of the first derivative of the MRE as a function of temperature to yield 59°C for Ec-
DHDPS and 72°C for Sp-DHDPS.
doi: 10.1371/journal.pone.0083419.g003
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 of 21.2 %). Two residues, V147 and Y114 in both chains A
and B lie in disallowed Ramachandran conformers, but are
clearly defined in the electron density. Both residues are
located at the ‘tight’ dimer interface (Figure 7) and are held in
strained conformations by hydrogen bonding and hydrophobic
packing at this interface. The strained conformation of the
highly conserved Y114 (Figure 1B) has been observed in all
DHDPS structures determined to date, including those from
plants [20-36]. However, the strained conformation of V147,
which is poorly conserved (Figure 1B), appears to be unique to
Sp-DHDPS.

Consistent with the solution studies, Sp-DHDPS forms a
homotetrameric structure (PDB ID: 3VFL) that is depicted in
Figure 7. Each monomer unit is folded to form an N-terminal
(β/α)8-barrel (residues 2-229) with a C-terminal extension
comprised of three helices (residues 232-292). The C-terminal
residues 302-311 lie in a groove formed by the ‘tight’ dimer
interface (i.e. the interface between chains A & B or C & D in
Figure 7). As with other DHDPS structures, including E. coli
DHDPS [25,31], the active site of Sp-DHDPS is located within
the β-barrel of each subunit. Many of the residues adopt a
similar spatial arrangement to that of the Ec-DHDPS structure
[PDB ID: 1YXC] [25] (Figure 8A). The key lysine residue, K168,
which forms a Schiff base with the pyruvate substrate, is
present alongside residues Y140, R145, and G192, which play
a pivotal role in the cyclization after reaction with the second
substrate (S)-ASA [25,70] (Figure 8A). Two of the residues
forming the catalytic triad, which serves to shuttle protons to
and from the active site (i.e. Y140 and T50), are also present in
a similar orientation to the equivalent residues from the E. coli
ortholog (Figure 8A). However, the third residue of the catalytic
triad, Y114, undergoes a ~70° rotation in the active site of Sp-

Table 4. Comparison of the thermostability and
hydrodynamic properties of Sp-DHDPS and Ec-DHDPS
derived from circular dichroism spectroscopy and analytical
ultracentrifugation studies.

Enzyme TMapp1 °C s20,w (S) Mr4 (kDa) M (kDa) f/f0
6 a/b7 KD42 (nM)

Sp-DHDPS 72 7.22 135 1335 1.256 2.2 1.78

Ec-DHDPS 59 6.93 125 1283 1.263 2.6 763

1 The apparent melting temperature (TMapp), or midpoint of the transition between
folded and unfolded states, was determined from the ordinate maximum of a plot of
the first derivative of the MRE as a function of temperature.
2 Value determined experimentally from the ordinate maximum of the c(s)
distribution best-fit shown in Figure 4A.
3 Hydrodynamic properties reported in [34].
4 Molecular mass calculated from the amino acid sequence.
5 Value calculated experimentally from the apparent molecular mass taken from
the ordinate maximum of the c(M) distribution best-fit shown in Figure 4B.
6 Frictional ratio calculated using the partial specific volume () method employing
SEDNTERP software [53,54].
7 Axial-ratio as calculated from the program SEDNTERP using the method
assuming a prolate ellipsoid.
8 The tetramer-dimer dissociation constant calculated from the global nonlinear
least squares best-fit described in Figure 5
doi: 10.1371/journal.pone.0083419.t004

DHDPS relative to the equivalent residue of the E. coli enzyme
(i.e. Y107), although the functionally important –OH group is
similarly positioned. This residue interdigitates across the ‘tight’
dimer interface forming a hydrophobic stack with Y113 from the
adjacent monomer (Figure 8B). This 70° rotation serves to
change the interaction to a π stacking between the two tyrosine
residues.

Relative to the Ec-DHDPS structure (PDB ID: 1YXC) [26],
insight into the enhanced stability observed for Sp-DHDPS in
solution is revealed by close inspection of the interactions
stabilizing the ‘tight’ dimer interface, and in particular, the
‘weak’ dimer interface (Figure 7, interface AC or BD). Analysis
of the solvent inaccessible surface areas (SISA), calculated
using the Protein Interfaces, Surfaces and Assemblies (PISA)
program [71], reveals that the ‘tight’ dimer interface of Sp-
DHDPS (Figure 7, interface AB or CD) buries 1350 Å2 (Table 6,
Figure 9A), slightly more than that calculated (1290 Å2) for the
equivalent interface of the Ec-DHDPS structure (Table 6,
Figure 9C). Although both enzymes contain the same number
of residues (i.e. 38 in total) at this interface, Sp-DHDPS
contains a larger proportion of residues forming hydrogen
bonds. In contrast, the ‘weak’ dimer interface has a total SISA
of 800 Å2 (Table 6, Figure 9B), which is significantly greater
than the equivalent interface of the E. coli structure (500 Å2)
(Table 6 & Figure 9D). The substantially larger buried surface
area in Sp-DHDPS is due to a greater number of residues
forming contacts at this interface. In addition, it is interesting to
note that this enzyme also contains three residues that form
salt bridge interactions, a feature that is absent in Ec-DHDPS
(Table 6 & Figure 9D).

Discussion

Streptococcus pneumoniae is one of the leading causes of
disease in the world. In the United States, for example, the
organism is responsible for 500,000 cases of pneumonia,
50,000 cases of bacteremia, and 3,000 cases of meningitis per
annum [3,72]. Current treatment relies primarily upon the use
of penicillin-based antibiotics. However, this approach has had
significant limitations given the emergence of drug-resistant S.
pneumoniae (DRSP). The appearance of multiple drug
resistant (MDR) strains in recent times and the occurrence of
community acquired infection are also of particular concern
[72,73]. Accordingly, there is an urgent need to develop novel
antimicrobials and an equally urgent need to discover new
antibiotic targets. A promising pneumococcal drug target is
DHDPS, given the enzymes function in producing lysine
required for protein and cell wall synthesis. However, our
knock-out studies show that the ΔdapA strain of S.
pneumoniae is a lysine auxotroph (Figure 2), which suggests
DHDPS attenuated strains may be able to survive in vivo by
scavenging exogenous lysine from the host. Further studies
are required to ascertain the viability of the ΔdapA strain in
vivo. Nevertheless, having established the ΔdapA strain was
essential to S. pneumoniae in minimal media, we set out to
characterize the structure, function and stability of the enzyme
to afford insight into rational drug design strategies to afford the
discovery of Sp-DHDPS inhibitors in future work.
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Our studies show that Sp-DHDPS is similar in some respects
to the well characterized ortholog from E. coli, which shares 36
% sequence identity. For instance, CD spectroscopy and AUC
studies reveals that Sp-DHDPS, like Ec-DHDPS, has high α/β

secondary structure (Table 3, Figure 3A) and resides in a
dimer-tetramer equilibrium (Table 4, Figures 4 and 5).
Likewise, enzyme kinetic studies demonstrate both Sp-DHDPS
and Ec-DHDPS operate via a Ping-Pong catalytic mechanism.

Figure 4.  Sedimentation velocity and dynamic light scattering analyses of Sp-DHDPS.  (A) Continuous sedimentation
coefficient, c(s), distribution of Sp-DHDPS at 4.5 µM plotted as a function of standardized sedimentation coefficient (s20,w) with
RMSD and runs test Z values for the best-fit of 0.008 and 6.6, respectively. (B) Continuous mass, c(M), distribution of Sp-DHDPS at
a concentration of 4.5 µM plotted as a function of molar mass with RMSD and runs test Z values of 0.008 and 6.6 respectively. (C)
c(s) distribution of Sp-DHDPS at 740 nM, with RMSD and runs test Z values of 0.02 and 1.64, respectively. Data were analyzed
employing the program SEDFIT [51,52,65,66] using a resolution (N) of 200 and a sedimentation coefficient range of 0.1-12 S or
molar mass range 1.0-250 kDa with a P-value of 0.95. Above Panels A-C: Residuals plotted as a function of radial position resulting
from continuous size-distribution best-fits shown in panels A-C. (D) A distribution plot of the average unweighted hydrodynamic radii
of Sp-DHDPS at a concentration of 59 µM determined using dynamic light scattering (DLS). The results of the distribution plot reveal
an average hydrodynamic radius of 4.5 ± 0.2 nm.
doi: 10.1371/journal.pone.0083419.g004

Figure 5.  Sedimentation equilibrium analyses of Sp-DHDPS.  Absorbance at sedimentation equilibrium is plotted as a function
of radial position for Sp-DHDPS at an initial concentration of (A) 296 nM; (B) 355 nM and (C) 740 nM. Data was measured at 210
nm and rotor speeds of 10,000 rpm () and 18,000 rpm (). The resulting global nonlinear least squares fit to a dimer-tetramer
equilibrium model is shown as solid lines and yielded a KD

4à2 of 1.7 nM with a global reduced χ2 of 0.5. Above Panels A-C: Residuals
plotted as a function of radial position resulting from the global nonlinear best-fit analysis to a dimer-tetramer model for data at
10,000 rpm () and 18,000 rpm ().
doi: 10.1371/journal.pone.0083419.g005
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Figure 6.  Enzyme kinetic profiles of recombinant Sp-DHDPS.  Initial velocity was measured as a function of (S)-ASA
concentration. Experiments were conducted at fixed pyruvate concentrations of () 0. 5 mM, () 1.0 mM, () 2.0 mM, () 4.0 mM, () 8.0
mM and () 16.0 mM. (A) Lineweaver-Burk plots showing multiple parallel lines; diagnostic of a ping pong kinetic mechanism
[25,67,69]. (B) Michaelis-Menten plots of data shown in A, where solid lines represent the global nonlinear best-fit to a Ping-Pong
mechanism (without substrate inhibition) using ENZFITTER software, resulting in a R2 = 0.98 and the enzyme kinetic parameters
summarized in Table 5.
doi: 10.1371/journal.pone.0083419.g006
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However, the enzyme kinetic parameters calculated for Sp-
DHDPS are significantly different to the E. coli enzyme (Table
5). The greater KM

PYR for Sp-DHDPS suggests a lower
thermodynamic affinity for this substrate (assuming the
coupling of pyruvate with (S)-ASA is rate-determining),
consistent with the very strongly associated, and presumably
more rigid tetramer, that hinders access of pyruvate to the
binding site and relaxation of the protein to accommodate
pyruvate. This is consistent with our prior conclusions that
protein dynamics control enzyme kinetics [26,27,36,74].

It is worthwhile noting that pyruvate is a central metabolite,
serving as a substrate for several other enzymes. Pyruvate-

Table 5. Summary of the enzyme kinetic parameters of Sp-
DHDPS compared to Ec-DHDPS.

Enzyme kcat (sec-1) KMASA (mM) KMPYR (mM)
Sp-DHDPS 22 0.044 ± 0.003 2.55 ± 0.05

Ec-DHDPS1 124 0.11 ± 0.01 0.26 ± 0.03
1 Kinetic parameters reported in [25].
doi: 10.1371/journal.pone.0083419.t005

utilizing enzymes, such as pyruvate dehydrogenase and lactate
dehydrogenase from Gram-positive bacterial species, including
Bacillus subtilis, Corynebacterium glutamicum and
Lactococcus lactis, display KM

PYR ranging 1 - 15 mM [75,76].
These values are considerably higher than orthologs from

Figure 8.  Comparison of the active sites of Sp-DHDPS
(yellow) and Ec-DHDPS (pink).  (A) An overlay of the active
site with residues labeled according to Sp-numbering. (B)
Image demonstrating the approximate 70° rotation of Y114 in
the active site of Sp-DHDPS compared to the equivalent
residue in Ec-DHDPS (Y107).
doi: 10.1371/journal.pone.0083419.g008

Figure 7.  Crystal structure of Sp-DHDPS determined at a resolution of 1.9 Å.  The enzyme crystallizes as a tetramer
comprised of four identical subunits labeled A, B, C & D with subunits AB or CD connected via the ‘tight’ dimer interface, and
subunits AC or BD connected via the ‘weak’ dimer interface.
doi: 10.1371/journal.pone.0083419.g007
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Gram-negative species, such as E. coli and Thermotoga
maritima, where KM

PYR values range from 0.018 - 0.43 mM
[77-79]. These differences, found also in comparison of
DHDPS from Gram-positive and Gram-negative species, may
indicate that pyruvate is present at a higher intracellular steady-
state concentration in S. pneumoniae (and other Gram-positive
bacteria) than in E. coli (and other Gram-negative bacteria).
The origins of these differences in KM

PYR are not apparent from
the structures of these DHDPS enzymes.

Solution studies also showed Sp-DHDPS possesses
significantly greater thermostability compared to Ec-DHDPS
(Figure 3B). We subsequently demonstrated using analytical
ultracentrifugation that the enhanced thermostability of Sp-
DHDPS is contributed by a 45-fold tighter tetramer-dimer
dissociation constant (Table 4) [34]. We therefore determined
the three-dimensional structure of Sp-DHDPS using X-ray
crystallography (Figure 7) to provide insight into the enhanced
thermal and thermodynamic stability. The origin of the
enhanced thermal stability is clearly revealed in the 1.9 Å
resolution crystal structure of Sp-DHDPS (Figure 7) that shows
a tetrameric structure of the enzyme, consistent with our
solution studies (Table 4, Figures 4 and 5). The tertiary and
quaternary structure architecture of Sp-DHDPS is very similar
to Ec-DHDPS [25,31,34] with an overall RMSD for
superposition of the tetramers of 1.1 Å (alpha carbon atoms),
as well as to other structurally characterized bacterial DHDPS
enzymes [16-19,22,24-27,29-36];. However, significant
structural differences are observed between Sp-DHDPS and
Ec-DHDPS at the subunit interfaces (Figure 9). We show that
there is an increase of 60 Å2 and 300 Å2 in solvent-inaccessible
surface area (SISA) at the ‘tight’ dimer and ‘weak’ dimer
interfaces of Sp-DHDPS, respectively (Table 6, Figure 9). This
significant increase in SISA, in combination with the greater
proportion of hydrogen bonding residues at the ‘tight’ dimer
interface, as well as the presence of residues participating in
salt bridge interactions at the ‘weak’ dimer interface (also
referred to as the tetramerization interface [36]), is consistent
with the 45-fold lower tetramer-dimer dissociation constant for
Sp-DHDPS (Table 4, Figure 5), and to its considerably higher
thermal stability (Figure 3B). Consistent with previous studies
of other DHDPS enzymes, the residues that form interactions
at the ‘weak’ dimer interface are poorly conserved in Sp-
DHDPS, whereas strong conservation is observed at the ‘tight’
dimer interface where the active sites are located [16-36].
Given that recent studies show dimeric mutants of DHDPS
have significantly attenuated catalytic function compared to the
wild-type tetramers [26,27,36], the poor conservation at the
‘weak’ dimer interface offers potential for the design of
pathogen-specific antimicrobial agents [34], particularly given
that protein-protein interfaces represent highly specific drug
targets [80,81]. Indeed, with the increase in drug-resistant
bacteria linked to the overuse and misuse of broad spectrum
antibiotics [8,9], exploiting the ‘weak’ dimer interface of Sp-
DHDPS may provide a means to negate the incidence of broad
spectrum drug resistance.

In conclusion, through gene knock-out studies, circular
dichroism spectroscopy, analytical ultracentrifugation, dynamic
light scattering, enzyme kinetics and X-ray crystallography
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studies, we demonstrate that Sp-DHDPS is an essential, active
and thermostable tetramer. Our work offers insight into rational
drug design strategies targeting multiple sites of the enzyme to
afford the discovery of novel antibiotic agents with potential to
negate drug resistance.
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